The development of space telecommunications in recent years has necessitated the design and the realization of compact, high-performance equipment operating at increasingly high frequencies. The use of high-precision ...The development of space telecommunications in recent years has necessitated the design and the realization of compact, high-performance equipment operating at increasingly high frequencies. The use of high-precision radars for surveillance, detection and mobile communication systems orients research toward the antennas to electronic sweep. In this article, we present a microstrip leaky-wave antenna with periodic patches. Its design is based on an integral formulation solved by software using HFSS finite elements. A parametric study of this antenna is validated by simulations and compared with other results found in the literature. Analysis of the antenna’s radiation parameters shows that the main beam direction and levels of minor’s lobes can be controlled from these geometrical parameters. The interest of this study is to meet the requirements of antennas dedicated telecommunications systems.展开更多
Genetic algorithm(GA)is utilized to design microstrip patch antenna shapes for broad bandwidth.A new project based on GA and high frequency simulation software(HFSS)is proposed to perform optimization.Reasonable agree...Genetic algorithm(GA)is utilized to design microstrip patch antenna shapes for broad bandwidth.A new project based on GA and high frequency simulation software(HFSS)is proposed to perform optimization.Reasonable agreement between simulated results and measured results of the GA-optimized design is obtained.The optimized patch design exhibits a three-fold enhancement in bandwidth when contrasted with a standard square microstrip antenna,showing the validity of this project.展开更多
文摘The development of space telecommunications in recent years has necessitated the design and the realization of compact, high-performance equipment operating at increasingly high frequencies. The use of high-precision radars for surveillance, detection and mobile communication systems orients research toward the antennas to electronic sweep. In this article, we present a microstrip leaky-wave antenna with periodic patches. Its design is based on an integral formulation solved by software using HFSS finite elements. A parametric study of this antenna is validated by simulations and compared with other results found in the literature. Analysis of the antenna’s radiation parameters shows that the main beam direction and levels of minor’s lobes can be controlled from these geometrical parameters. The interest of this study is to meet the requirements of antennas dedicated telecommunications systems.
基金This work was supported by the Specialized Research Fund for the Doctoral Program of Higher Education(No.200700130046)the National Natural Science Foundation of China(Grant Nos.60771060 and 60971078).
文摘Genetic algorithm(GA)is utilized to design microstrip patch antenna shapes for broad bandwidth.A new project based on GA and high frequency simulation software(HFSS)is proposed to perform optimization.Reasonable agreement between simulated results and measured results of the GA-optimized design is obtained.The optimized patch design exhibits a three-fold enhancement in bandwidth when contrasted with a standard square microstrip antenna,showing the validity of this project.