The recent development of rare-earth permanent magnets has impacted the field of magnetic separation. The permanent magnets technology led to the advent of various magnetic separators particularly designed for appli...The recent development of rare-earth permanent magnets has impacted the field of magnetic separation. The permanent magnets technology led to the advent of various magnetic separators particularly designed for application in mineral processing. In this展开更多
The present paper gives the design of a new HGMS for magnetic separation of sulphides.The main characteristics of this HGMS are using iron-cladding saddle shaped magnetic coil for instead of the ordinary magnet,and co...The present paper gives the design of a new HGMS for magnetic separation of sulphides.The main characteristics of this HGMS are using iron-cladding saddle shaped magnetic coil for instead of the ordinary magnet,and combining reciprocal-linear motion with vibration to actuate the separation box,and the magnetic field intensity is high up to 2T as well.For improving the magnet system design,a modified finite element method is used to calculate the distribution of magnetic field intensity of separation space of the magnetic coil,and according to the calculation results the magnetic leakage coefficient can be determined easily,thus making designers apart from the empirical way.展开更多
Deep oil and gas reservoirs exist under high-temperature conditions.In situ temperature-preserved coring(ITP-Coring)is an innovative and crucial method for evaluating and exploiting deep oil and gas resources.Thermal ...Deep oil and gas reservoirs exist under high-temperature conditions.In situ temperature-preserved coring(ITP-Coring)is an innovative and crucial method for evaluating and exploiting deep oil and gas resources.Thermal insulation materials are key to achieving successful ITP-Coring.Materials composed of hollow glass microspheres(HGMs)as fillers and epoxy resin(EP)as the matrix are promising thermal insulation materials for application in ITP-Coring to exploit deep resources.The compressive mechanical properties of these materials significantly influence their applicability and reliability.However,few studies have focused on the compressive mechanical behavior of the materials under high-temperature and high-pressure(HTHP)coupled conditions.Therefore,compressive mechanical tests on materials under temperatures and pressures of up to 150℃and 140 MPa were conducted innovatively.The compressive stress-strain curves of the materials were divided into three stages:elastic,yield,and failure,at temperatures ranging from 25℃to 100℃.Increasing temperature and pressure resulted in a decrease in compressive mechanical properties.Notably,high pressure damaged the HGMs,increasing compressive strain as the temperature rose.Additionally,the compressive failure mode shifted from compound failure to shear failure at different thresholds of HTHP conditions.Finally,a constitutive model of compressive mechanics that considered multiple coupled factors was established,demonstrating good agreement with the experimental results.These findings provide both experimental and theoretical support for the optimization and engineering application of HGMs/EP materials.展开更多
Deep petroleum resources are stored under high temperature and pressure conditions,with the temperature having a significant influence on the properties of rocks.Deep in-situ temperature-preserved coring(ITP-coring)de...Deep petroleum resources are stored under high temperature and pressure conditions,with the temperature having a significant influence on the properties of rocks.Deep in-situ temperature-preserved coring(ITP-coring)devices were developed to assess deep petroleum reserves accurately.Herein,hollow glass microspheres(HGMs)/silicone rubber(SR)composites that exhibit excellent thermal insulation properties were prepared as thermal insulation materials for deep ITP-coring devices.The mechanism and process of heat transfer in the composites were explored,as well as their other properties.The results show that the HGMs exhibit good compatibility with the SR matrix.When the volume fraction of the HGMs is increased to 50%,the density of the HGMs/SR composites is reduced from 0.97 to 0.56 g/cm^(3).The HGMs filler introduces large voids into the composites,reducing their thermal conductivity to 0.11 W/m·K.The addition of HGMs into the composites further enhances the thermal stability of the SR,wherein the higher the HGMs filler content,the better the thermal stability of the composites.HGMs significantly enhance the mechanical strength of the SR.HGMs increase the compressive strength of the composites by 828%and the tensile strength by 164%.Overall,HGMs improve the thermal insulation,pressure resistance,and thermal stability of HGMs/SR composites.展开更多
文摘The recent development of rare-earth permanent magnets has impacted the field of magnetic separation. The permanent magnets technology led to the advent of various magnetic separators particularly designed for application in mineral processing. In this
文摘The present paper gives the design of a new HGMS for magnetic separation of sulphides.The main characteristics of this HGMS are using iron-cladding saddle shaped magnetic coil for instead of the ordinary magnet,and combining reciprocal-linear motion with vibration to actuate the separation box,and the magnetic field intensity is high up to 2T as well.For improving the magnet system design,a modified finite element method is used to calculate the distribution of magnetic field intensity of separation space of the magnetic coil,and according to the calculation results the magnetic leakage coefficient can be determined easily,thus making designers apart from the empirical way.
基金supported by the National Key Research and Development Program of China(Grant No.2023YFB2390200)the National Natural Science Foundation of China(Grant No.52304033)the Guangdong Provincial Key Laboratory of Deep Earth Sciences and Geothermal Energy Exploitation and Utilization(Grant No.DESGEEU-2023-10).
文摘Deep oil and gas reservoirs exist under high-temperature conditions.In situ temperature-preserved coring(ITP-Coring)is an innovative and crucial method for evaluating and exploiting deep oil and gas resources.Thermal insulation materials are key to achieving successful ITP-Coring.Materials composed of hollow glass microspheres(HGMs)as fillers and epoxy resin(EP)as the matrix are promising thermal insulation materials for application in ITP-Coring to exploit deep resources.The compressive mechanical properties of these materials significantly influence their applicability and reliability.However,few studies have focused on the compressive mechanical behavior of the materials under high-temperature and high-pressure(HTHP)coupled conditions.Therefore,compressive mechanical tests on materials under temperatures and pressures of up to 150℃and 140 MPa were conducted innovatively.The compressive stress-strain curves of the materials were divided into three stages:elastic,yield,and failure,at temperatures ranging from 25℃to 100℃.Increasing temperature and pressure resulted in a decrease in compressive mechanical properties.Notably,high pressure damaged the HGMs,increasing compressive strain as the temperature rose.Additionally,the compressive failure mode shifted from compound failure to shear failure at different thresholds of HTHP conditions.Finally,a constitutive model of compressive mechanics that considered multiple coupled factors was established,demonstrating good agreement with the experimental results.These findings provide both experimental and theoretical support for the optimization and engineering application of HGMs/EP materials.
基金supported by the Program for Guangdong Introducing Innovative and Entrepreneurial Teams(No.2019ZT08G315)Shenzhen Basic Research Program(General Program)(No.JCYJ20190808153416970)National Natural Science Foundation of China No.51827901 and U2013603。
文摘Deep petroleum resources are stored under high temperature and pressure conditions,with the temperature having a significant influence on the properties of rocks.Deep in-situ temperature-preserved coring(ITP-coring)devices were developed to assess deep petroleum reserves accurately.Herein,hollow glass microspheres(HGMs)/silicone rubber(SR)composites that exhibit excellent thermal insulation properties were prepared as thermal insulation materials for deep ITP-coring devices.The mechanism and process of heat transfer in the composites were explored,as well as their other properties.The results show that the HGMs exhibit good compatibility with the SR matrix.When the volume fraction of the HGMs is increased to 50%,the density of the HGMs/SR composites is reduced from 0.97 to 0.56 g/cm^(3).The HGMs filler introduces large voids into the composites,reducing their thermal conductivity to 0.11 W/m·K.The addition of HGMs into the composites further enhances the thermal stability of the SR,wherein the higher the HGMs filler content,the better the thermal stability of the composites.HGMs significantly enhance the mechanical strength of the SR.HGMs increase the compressive strength of the composites by 828%and the tensile strength by 164%.Overall,HGMs improve the thermal insulation,pressure resistance,and thermal stability of HGMs/SR composites.