A multiresolution hexahedron element is presented with a new multiresolution analysis(MRA)framework.The MRA framework is formulated out of a mutually nesting displacement subspace sequence,whose basis functions are co...A multiresolution hexahedron element is presented with a new multiresolution analysis(MRA)framework.The MRA framework is formulated out of a mutually nesting displacement subspace sequence,whose basis functions are constructed of scaling and shifting on element domain of a basic node shape function.The basic node shape function is constructed from shifting to other seven quadrants around a specific node of a basic isoparametric element in one quadrant and joining the corresponding node shape functions of eight elements at the specific node.The MRA endows the proposed element with the resolution level(RL)to adjust structural analysis accuracy.As a result,the traditional 8-node hexahedron element is a monoresolution one and also a special case of the proposed element.The meshing for the monoresolution finite element model is based on the empiricism while the RL adjusting for the multiresolution is laid on the solid mathematical basis.The simplicity and clarity of shape function construction with the Kronecker delta property and the rational MRA enable the proposed element method to be more rational,easier and efficient in its implementation than the conventional mono-resolution solid element method or other MRA methods.The multiresolution hexahedron element method is more adapted to dealing with the accurate computation of structural problems.展开更多
针对相对重力观测过程中可能受到环境等因素影响而出现高频信号和局部异常的情况,以2021年漾濞6.4级地震前重力变化为例,通过时空平滑约束重构重力变化数据,对比重构前后重力变化情况。基于球坐标系下六面体模型模拟场源体介质,反演场...针对相对重力观测过程中可能受到环境等因素影响而出现高频信号和局部异常的情况,以2021年漾濞6.4级地震前重力变化为例,通过时空平滑约束重构重力变化数据,对比重构前后重力变化情况。基于球坐标系下六面体模型模拟场源体介质,反演场源视密度变化,分析场源区介质密度演化特征。结果显示:观测数据经过时空平滑重构后,在不改变总体变化趋势的情况下,标准差由17.86×10-8 m/s 2降到8.99×10-8 m/s 2,变化值区间从(-74.20~66.28)×10-8 m/s 2降到(-21.79~27.70)×10-8 m/s 2,数据离散程度得到有效压缩,并能压制高频信号和局部噪声,孕震区域内重力变化时空演化趋势更加连续,便于异常特征的识别。场源区视密度变化显示有一个明显的NW-SE向物质迁移过程,在经过震中位置后逐渐收缩,在震中位置形成一个“孤岛”形态。孕震过程中正负变化分界线从SW-NE向转为NW-SE向,在分界线与构造走向一致后随即发震。展开更多
基金supported by the Foundation of Municipal Key Laboratory of Geomechanics and Geological Environment Protection at Chongqing Institute of Logistics Engineering of PLA(Grant No.GKLGGP 2013-02)the National Natural Science Foundation of China(Grant No.51178222)
文摘A multiresolution hexahedron element is presented with a new multiresolution analysis(MRA)framework.The MRA framework is formulated out of a mutually nesting displacement subspace sequence,whose basis functions are constructed of scaling and shifting on element domain of a basic node shape function.The basic node shape function is constructed from shifting to other seven quadrants around a specific node of a basic isoparametric element in one quadrant and joining the corresponding node shape functions of eight elements at the specific node.The MRA endows the proposed element with the resolution level(RL)to adjust structural analysis accuracy.As a result,the traditional 8-node hexahedron element is a monoresolution one and also a special case of the proposed element.The meshing for the monoresolution finite element model is based on the empiricism while the RL adjusting for the multiresolution is laid on the solid mathematical basis.The simplicity and clarity of shape function construction with the Kronecker delta property and the rational MRA enable the proposed element method to be more rational,easier and efficient in its implementation than the conventional mono-resolution solid element method or other MRA methods.The multiresolution hexahedron element method is more adapted to dealing with the accurate computation of structural problems.
文摘针对相对重力观测过程中可能受到环境等因素影响而出现高频信号和局部异常的情况,以2021年漾濞6.4级地震前重力变化为例,通过时空平滑约束重构重力变化数据,对比重构前后重力变化情况。基于球坐标系下六面体模型模拟场源体介质,反演场源视密度变化,分析场源区介质密度演化特征。结果显示:观测数据经过时空平滑重构后,在不改变总体变化趋势的情况下,标准差由17.86×10-8 m/s 2降到8.99×10-8 m/s 2,变化值区间从(-74.20~66.28)×10-8 m/s 2降到(-21.79~27.70)×10-8 m/s 2,数据离散程度得到有效压缩,并能压制高频信号和局部噪声,孕震区域内重力变化时空演化趋势更加连续,便于异常特征的识别。场源区视密度变化显示有一个明显的NW-SE向物质迁移过程,在经过震中位置后逐渐收缩,在震中位置形成一个“孤岛”形态。孕震过程中正负变化分界线从SW-NE向转为NW-SE向,在分界线与构造走向一致后随即发震。