期刊文献+
共找到3,455篇文章
< 1 2 173 >
每页显示 20 50 100
Dual roles of trifluoroborate in nickel-catalyzed ethylene polymerization:Electronic perturbation and anchoring for heterogenization 被引量:1
1
作者 Changwen Hong Zihao Wang +3 位作者 Hui Jiang Guifu Si Maoping Song Changle Chen 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第8期352-355,共4页
Brookhart-typeα-diimine nickel and palladium catalysts have been extensively studied over the past several decades;however,the heterogenization of these metal complexes has received much less attention.In this contri... Brookhart-typeα-diimine nickel and palladium catalysts have been extensively studied over the past several decades;however,the heterogenization of these metal complexes has received much less attention.In this contribution,we installed a trifluoroborate potassium substituent on anα-diimine framework.The ionic nature of trifluoroborate potassium endowed theα-diimine nickel complex with a strong affinity for the SiO_(2)support,while its electron-donating nature enhanced the catalyst stability and polyethylene molecular weight.In the presence of only 100 equiv.of Et2AlCl cocatalyst,the SiO_(2)-supported catalyst demonstrated significantly better performance than its homogeneous analog during ethylene polymerization,with extremely high activity(1.42–6.53×10^(7)g mol^(−1)h^(−1))and high thermal stability.The heterogeneous system led to the formation of high-molecular-weight polyethylenes(Mn 142,500–732,800 g/mol),narrow polydispersities(2.18–3.00),tunable branching densities(21–64 per 1000 carbon atoms),and great mechanical properties.Moreover,the efficient copolymerization of ethylene with comonomers such as methyl 10-undecenoate,6-chloro-1-hexene or 5-hexenylacetate was achieved.These superior properties enabled by the trifluoroborate potassium moiety may inspire its applications in other polymerization catalyst systems. 展开更多
关键词 Nickel catalysts Heterogeneous catalysts Olefin polymerization Polar monomer COPOLYMERIZATION
原文传递
Heterogenization of a Dinuclear Cobalt Molecular Catalyst in Porous Polymers via Covalent Strategy for CO_(2)Photoreduction with Record CO Production Efficiency
2
作者 Yun-Nan Gong Si-Ya Lv +5 位作者 Hao-Yu Yang Wen-Jie Shi Jing-Jing Wang Long Jiang Di-Chang Zhong Tong-Bu Lu 《CCS Chemistry》 CSCD 2024年第12期3030-3040,共11页
Photocatalytic CO_(2)reduction into chemical fuels is a promising route for alleviating the energy crisis and environmental issues.However,reported catalysts still exhibit low catalytic efficiencies,which hinders the ... Photocatalytic CO_(2)reduction into chemical fuels is a promising route for alleviating the energy crisis and environmental issues.However,reported catalysts still exhibit low catalytic efficiencies,which hinders the development of this important reaction.Herein,we report the heterogenization of a dinuclear cobalt molecular catalyst into two porous polymers(Co_(2)-P1 and Co_(2)-P2)using a covalent strategy for photocatalytic CO_(2)reduction.As a result,Co_(2)-P1 with a phenyl group as the linker exhibited high catalytic performance for the photochemical CO_(2)-to-CO conversion with a CO production rate of 568.8 mmol g-1 h-1 and turnover frequency(TOF)of 11.6 min-1(CO selectivity,95.2%).More impressively,by extending the phenyl to biphenyl linker,the resulting Co_(2)-P2 shows obviously enhanced photocatalytic efficiency for CO_(2)reduction to CO,with a record CO production rate of 1063.0 mmol g-1 h-1 and TOF of 23.6 min-1(CO selectivity,94.9%)under a laboratory light source.Furthermore,Co_(2)-P2 also shows outstanding catalytic activity for photocatalytic CO_(2)reduction under natural sunlight,with a CO production rate of 544.1 mmol g-1 h-1 and TOF of 12.1 min-1(CO selectivity,97.2%).Systematic studies demonstrated that fast electron transfer from the photosensitizer to the catalyst greatly contributes to the superior catalytic activity of Co_(2)-P2. 展开更多
关键词 molecular catalyst heterogenization covalent strategy polymer photocatalysis CO_(2)reduction
在线阅读 下载PDF
Multiple Tin Compounds Modified Carbon Fibers to Construct Heterogeneous Interfaces for Corrosion Prevention and Electromagnetic Wave Absorption 被引量:1
3
作者 Zhiqiang Guo Di Lan +6 位作者 Zirui Jia Zhenguo Gao Xuetao Shi Mukun He Hua Guo Guanglei Wu Pengfei Yin 《Nano-Micro Letters》 SCIE EI CAS 2025年第1期507-527,共21页
Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is con... Currently,the demand for electromagnetic wave(EMW)absorbing materials with specific functions and capable of withstanding harsh environments is becoming increasingly urgent.Multi-component interface engineering is considered an effective means to achieve high-efficiency EMW absorption.However,interface modulation engineering has not been fully discussed and has great potential in the field of EMW absorption.In this study,multi-component tin compound fiber composites based on carbon fiber(CF)substrate were prepared by electrospinning,hydrothermal synthesis,and high-temperature thermal reduction.By utilizing the different properties of different substances,rich heterogeneous interfaces are constructed.This effectively promotes charge transfer and enhances interfacial polarization and conduction loss.The prepared SnS/SnS_(2)/SnO_(2)/CF composites with abundant heterogeneous interfaces have and exhibit excellent EMW absorption properties at a loading of 50 wt%in epoxy resin.The minimum reflection loss(RL)is−46.74 dB and the maximum effective absorption bandwidth is 5.28 GHz.Moreover,SnS/SnS_(2)/SnO_(2)/CF epoxy composite coatings exhibited long-term corrosion resistance on Q235 steel surfaces.Therefore,this study provides an effective strategy for the design of high-efficiency EMW absorbing materials in complex and harsh environments. 展开更多
关键词 Electrostatic spinning Component regulation Heterogeneous interfaces Electromagnetic wave absorption Corrosion protection
在线阅读 下载PDF
Fabricating Pd isolated single atom sites on C3N4/rGO for heterogenization of homogeneous catalysis 被引量:11
4
作者 Ninghua Fu Xiao Liang +9 位作者 Zhi Li Wenxing Chen Yu Wang Lirong Zheng Qinghua Zhang Chen Chen Dingsheng Wang Qing Peng Lin Gu Yadong Li 《Nano Research》 SCIE EI CAS CSCD 2020年第4期947-951,共5页
Metal isolated single atomic sites catalysts have attracted intensive attention in recent years owing to their maximized atom utilization and unique structure.Despite the success of single atom catalyst synthesis,dire... Metal isolated single atomic sites catalysts have attracted intensive attention in recent years owing to their maximized atom utilization and unique structure.Despite the success of single atom catalyst synthesis,directly anchoring metal single atoms on three-dimensional(3D)macro support,which is promising to achieve the heterogenization of homogeneous catalysis,remains a challenge and a blank in this field.Herein,we successfully fabricate metal single atoms(Pd,Pt,Ru,Au)on porous carbon nitride/reduced graphene oxide(C3N4/rGO)foam as highly efficient catalysts with convenient recyclability.C3N4/rGO foam features two-dimensional microstructures with abundant N chelating sites for the stabilization of metal single atoms and vertically-aligned hierarchical mesostructure that benefits the mass diffusion.The obtained Pdi/C3N4/rGO monolith catalyst exhibits much enhanced activity over its nanoparticle counterpart for Suzuki-Miyaura reaction.Moreover,the Pdi/C3N4/rGO monolith catalyst can be readily assembled in a flow reactor to achieve the highly efficient continuous production of 4-nitro-1,1'-biphenyl through Suzuki-Miyaura coupling. 展开更多
关键词 heterogenization of hom ogeneous catalysis metal isolated single atoms carbon nitride reduced graphene oxide monolith catalyst
原文传递
Hollow click-based porous organic polymers for heterogenization of [Ru(bpy)3]2+ through electrostatic interactions 被引量:2
5
作者 Liuyi Li Caiyan Cui +2 位作者 Wenyue Su Yangxin Wang Ruihu Wang 《Nano Research》 SCIE EI CAS CSCD 2016年第3期779-786,共8页
A facile approach for the heterogenization of transition metal catalysts using non-covalent interactions in hollow click-based porous organic polymers (H-CPPs) is presented. A catalytically active cationic species, ... A facile approach for the heterogenization of transition metal catalysts using non-covalent interactions in hollow click-based porous organic polymers (H-CPPs) is presented. A catalytically active cationic species, [Ru(bpy)3]〉 (bpy = 2,2'-bipyridyl), was immobilized in H-CPPs via electrostatic interactions. The intrinsic properties of [Ru(bpy)3]〉 were well retained. The resulting Ru- containing hollow polymers exhibited excellent catalytic activity, enhanced stability, and good recyclability when used for the oxidative hydroxylation of 4-methoxyphenylboronic acid to 4-methoxyphenol under visible-light irradiation. The attractive catalytic performance mainly resulted from efficient mass transfer and the maintenance of the chemical properties of the cationic Ru complex in the H-CPPs. 展开更多
关键词 porous organic polymers HOLLOW heterogenization cationic metal complex catalysis
原文传递
Micro-sized hexapod-like CuS/Cu_(9)S_(5) hybrid with broadband electromagnetic wave absorption 被引量:2
6
作者 Mengjun Han Di Lan +5 位作者 Zhiming Zhang Yizhi Zhao Jiaxiao Zou Zhenguo Gao Guanglei Wu Zirui Jia 《Journal of Materials Science & Technology》 2025年第11期302-312,共11页
Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesi... Reasonable manipulation of component and microstructure is considered as a potential route to realize high-performance microwave absorber.In this paper,micro-sized hexapod-like CuS/Cu_(9)S_(5) composites were synthesized via a facile approach involving the solvothermal method and subsequent sulfuration treatment.The resultant CuS/Cu_(9)S_(5) exhibited superb microwave absorbing capacity with a minimum reflection loss(RLmin)of-59.38 dB at 2.7 mm.The maximum effective absorption bandwidth(EABmax)was 7.44 GHz(10.56-18 GHz)when the thickness was reduced to 2.3 mm.The outstanding microwave absorbing ability of CuS/Cu_(9)S_(5) composites is mainly related to its unique hexapod shape and the formation of heterogeneous interfaces.The unique hexapod shape significantly promotes the multi-reflection of the incident electromagnetic wave(EMW)increasing the attenuation path of EMWs in the material.Hetero-geneous interfaces between CuS/Cu_(9)S_(5) enable powerful interface polarization,contributing to the atten-uation of EMWs propagating in the medium.In addition,the EMW absorption performance of CuS/Cu_(9)S_(5) composites is also inseparable from the conduction loss.This study provides a strong reference for the research of EMW absorbent materials based on transition metal sulfides. 展开更多
关键词 Heterogeneous interface Hexapod shape Transition metal sulfide Electromagnetic wave absorption
原文传递
A Framework for Analyzing Spatial Heterogeneity and Influencing Factors of Campus Green Space in Xi’an,China 被引量:2
7
作者 ZANG Zexuan ZHANG Liwei +5 位作者 LIU Yu YANG Xiping WANG Zhuangzhuang JIAO Lei WANG Hao LUO Ying 《Chinese Geographical Science》 2025年第4期786-801,共16页
Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different educ... Increased exposure to campus green spaces can make a positive contribution to the healthy development of students.However,understanding of the current supply of campus green space(CGS)and its drivers at different education stages is still limited.A new framework was established to evaluate the spatial heterogeneity and its influencing factors across all education stages(kindergarten,primary school,middle school,college)in 1100 schools at the urban scale of Xi’an,China.The research results show that:1)CGS is lower in the Baqiao district and higher in the Yanta and Xincheng districts of Xi’an City.‘Green wealthy schools are mainly concentrated in the Weiyang,Chang’an and Yanta districts.2)CGS of these schools in descending order is college(31.40%)>kindergarten(18.32%)>middle school(13.56%)>primary school(10.70%).3)Colleges have the most recreation sites(n(number)=2),the best education levels(11.93 yr),and the lowest housing prices(1.18×10^(4) yuan(RMB)/m^(2));middle schools have the highest public expenditures(3.97×10^(9) yuan/yr);primary schools have the highest CGS accessibility(travel time gap(TTG)=31.33).4)Multiscale Geographically Weighted Regression model and Spearman’s test prove that recreation sites have a significant positive impact on college green spaces(0.28–0.35),and education level has a significant positive impact on kindergarten green spaces(0.16–0.24).This research framework provides important insights for the assessment of school greening initiatives aimed at fostering healthier learning environments for future generations. 展开更多
关键词 campus green space(CGS) spatial heterogeneity multiscale geographically weighted regression Xi’an China
在线阅读 下载PDF
Boosted hydrodeoxygenation of lignin and its derivatives to cycloalkanes over Ni catalysts with surface decoration of AlPO_(4)species 被引量:1
8
作者 Xinyong Diao Linge Hao +2 位作者 Yawen Shi Shengbo Zhang Na Ji 《Journal of Energy Chemistry》 2025年第5期360-371,共12页
Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild condit... Ni-based catalysts are widely applied in the hydrodeoxygenation of lignin derivatives via C-O cleavage for the production of cycloalkanes.However,they often have difficulty in achieving high activity under mild conditions and exhibit relatively poor stability,and rare studies focus on the cleavage of the stubborn interunit C-C linkages.To address this issue,we developed a Ni@AlPO_(4)/Al_(2)O_(3)catalyst in which the surface of Ni nanoparticles was decorated by AlPO_(4)species,demonstrating excellent catalytic activity and stability in the C-C and C-O cleavages.In the hydrodeoxygenation of guaiacol,this catalyst afforded99.1%conversion and 92.9%yield of cyclohexane under 1 MPa H_(2)at 230℃ for 2 h.More important,this catalyst maintained unchanged performance even after 6 runs with the conversion controlled at about50%,Mecha nistic investigations revealed that the moderate surface coverage of AlPO_(4)on Ni with the formation of Ni^(δ+)-AlPO_(4)interface significantly facilitated the conversion of methoxycyclohexanol and cyclohexanol to cyclohexane,whereas,excess coverage would also block the access to Ni site.Moreover,Ni@AlPO_(4)/Al_(2)O_(3)demonstrated broad applicability in the C-O cleavage of various typical lignin monomers and dimers into cycloalkanes.To our delight,this catalyst also displayed pretty good activity even in the simultaneous cleavage of C-C linkages and C-O bonds for the lignin-derived C-C dimers,achieving cycloalkanes as final products.As a consequence,a 27.1 wt%yield of monocycloalkanes was obtained in the depolymerization of poplar lignin with both C-C and C-O cleavages. 展开更多
关键词 Nickel catalyst Heterogeneous catalysis LIGNIN HYDRODEOXYGENATION CYCLOALKANES
在线阅读 下载PDF
Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids 被引量:1
9
作者 Wen-Jing Li Jun-Bo Wang +2 位作者 Yu-Heng Liu Mo Zhang Zhan-Hui Zhang 《Chinese Chemical Letters》 2025年第3期282-289,共8页
Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporti... Heterogeneous metal-catalyzed chemical conversions with a recyclable catalyst are very ideal and challenging for sustainable organic synthesis.A new bipyridyl-Mo(IV)-carbon nitride(CN-K/Mo-Bpy)was prepared by supporting molybdenum complex on C_(3)N_(4)-K and characterized by FT-IR,XRD,SEM,XPS and ICP-OES.Heterogeneous CN–Mo-Bpy catalyst can be applied to the direct amination of nitroarenes and arylboronic acid,thus constructing various valuable diarylamines in high to excellent yields with a wide substrate scope and good functional group tolerance.It is worth noting that this heterogeneous catalyst has high chemical stability and can be recycled for at least five times without reducing its activity. 展开更多
关键词 Heterogeneous catalysis Carbon nitride MOLYBDENUM NITROARENES Boronic acids AMINATION
原文传递
Revealing Hetero-Deformation Induced(HDI)Hardening and Dislocation Activity in a Dual-Heterostructure Magnesium Matrix Composite 被引量:1
10
作者 Lingling Fan Ran Ni +7 位作者 Lingbao Ren Peng Xiao Ying Zeng Dongdi Yin Hajo Dieringa Yuanding Huang Gaofeng Quan Wei Feng 《Journal of Magnesium and Alloys》 2025年第2期902-921,共20页
Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity ca... Integrating a heterogeneous structure can significantly enhance the strength-ductility synergy of composites.However,the relationship between hetero-deformation induced(HDI)strain hardening and dislocation activity caused by heterogeneous structures in the magnesium matrix composite remains unclear.In this study,a dual-heterogeneous TiC/AZ61 composite exhibits significantly improved plastic elongation(PEL)by nearly one time compared to uniform FG composite,meanwhile maintaining a high strength(UTS:417 MPa).This is because more severe deformation inhomogeneity in heterogeneous structure leads to more geometrically necessary dislocations(GNDs)accumulation and stronger HDI stress,resulting in higher HDI hardening compared to FG and CG composites.During the early stage of plastic deformation,the pile-up types of GND in the FG zone and CG zone are significantly different.GNDs tend to form substructures in the FG zone instead of the CG zone.They only accumulate at grain boundaries of the CG region,thereby leading to obviously increased back stress in the CG region.In the late deformation stage,the elevated HDI stress activates the new〈c+a〉dislocations in the CG region,resulting in dislocation entanglements and even the formation of substructures,further driving the high hardening in the heterogeneous composite.However,For CG composite,〈c+a〉dislocations are not activated even under large plastic strains,and only〈a〉dislocations pile up at grain boundaries and twin boundaries.Our work provides an in-depth understanding of dislocation variation and HDI hardening in heterogeneous magnesium-based composites. 展开更多
关键词 Mg-matrix composite Heterogeneous structure HDI hardening GND density DISLOCATION
在线阅读 下载PDF
Adsorption-Driven Interfacial Interactions: The Key to Enhanced Performance in Heterogeneous Advanced Oxidation Processes 被引量:1
11
作者 Jinming Luo Deyou Yu +3 位作者 Kaixing Fu Zhuoya Fang Xiaolin Zhang Mingyang Xing 《Engineering》 2025年第4期22-25,共4页
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el... Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies. 展开更多
关键词 Heterogeneous advanced oxidation PROCESSES ADSORPTION Pollutant degradation Dual active sites CATALYSIS SELECTIVITY
在线阅读 下载PDF
Introducing high-density growth twins in aluminum alloys by laser surface remelting via templated nucleation of grains 被引量:1
12
作者 Chunfeng Ma Qinglong Zhao +2 位作者 Xiao Liu Yanjun Li Qichuan Jiang 《Journal of Materials Science & Technology》 2025年第10期315-324,共10页
It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the h... It is difficult to generate coherent twin boundaries in bulk Al alloys due to their high intrinsic stacking fault energy. Here, we report a strategy to induce high-density growth twins in aluminum alloys through the heterogeneous nucleation of twinned Al grains on twin-structured TiC nucleants and the preferred growth of twinned dendrites by laser surface remelting of bulk metals. The solidification structure at the surface shows a mixture of lamellar twinned dendrites with ultra-fine twin boundary spacing (∼2 µm), isolated twinned dendrites, and regular dendrites. EBSD analysis and finite element method (FEM) simulations have been used to understand the competitive growth between twinned and regular dendrites, and the solidification conditions for the preferred growth of twinned dendrites during laser remelting and subsequent rapid solidification are established. It is shown that the reduction in the ratio of temperature gradient G to solidification rate V promotes the formation of lamellar twinned dendrites. The primary trunk spacing of lamellar twinned dendrites is refined by the high thermal gradient and solidification rate. The present work paves a new way to generate high-density growth twins in additive-manufactured Al alloys. 展开更多
关键词 Heterogeneous nucleation Twinned dendrites Solidification Aluminum alloys
原文传递
Identification algorithm of low-count energy spectra under short-duration measurement based on heterogeneous sample transfer 被引量:1
13
作者 Hao-Lin Liu Hai-Bo Ji +1 位作者 Jiang-Mei Zhang Jing Lu 《Nuclear Science and Techniques》 2025年第3期12-26,共15页
In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant ... In scenarios such as vehicle radiation monitoring and unmanned aerial vehicle radiation detection,rapid measurements using a NaI(Tl)detector often result in low photon counts,weak characteristic peaks,and significant statistical fluctuations.These issues can lead to potential failures in peak-searching-based identification methods.To address the low precision associated with short-duration measurements of radionuclides,this paper proposes an identification algorithm that leverages heterogeneous spectral transfer to develop a low-count energy spectral identification model.Comparative experiments demonstrated that transferring samples from 26 classes of simulated heterogeneous gamma spectra aids in creating a reliable model for measured gamma spectra.With only 10%of target domain samples used for training,the accuracy on real low-count spectral samples was 95.56%.This performance shows a significant improvement over widely employed full-spectrum analysis methods trained on target domain samples.The proposed method also exhibits strong generalization capabilities,effectively mitigating overfitting issues in low-count energy spectral classification under short-duration measurements. 展开更多
关键词 Radionuclide identification Low-count Gamma energy spectral analysis HETEROGENEOUS Transfer learning
在线阅读 下载PDF
Local chemical fluctuation-tailored hierarchical heterostructure overcomes strength-ductility trade-offin high entropy alloys 被引量:1
14
作者 Pengcheng Cai Jiaheng Liu +5 位作者 Jun Luan Junwei Chen Jianhua Chen Xionggang Lu Zhigang Yu Kuochih Chou 《Journal of Materials Science & Technology》 2025年第11期74-86,共13页
A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,... A multi-phase heterogeneous FeCoNi-based high-entropy alloy is developed to overcome the trade-off between strength and ductility.By alloying with a small amount of Cu and employing a rapid recrystalliza-tion process,it exhibits a good combination of yield strength(roughly 1300 MPa)and ductility(approach-ing 20%).Firstly,a multi-phase heterogeneous structure is tailored ranging from nano to micron.Cu is efficiently precipitated as nanoscale clusters(4.2 nm),high-density cuboidal L1_(2) particles(20-40 nm)and L2_(1) particles(500-800 nm)are found to be embedded in the matrix and a bimodal heterogeneous grain structure(1-40μm)is constructed.Secondly,the introduction of Cu effectively suppresses the pre-cipitation of coarse L21 phase at grain boundaries,reducing its volume fraction by 80%and replaced by smaller-scale continuous precipitations within the grains.Thirdly,the high mixing enthalpy gap of Cu and the matrix leads to the formation of local chemical fluctuation and the consequential rugged topog-raphy in the matrix,which result in retarded dislocation motion and promotes dislocation plugging and interlocking during strain,enhancing yield stress and work hardening rate.This study provides a valuable perspective to enhance strength and ductility via enlarged local chemical fluctuation-tailored multi-phase heterogeneous structures. 展开更多
关键词 Nanoscale clusters Local chemicalfluctuation Heterogeneous structures Dislocation motion High-entropy alloy
原文传递
Exceptional grain refinement induced by dispersed MgO particles in TIG-welded AZ31 alloy 被引量:1
15
作者 Le Zai Xin Tong +2 位作者 Yun Wang Hao Zhang Xiaohuai Xue 《Journal of Materials Science & Technology》 2025年第2期1-13,共13页
Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can res... Due to the low content of alloying elements and the lack of effective nucleation sites,the fusion zone(FZ)of tungsten inert gas(TIG)welded AZ31 alloy typically exhibits undesirable coarse columnar grains,which can result in solidification defects and reduced mechanical properties.In this work,a novel welding wire containing MgO particles has been developed to promote columnar-to-equiaxed transition(CET)in the FZ of TIG-welded AZ31 alloy.The results show the achievement of a fully equiaxed grain structure in the FZ,with a significant 71.9%reduction in grain size to 41 μm from the original coarse columnar dendrites.Furthermore,the combination of using MgO-containing welding wire and pulse current can further refine the grain size to 25.6 μm.Microstructural analyses reveal the homogeneous distribution of MgO particles in the FZ.The application of pulse current results in an increase in the number density of MgO(1-2 μm)from 5.16 × 10^(4) m^(-3) to 6.18 × 10^(4) m^(-3).The good crystallographic matching relationship between MgO and α-Mg matrix,characterized by the orientation relationship of[11(2)0]α-Mg//[0(1)1]MgO and(0002)_(α-Mg)//(111)_(MgO),indicates that the MgO particles can act as effective nucleation sites for α-Mg to reduce nucleation undercooling.According to the Hunt criteria,the critical temperature gradient for CET is greatly enhanced due to the significantly increased number density of MgO nucleation sites.In addition,the correlation with the thermal simulation results reveals a transition in the solidification conditions within the welding pool from the columnar grain zone to the equiaxed grain zone in the CET map,leading to the realization of CET.The exceptional grain refinement has contributed to a simultaneous improvement in the strength and plasticity of welded joints.This study presents a novel strategy for controlling equiaxed microstructure and optimizing mechanical properties in fusion welding or wire and arc additive manufacturing of Mg alloy components. 展开更多
关键词 AZ31 alloy TIG welding Columnar-to-equiaxed transition Grain refinement Heterogeneous nucleation
原文传递
Dual heterogeneous structure enabled ultrahigh strength and ductility across a broad temperature range in CrCoNi-based medium-entropy alloy 被引量:1
16
作者 Kang Tu Bo Li +2 位作者 Zonglin Li Kaisheng Ming Shijian Zheng 《Journal of Materials Science & Technology》 2025年第4期46-59,共14页
Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstra... Developing alloys with exceptional strength-ductility combinations across a broad temperature range is crucial for advanced structural applications.The emerging face-centered cubic medium-entropy alloys(MEAs)demonstrate outstanding mechanical properties at both ambient and cryogenic temperatures.They are anticipated to extend their applicability to elevated temperatures,owing to their inherent advantages in leveraging multiple strengthening and deformation mechanisms.Here,a dual heterostructure,comprising of heterogeneous grain structure with heterogeneous distribution of the micro-scale Nb-rich Laves phases,is introduced in a CrCoNi-based MEA through thermo-mechanical processing.Additionally,a high-density nano-coherentγ’phase is introduced within the grains through isothermal aging treatments.The superior thermal stability of the heterogeneously distributed precipitates enables the dual heterostructure to persist at temperatures up to 1073 K,allowing the MEA to maintain excellent mechanical properties across a wide temperature range.The yield strength of the dual-heterogeneous-structured MEA reaches up to 1.2 GPa,1.1 GPa,0.8 GPa,and 0.6 GPa,coupled with total elongation values of 28.6%,28.4%,12.6%,and 6.1%at 93 K,298 K,873 K,and 1073 K,respectively.The high yield strength primar-ily stems from precipitation strengthening and hetero-deformation-induced strengthening.The high flow stress and low stacking fault energy of the dual-heterogeneous-structured MEA promote the formation of high-density stacking faults and nanotwins during deformation from 93 K to 1073 K,and their density increase with decreasing deformation temperature.This greatly contributes to the enhanced strainhardening capability and ductility across a wide temperature range.This study offers a practical solution for designing dual-heterogeneous-structured MEAs with both high yield strength and large ductility across a wide temperature range. 展开更多
关键词 Medium-entropy alloy Dual heterogeneous structure Strength-ductility synergy Cryogenic temperatures Elevated temperatures
原文传递
Mechanism and application of seed-induced goethite crystal growth for iron removal from rich-zinc solution 被引量:1
17
作者 ZHU Qiang YANG Jian-guang +5 位作者 NAN Tian-xiang ZENG Wei-zhi TANG Shi-yang LIU Jiang ZHANG Yan TANG Chao-bo 《Journal of Central South University》 2025年第3期837-852,共16页
The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-... The goethite residue generated from zinc hydrometallurgy is classified as hazardous solid waste,produced in large quantities,and results in significant zinc loss.The study was conducted on removing iron from FeSO_(4)-ZnSO_(4) solution,employing seed-induced nucleation methods.Analysis of the iron removal rate,residue structure,morphology,and elemental composition involved ICP,XRD,FT-IR,and SEM.The existing state of zinc was investigated by combining step-by-step dissolution using hydrochloric acid.Concurrently,iron removal tests were extended to industrial solutions to assess the influence of seeds and solution pH on zinc loss and residue yield.The results revealed that seed addition increased the iron removal rate by 3%,elevated the residual iron content by 6.39%,and mitigated zinc loss by 29.55%in the simulated solution.Seed-induced nucleation prevented excessive nuclei formation,fostering crystal stable growth and high crystallinity.In addition,the zinc content of surface adsorption and crystal internal embedding in the residue was determined,and the zinc distribution on the surface was dense.In contrast,the total amount of zinc within the crystal was higher.The test results in the industrial solution demonstrated that the introduction of seeds expanded the pH range for goethite formation and growth,and the zinc loss per ton of iron removed was reduced by 50.91 kg(34.12%)and the iron residue reduced by 0.17 t(8.72%). 展开更多
关键词 iron removal crystal growth homogeneous and heterogeneous nucleation goethite process zinc hydrometallurgy
在线阅读 下载PDF
Investigation on coal damage and fracture extension law of liquid nitrogen injection pre-cooling and fracturing under true triaxial stress 被引量:1
18
作者 Botao Li Haifei Lin +7 位作者 Jianping Wei Hongtu Zhang Shugang Li Zongyong Wei Lei Qin Pei Wang Rongwei Luo Zeran Liu 《International Journal of Mining Science and Technology》 2025年第2期213-229,共17页
To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturin... To more accurately describe the coal damage and fracture evolution law during liquid nitrogen(LN_(2))fracturing under true triaxial stress,a thermal-hydraulic-mechanical-damage(THMD)coupling model for LN_(2) fracturing coal was developed,considering the coal heterogeneity and thermophysical parameters of nitrogen.The accuracy and applicability of model were verified by comparing with LN_(2) injection pre-cooling and fracturing experimental data.The effects of different pre-cooling times and horizontal stress ratios on coal damage evolution,permeability,temperature distribution,and fracture characteristics were analyzed.The results show that the permeability and damage of the coal increase exponentially,while the temperature decreases exponentially during the fracturing process.As the pre-cooling time increases,the damage range of the coal expands,and the fracture propagation becomes more pronounced.The initiation pressure and rupture pressure decrease and tend to stabilize with longer precooling times.As the horizontal stress ratio increases,fractures preferentially extend along the direction of maximum horizontal principal stress,leading to a significant decrease in both initiation and rupture pressures.At a horizontal stress ratio of 3,the initiation pressure drops by 48.07%,and the rupture pressure decreases by 41.36%.The results provide a theoretical basis for optimizing LN_(2) fracturing techniques and improving coal seam modification. 展开更多
关键词 Liquid nitrogen fracturing Thermal–hydraulic-mechanical-damage coupling Heterogeneous coal True triaxial stress Fracture morphology
在线阅读 下载PDF
Land transaction trajectories of China's overseas industrial parks in developing countries:Evidence from Southeast Asia 被引量:1
19
作者 LI Dongxue HU Qiao 《Journal of Geographical Sciences》 2025年第6期1286-1310,共25页
Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts ... Foreign-funded overseas industrial parks(OIPs)are crucial for attracting foreign investment and promoting globalization in developing countries.However,large-scale land acquisition for these parks generates conflicts between developers and local stakeholders,increasing development costs.A qualitative multicase study was conducted in this study to analyze the land transaction trajectories of China's OIPs.Four OIPs were selected to reveal the underlying mechanisms from the perspectives of institutional arrangements,governance mechanisms,and enterprise heterogeneity.The findings indicate that in host countries with insufficient institutional development,local governments are more inclined to directly engage in OIP land acquisition.High-level intergovernmental mechanisms facilitate land acquisition processes,although their efficacy depends largely on administrative power allocation across parks in host countries.The results also indicate that enterprise characteristics significantly influence land acquisition,where microscale private enterprises lacking political connections often employ low-cost,bottom-up strategies by leveraging international experience.In summary,policy-makers in developing countries should prioritize enhancing OIP governance to mitigate transaction costs,promote diversified land supply,and optimize land allocation.By depicting China's OIP land acquisition processes,this study deepens the academic understanding of OIP governance in developing countries and related international land transactions,offering practical OIP management insights for governments in both host and parent countries. 展开更多
关键词 land transaction trajectories institutional arrangements governance mechanisms enterprise heterogeneity overseas industrial parks developing countries
原文传递
上一页 1 2 173 下一页 到第
使用帮助 返回顶部