船载高频地波雷达(High Frequency Surface Wave Radar, HFSWR)的平台机动运动会使目标回波信号发生展宽,引起目标回波幅度和信噪比降低,进而对目标波达方向估计(Direction of Arrival, DOA)产生不利的影响。针对船载地波雷达展宽目标DO...船载高频地波雷达(High Frequency Surface Wave Radar, HFSWR)的平台机动运动会使目标回波信号发生展宽,引起目标回波幅度和信噪比降低,进而对目标波达方向估计(Direction of Arrival, DOA)产生不利的影响。针对船载地波雷达展宽目标DOA估计问题,本文提出了一种基于时频信息Toeplitz协方差重构的展宽目标DOA估计方法。该方法首先采用结合航向补偿的时频分析处理,来提取展宽目标信号的脊线,可为充分利用展宽目标时频信息来构建协方差矩阵奠定基础。然后对构建的协方差矩阵进行Toeplitz化,实现了非平稳噪声的抑制,提高了目标信噪比,解决了展宽目标信噪比下降的问题,从而实现目标的方位角估计。最后,通过仿真和实测数据对本文提出的方法进行验证,结果表明本文所提方法在相同信噪比和目标展宽程度下均方根误差比单峰值MUSIC和DBF方法减小了1.2°,证明了本文所提方法的有效性。展开更多
A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. Thes...A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. These three sensors have their own advantages and weaknesses, and they can complement each other in some situations. So it would improve the capability of vessel target detection to use multiple sensors including SAR, HFSWR, and A/S to identify non-cooperative vessel targets from the fusion results. During the fusion process of multiple sensors' detection results, point association is one of the key steps, and it can affect the accuracy of the data fusion and the efficiency of a non-cooperative target's recognition. This study investigated the point association analyses of vessel target detection under different conditions: space- borne SAR paired with AIS, as well as HFSWR, paired with AIS, and the characteristics of the SAR and the HFSWR and their capability of vessel target detection. Then a point association method of multiple sensors was proposed. Finally, the thresholds selection of key parameters in the points association (including range threshold, radial velocity threshold, and azimuth threshold) were investigated, and their influences on final association results were analyzed.展开更多
This paper studies the development on the first order sea clutter cross section for bistatic high frequency surface wave radar (HFSWR). Based on the received first order electric field expression, a closed-form of cro...This paper studies the development on the first order sea clutter cross section for bistatic high frequency surface wave radar (HFSWR). Based on the received first order electric field expression, a closed-form of cross sections is derived to account for the case of receiving antenna array being mounted on the shipborne platform. The uniform linear motion and sway motion components are assumed to be responsible for the observed differences in comparison with the bistatic fixed antenna case. Correspondingly, simulations are conducted to study the sea clutter spectral characteristics for these two cases versus different system parameters and sea state conditions. It is shown numerically that the forward motion component will spread the Bragg lines severely and the influence triggered by the sway motion can be explained as the Bessel function modulation of the ordinary sea clutter spectra. The obtained results have important implications in the application of shipborne HFSWR technology to ocean remote sensing and target detection.展开更多
An effective approach in solving the sea clutter spectrum extraction problem is studied in the paper.Different from the conventional signal to noise ratio(SNR)method based on Doppler frequency or range domain inform...An effective approach in solving the sea clutter spectrum extraction problem is studied in the paper.Different from the conventional signal to noise ratio(SNR)method based on Doppler frequency or range domain information,a method is developed to characterize the differences between the sea echo and those interferences are by signal to interference plus noise ratio(SINR)which jointly utilizing the range,Doppler frequency and azimuth domain information.Furthermore,these differences can be adaptable to adverse conditions by forming the necessary boundaries and constraints in searching of the maximum SINR,which greatly promotes the extraction of sea clutter spectrum.The real high frequency surface wave radar(HFSWR)data demonstrate that the proposed method is less influenced by those interferences and can effectively extract the sea clutter spectrum even under the adverse conditions.Furthermore,it has been shown as an effective method for ship detection and sea state remote sensing of HFSWR.展开更多
We conducted the drifter trajectory tracking experi- ment for two drifters in the East China Sea, in which the currents were detected by two multi-frequency HFSWRs using the Lagrangetracking method. The tracking drift...We conducted the drifter trajectory tracking experi- ment for two drifters in the East China Sea, in which the currents were detected by two multi-frequency HFSWRs using the Lagrangetracking method. The tracking drifter trajectory shows good agree- ment with the GPS records by qualitative and quantitative analysis that indicates that drifter tracking by HFSWR is valid. In the 12- hour tracking for drifters P1 and P2, the average errors are 1.84 kin, 1.73 kin, and the maximum errors are 3.52 km and 3.12 km, respec- tively. The current measurement is evaluated by an acoustic Doppler current profilers (ADCP) in-situ observation, and it is the first multi-frequency HFSWR ocean surface monitoring experiment in China. In addition, the main aspects (HFSWR current measurement error, wind, and wave) influencing the tracking accuracy are dis- cussed, and especially the wind factor's impact is analyzed through the wind filed data.展开更多
In high frequency surface wave radar (HFSWR) applications, range and azimuth resolutions are usually lim-ited by the bandwidth of waveforms and the physical dimension of the radar aperture, respectively. In this paper...In high frequency surface wave radar (HFSWR) applications, range and azimuth resolutions are usually lim-ited by the bandwidth of waveforms and the physical dimension of the radar aperture, respectively. In this paper, we propose a concept of multiple-input multiple-output (MIMO) HFSWR system with widely sepa-rated antennas transmitting and receiving sparse frequency waveforms. The proposed system can overcome the conventional limitation on resolutions and obtain high resolution capability through this new configura-tion. Ambiguity function (AF) is derived in detail to evaluate the basic resolution performance of this pro-posed system. The advantages of the system of fine resolution and low peak sidelobe level (PSL) are demon-strated by the AF analysis through numerical simulations. The impacts of Doppler effect and the geometry configuration are also studied.展开更多
为提高海事监测中高频地波雷达(High Frequency Surface Wave Radar,HFSWR)对运动目标的检测准确率,提出了一种基于频谱细化和小波尺度谱重排时频分析的运动目标检测算法.对HFSWR的接收信号进行频率细化处理以提高后续时频分析的频率分...为提高海事监测中高频地波雷达(High Frequency Surface Wave Radar,HFSWR)对运动目标的检测准确率,提出了一种基于频谱细化和小波尺度谱重排时频分析的运动目标检测算法.对HFSWR的接收信号进行频率细化处理以提高后续时频分析的频率分辨率;然后,进行基于Morlet小波的时频分析以提取目标的时频分布特征,为提高时频分布的集中性和抑制交叉项干扰,对小波尺度谱进行重排;根据得到的时频分布特征实现可疑目标区的精确检测.实验结果表明:该算法能有效检测多普勒频率相差很小的运动目标以及海杂波附近的运动目标,可用于对常规目标检测算法无法判定的可疑目标区域进行精细、准确的目标检测与分析.展开更多
为实现对高频地波雷达(high frequency surface wave radar,HFSWR)一阶海杂波谱中目标的检测,提出了基于奇异值分解(singular value decomposition,SVD)的空域海杂波抑制算法(简称空域SVD算法).空域SVD算法是利用海杂波较强的相关性,将...为实现对高频地波雷达(high frequency surface wave radar,HFSWR)一阶海杂波谱中目标的检测,提出了基于奇异值分解(singular value decomposition,SVD)的空域海杂波抑制算法(简称空域SVD算法).空域SVD算法是利用海杂波较强的相关性,将邻近距离单元作为参考,对其阵列协方差矩阵进行SVD,估计空域的海杂波子空间和噪声子空间;再利用子空间的正交性,从阵列回波信号中去除其在海杂波子空间的投影分量,达到在空域抑制海杂波的目的.该方法与现有的空域海杂波抑制方法相比,不需要预先知道海杂波的方位,利用阵列协方差矩阵的SVD来估计子空间,使得子空间的估计比较容易且准确,提高了输出信杂噪比(signal to clutter plus noise ratio,SCNR),有利于目标的检测.展开更多
为抑制海杂波检测高频地波雷达(high frequency surface wave radar,HFSWR)中的目标,提出了基于零陷展宽(null widening,NW)的空域海杂波抑制算法.NW算法利用海洋运动的连续性和海杂波的弥散性,基于干扰位置变化规律构造加权干扰NW矩阵...为抑制海杂波检测高频地波雷达(high frequency surface wave radar,HFSWR)中的目标,提出了基于零陷展宽(null widening,NW)的空域海杂波抑制算法.NW算法利用海洋运动的连续性和海杂波的弥散性,基于干扰位置变化规律构造加权干扰NW矩阵,从阵列中抑制海杂波并保留目标.与其他海杂波抑制算法对比,利用新的波束形成方法将干扰零陷方向展宽,不改变噪声项贡献,从而有效抑制海杂波.利用NW算法在空域抑制海杂波时,根据实际应用环境计算修正矩阵,在实时信号处理过程中不仅运算速度快,而且提高了输出信号杂波噪声比(signal to clutter plus noise ratio,SCNR),针对海杂波抑制效果较好,有助于后续信号处理目标检测工作.展开更多
文摘船载高频地波雷达(High Frequency Surface Wave Radar, HFSWR)的平台机动运动会使目标回波信号发生展宽,引起目标回波幅度和信噪比降低,进而对目标波达方向估计(Direction of Arrival, DOA)产生不利的影响。针对船载地波雷达展宽目标DOA估计问题,本文提出了一种基于时频信息Toeplitz协方差重构的展宽目标DOA估计方法。该方法首先采用结合航向补偿的时频分析处理,来提取展宽目标信号的脊线,可为充分利用展宽目标时频信息来构建协方差矩阵奠定基础。然后对构建的协方差矩阵进行Toeplitz化,实现了非平稳噪声的抑制,提高了目标信噪比,解决了展宽目标信噪比下降的问题,从而实现目标的方位角估计。最后,通过仿真和实测数据对本文提出的方法进行验证,结果表明本文所提方法在相同信噪比和目标展宽程度下均方根误差比单峰值MUSIC和DBF方法减小了1.2°,证明了本文所提方法的有效性。
基金The Special Funds for Fundamental Research Project of China under contract No.2008T04the Marine Scientific Research Special Funds for Public Welfare of China under contract No.200905029
文摘A space-borne synthetic aperture radar (SAR), a high frequency surface wave radar (HFSWR), and a ship automatic identification system (AIS) are the main remote sensors for vessel monitoring in a wide range. These three sensors have their own advantages and weaknesses, and they can complement each other in some situations. So it would improve the capability of vessel target detection to use multiple sensors including SAR, HFSWR, and A/S to identify non-cooperative vessel targets from the fusion results. During the fusion process of multiple sensors' detection results, point association is one of the key steps, and it can affect the accuracy of the data fusion and the efficiency of a non-cooperative target's recognition. This study investigated the point association analyses of vessel target detection under different conditions: space- borne SAR paired with AIS, as well as HFSWR, paired with AIS, and the characteristics of the SAR and the HFSWR and their capability of vessel target detection. Then a point association method of multiple sensors was proposed. Finally, the thresholds selection of key parameters in the points association (including range threshold, radial velocity threshold, and azimuth threshold) were investigated, and their influences on final association results were analyzed.
基金supported by the National Natural Science Foundation of China(61471144)
文摘This paper studies the development on the first order sea clutter cross section for bistatic high frequency surface wave radar (HFSWR). Based on the received first order electric field expression, a closed-form of cross sections is derived to account for the case of receiving antenna array being mounted on the shipborne platform. The uniform linear motion and sway motion components are assumed to be responsible for the observed differences in comparison with the bistatic fixed antenna case. Correspondingly, simulations are conducted to study the sea clutter spectral characteristics for these two cases versus different system parameters and sea state conditions. It is shown numerically that the forward motion component will spread the Bragg lines severely and the influence triggered by the sway motion can be explained as the Bessel function modulation of the ordinary sea clutter spectra. The obtained results have important implications in the application of shipborne HFSWR technology to ocean remote sensing and target detection.
基金Supported by the National Natural Science Foundation of China(61501131,61171180)National Marine Technology Program for Public Welfare(201505002)Fundamental Research Funds for the Central Universities(HIT.MKSTISP.2016 26)
文摘An effective approach in solving the sea clutter spectrum extraction problem is studied in the paper.Different from the conventional signal to noise ratio(SNR)method based on Doppler frequency or range domain information,a method is developed to characterize the differences between the sea echo and those interferences are by signal to interference plus noise ratio(SINR)which jointly utilizing the range,Doppler frequency and azimuth domain information.Furthermore,these differences can be adaptable to adverse conditions by forming the necessary boundaries and constraints in searching of the maximum SINR,which greatly promotes the extraction of sea clutter spectrum.The real high frequency surface wave radar(HFSWR)data demonstrate that the proposed method is less influenced by those interferences and can effectively extract the sea clutter spectrum even under the adverse conditions.Furthermore,it has been shown as an effective method for ship detection and sea state remote sensing of HFSWR.
基金Supported by the National High Technology Research and Development Program of China (863 Program) (2006AA09A303)
文摘We conducted the drifter trajectory tracking experi- ment for two drifters in the East China Sea, in which the currents were detected by two multi-frequency HFSWRs using the Lagrangetracking method. The tracking drifter trajectory shows good agree- ment with the GPS records by qualitative and quantitative analysis that indicates that drifter tracking by HFSWR is valid. In the 12- hour tracking for drifters P1 and P2, the average errors are 1.84 kin, 1.73 kin, and the maximum errors are 3.52 km and 3.12 km, respec- tively. The current measurement is evaluated by an acoustic Doppler current profilers (ADCP) in-situ observation, and it is the first multi-frequency HFSWR ocean surface monitoring experiment in China. In addition, the main aspects (HFSWR current measurement error, wind, and wave) influencing the tracking accuracy are dis- cussed, and especially the wind factor's impact is analyzed through the wind filed data.
文摘In high frequency surface wave radar (HFSWR) applications, range and azimuth resolutions are usually lim-ited by the bandwidth of waveforms and the physical dimension of the radar aperture, respectively. In this paper, we propose a concept of multiple-input multiple-output (MIMO) HFSWR system with widely sepa-rated antennas transmitting and receiving sparse frequency waveforms. The proposed system can overcome the conventional limitation on resolutions and obtain high resolution capability through this new configura-tion. Ambiguity function (AF) is derived in detail to evaluate the basic resolution performance of this pro-posed system. The advantages of the system of fine resolution and low peak sidelobe level (PSL) are demon-strated by the AF analysis through numerical simulations. The impacts of Doppler effect and the geometry configuration are also studied.
文摘为提高海事监测中高频地波雷达(High Frequency Surface Wave Radar,HFSWR)对运动目标的检测准确率,提出了一种基于频谱细化和小波尺度谱重排时频分析的运动目标检测算法.对HFSWR的接收信号进行频率细化处理以提高后续时频分析的频率分辨率;然后,进行基于Morlet小波的时频分析以提取目标的时频分布特征,为提高时频分布的集中性和抑制交叉项干扰,对小波尺度谱进行重排;根据得到的时频分布特征实现可疑目标区的精确检测.实验结果表明:该算法能有效检测多普勒频率相差很小的运动目标以及海杂波附近的运动目标,可用于对常规目标检测算法无法判定的可疑目标区域进行精细、准确的目标检测与分析.
文摘为实现对高频地波雷达(high frequency surface wave radar,HFSWR)一阶海杂波谱中目标的检测,提出了基于奇异值分解(singular value decomposition,SVD)的空域海杂波抑制算法(简称空域SVD算法).空域SVD算法是利用海杂波较强的相关性,将邻近距离单元作为参考,对其阵列协方差矩阵进行SVD,估计空域的海杂波子空间和噪声子空间;再利用子空间的正交性,从阵列回波信号中去除其在海杂波子空间的投影分量,达到在空域抑制海杂波的目的.该方法与现有的空域海杂波抑制方法相比,不需要预先知道海杂波的方位,利用阵列协方差矩阵的SVD来估计子空间,使得子空间的估计比较容易且准确,提高了输出信杂噪比(signal to clutter plus noise ratio,SCNR),有利于目标的检测.
文摘为抑制海杂波检测高频地波雷达(high frequency surface wave radar,HFSWR)中的目标,提出了基于零陷展宽(null widening,NW)的空域海杂波抑制算法.NW算法利用海洋运动的连续性和海杂波的弥散性,基于干扰位置变化规律构造加权干扰NW矩阵,从阵列中抑制海杂波并保留目标.与其他海杂波抑制算法对比,利用新的波束形成方法将干扰零陷方向展宽,不改变噪声项贡献,从而有效抑制海杂波.利用NW算法在空域抑制海杂波时,根据实际应用环境计算修正矩阵,在实时信号处理过程中不仅运算速度快,而且提高了输出信号杂波噪声比(signal to clutter plus noise ratio,SCNR),针对海杂波抑制效果较好,有助于后续信号处理目标检测工作.