期刊文献+
共找到85篇文章
< 1 2 5 >
每页显示 20 50 100
Heteroclinic Cycles in a Class of 3-Dimensional Piecewise Affine Systems
1
作者 Minghao Liu Ruimin Liu 《Journal of Applied Mathematics and Physics》 2024年第2期488-508,共21页
This paper explores the existence of heteroclinic cycles and corresponding chaotic dynamics in a class of 3-dimensional two-zone piecewise affine systems. Moreover, the heteroclinic cycles connect two saddle foci and ... This paper explores the existence of heteroclinic cycles and corresponding chaotic dynamics in a class of 3-dimensional two-zone piecewise affine systems. Moreover, the heteroclinic cycles connect two saddle foci and intersect the switching manifold at two points and the switching manifold is composed of two perpendicular planes. 展开更多
关键词 Piecewise Affine System heteroclinic Cycle Chaotic Invariant Set
在线阅读 下载PDF
On the extinction route of a stochastic population model under heteroclinic bifurcation 被引量:1
2
作者 Qing Yu Yang Li Xianbin Liu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第1期59-69,共11页
The noise-induced transition of the augmented Lotka-Volterra system is investigated under vanishingly small noise.Populations will ultimately go extinct because of intrinsic noise,and different extinction routes may o... The noise-induced transition of the augmented Lotka-Volterra system is investigated under vanishingly small noise.Populations will ultimately go extinct because of intrinsic noise,and different extinction routes may occur due to the Freidlin-Wentzell large deviation theory.The relation between the most probable extinction route(MPER)and heteroclinic bifurcation is studied in this paper.The MPERs and the quasi-potentials in different regimes of parameters are analyzed in detail.Before the bifurcation,the predator goes extinct,and the prey will survive for a long time.Then,the heteroclinic bifurcation changes the MPER wherein both species go extinct.The heteroclinic cycle plays a role in transferring the most probable extinction state.Moreover,the analyses of the weak noise limit can contribute to predicting the stochastic behavior under finite small noise.Both the heteroclinic bifurcation and the rotational deterministic vector field can reduce the action necessary for the MPER. 展开更多
关键词 Lotka-Volterra system Most probable extinction route heteroclinic bifurcation Quasi-potential
原文传递
The construction of homoclinic and heteroclinic orbitals in asymmetric strongly nonlinear systems based on the Pad'e approximant 被引量:1
3
作者 冯晶晶 张琪昌 王炜 《Chinese Physics B》 SCIE EI CAS CSCD 2011年第9期19-29,共11页
In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the ... In this paper, the extended Pade approximant is used to construct the homoclinic and the heteroclinic trajectories in nonlinear dynamical systems that are asymmetric at origin. Meanwhile, the conservative system, the autonomous system, and the nonautonomous system equations with quadratic and cubic nonlinearities are considered. The disturbance parameter ~ is not limited to being small. The ranges of the values of the linear and the nonlinear term parameters, which are variables, can be determined when the boundary values are satisfied. New conditions for the potentiality and the convergence are posed to make it possible to solve the boundary-value problems formulated for the orbitals and to evaluate the initial amplitude values. 展开更多
关键词 BIFURCATION Pade approximant strongly nonlinearity homoclinic and heteroclinic orbitals
原文传递
Existence of heteroclinic orbits in a novel three-order dynamical system 被引量:1
4
作者 胡瑀 闵乐泉 甄平 《Chinese Physics B》 SCIE EI CAS CSCD 2013年第11期232-238,共7页
In this paper, we design a novel three-order autonomous system. Numerical simulations reveal the complex chaotic behaviors of the system. By applying the undetermined coefficient method, we find a heteroclinic orbit i... In this paper, we design a novel three-order autonomous system. Numerical simulations reveal the complex chaotic behaviors of the system. By applying the undetermined coefficient method, we find a heteroclinic orbit in the system. As a result, the Si'lnikov criterion along with some other given conditions guarantees that the system has both Smale horseshoes and chaos of horseshoe type. 展开更多
关键词 novel chaotic system heteroclinic orbit Si'lnikov criterion undetermined coefticient method
原文传递
Homoclinic (Heteroclinic) Orbit of Complex Dynamical System and Spiral Structure 被引量:1
5
作者 FUZun-Tao LIUShi-Da LIUShi-Kuo LIANGFu-Ming XINGuo-Jun 《Communications in Theoretical Physics》 SCIE CAS CSCD 2005年第4期601-603,共3页
Starting from iterated systems, it is shown that the homoclinic (heteroclinic) orbit is a kind of spiral structure. The emphasis is laid to show that there are homoclinic or heteroclinic orbits in complex discrete and... Starting from iterated systems, it is shown that the homoclinic (heteroclinic) orbit is a kind of spiral structure. The emphasis is laid to show that there are homoclinic or heteroclinic orbits in complex discrete and continuous systems, and these homoclinic or heteroclinic orbits are some kind of spiral structure. 展开更多
关键词 complex system homoclinic (heteroclinic) orbit spiral structure
在线阅读 下载PDF
A generalized Padé approximation method of solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators 被引量:1
6
作者 李震波 唐驾时 蔡萍 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第12期78-84,共7页
An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator... An intrinsic extension of Pad′e approximation method, called the generalized Pad′e approximation method, is proposed based on the classic Pad′e approximation theorem. According to the proposed method, the numerator and denominator of Pad′e approximant are extended from polynomial functions to a series composed of any kind of function, which means that the generalized Pad′e approximant is not limited to some forms, but can be constructed in different forms in solving different problems. Thus, many existing modifications of Pad′e approximation method can be considered to be the special cases of the proposed method. For solving homoclinic and heteroclinic orbits of strongly nonlinear autonomous oscillators, two novel kinds of generalized Pad′e approximants are constructed. Then, some examples are given to show the validity of the present method. To show the accuracy of the method, all solutions obtained in this paper are compared with those of the Runge–Kutta method. 展开更多
关键词 generalized Pad′e approximation method homoclinic and heteroclinic orbits strongly nonlinear oscillators
原文传递
Heteroclinic Breather-Wave Solutions for Davey-Stewartson Equation
7
作者 刘俊 戴正德 林松青 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第5期947-951,共5页
Exact heteroclinic breather-wave solutions for Davey-Stewartson (DSI, DSII) system with periodic boundary condition are constructed using Hirota's bilinear form method and generalized ansatz method. The heteroclini... Exact heteroclinic breather-wave solutions for Davey-Stewartson (DSI, DSII) system with periodic boundary condition are constructed using Hirota's bilinear form method and generalized ansatz method. The heteroclinic structure of wave is investigated. 展开更多
关键词 heteroclinic wave breather wave periodic boundary pilinear form DAVEY-STEWARTSON
在线阅读 下载PDF
New Homoclinic and Heteroclinic Solutions for Zakharov System
8
作者 王传坚 戴正德 母贵 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第11期749-753,共5页
A new type of homoclinic arid heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreove... A new type of homoclinic arid heteroclinic solutions, i.e. homoclinic and heteroclinic breather solutions, for Zakharov system are obtained using extended homoclinic test and two-soliton methods, respectively. Moreover, the homoclinic and heteroclinic structure with local oscillation and mechanicaL feature different from homoclinic and heterocliunic solutions are investigated. Result shows complexity of dynamics for complex nonlineaR evolution system. Moreover, the similarities and differences between homoclinic (heteroclinic) breather and homoclinic (heteroclinic) tube are exhibited. These results show that the diversity of the structures of homoclinic and heteroclinic solutions. 展开更多
关键词 homoclinic wave heteroclinic wave breather type homoclinic test Zakharov system
原文传递
HETEROCLINIC ORBIT AND SUBHARMONIC BIFURCATIONS AND CHAOS OF NONLINEAR OSCILLATOR
9
作者 张伟 霍拳忠 李骊 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1992年第3期217-226,共10页
Dynamical behavior of nonlinear oscillator under combined parametric and forcing excitation, which includes yon der Pol damping, is very complex. In this paper, Melnikov's method is used to study the heteroclinic ... Dynamical behavior of nonlinear oscillator under combined parametric and forcing excitation, which includes yon der Pol damping, is very complex. In this paper, Melnikov's method is used to study the heteroclinic orbit bifurcations, subharmonic bifurcations and chaos in this system. Smale horseshoes and chaotic motions can occur from odd subharmonic bifurcation of infinite order in this system-far various resonant cases finally the numerical computing method is used to study chaotic motions of this system. The results achieved reveal some new phenomena. 展开更多
关键词 heteroclinic orbit bifurcations subharmonic bifurcations chaotic motions parametric excitation Melnikov's method
在线阅读 下载PDF
Heteroclinic Orbit Existence on a Type of Chaotic System with Delays
10
作者 张晓丹 刘翔 《Communications in Theoretical Physics》 SCIE CAS CSCD 2010年第4期679-687,共9页
In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by app... In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by applying the undetermined coefficient method, which shows the complex dynamical properties of this system. 展开更多
关键词 heteroclinic orbit chaotic system with delays equilibrium point series expansion
在线阅读 下载PDF
Heteroclinic cycles in a new class of four-dimensional discontinuous piecewise affine systems
11
作者 Wenjing Xu Wei Xu Li Cai 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第11期250-256,共7页
It is a huge challenge to give an existence theorem for heteroclinic cycles in the high-dimensional discontinuous piecewise systems(DPSs). This paper first provides a new class of four-dimensional(4 D) two-zone di... It is a huge challenge to give an existence theorem for heteroclinic cycles in the high-dimensional discontinuous piecewise systems(DPSs). This paper first provides a new class of four-dimensional(4 D) two-zone discontinuous piecewise affine systems(DPASs), and then gives a useful criterion to ensure the existence of heteroclinic cycles in the systems by rigorous mathematical analysis. To illustrate the feasibility and efficiency of the theory, two numerical examples, exhibiting chaotic behaviors in a small neighborhood of heteroclinic cycles, are discussed. 展开更多
关键词 heteroclinic cycle CHAOS discontinuous piecewise affine system
原文传递
Heteroclinic and Homoclinic Connections between the Sun-Earth Triangular Points and Quasi-Satellite Orbits for Solar Observations
12
作者 Pedro J. Llanos Gerald R. Hintz +1 位作者 Martin W. Lo James K. Miller 《Journal of Earth Science and Engineering》 2013年第8期515-526,共12页
Investigation of new orbit geometries exhibits a very attractive behavior for a spacecraft to monitor space weather coming from the Sun. Several orbit transfer mechanisms are analyzed as potential alternatives to moni... Investigation of new orbit geometries exhibits a very attractive behavior for a spacecraft to monitor space weather coming from the Sun. Several orbit transfer mechanisms are analyzed as potential alternatives to monitor solar activity such as a sub-solar orbit or quasi-satellite orbit and short and long heteroclinic and homoclinic connections between the triangular points L4 and L5 and the collinear point L3 of the CRTBP (circular restricted three-body problem) in the Sun-Earth system. These trajectories could serve as channels through where material can be transported from L5 to L3 by performing small maneuvers at the departure of the Trojan orbit. The size of these maneuvers at L5 is between 299 m/s and 730 m/s depending on the transfer time of the trajectory and does not need any deterministic maneuvers at L3. Our results suggest that material may also be transported from the Trojan orbits to quasi-satellite orbits or even displaced quasi-satellite orbits. 展开更多
关键词 Quasi-satellite orbits heteroclinic HOMOCLINIC Sun-Earth triangular points invariant manifolds solar observations.
在线阅读 下载PDF
Exponential Dichotomies and Homoclinic Orbits from Heteroclinic Cycles
13
作者 Tiejun Chen Yu Xiang Yuxiao Chen 《American Journal of Computational Mathematics》 2012年第2期106-113,共8页
In this paper, we investigate the homoclinic bifurcations from a heteroclinic cycle by using exponential dichotomies. We give a Melnikov—type condition assuring the existence of homoclinic orbits form heteroclinic cy... In this paper, we investigate the homoclinic bifurcations from a heteroclinic cycle by using exponential dichotomies. We give a Melnikov—type condition assuring the existence of homoclinic orbits form heteroclinic cycle. We improve some important results. 展开更多
关键词 EXPONENTIAL Dichotomies HOMOCLINIC ORBITS heteroclinic CYCLE MELNIKOV Function
在线阅读 下载PDF
BIFURCATIONS TO A HETEROCLINIC MANIFOLD WITH NONHYPERBOLIC EQUILIBRIA IN R^n 被引量:1
14
作者 孙建华 《Acta Mathematica Scientia》 SCIE CSCD 1998年第3期293-302,共10页
The authors study bifurcations from a heteroclinic manifold connecting two non-hyperbolic equilibrium P-0 and P-1 for a n-dimensional dynamical system. They show that under some assumptions, each equilibrium P-i split... The authors study bifurcations from a heteroclinic manifold connecting two non-hyperbolic equilibrium P-0 and P-1 for a n-dimensional dynamical system. They show that under some assumptions, each equilibrium P-i splits into two equilibria <(P)over tilde (i)> and P-i(alpha), i = 0, 1, and find the Melnikov vector conditions assuring the existence of a heteroclinic orbit from P-1(alpha) to P-0(alpha) along directions that are tangent to the strong unstable (resp.strong stable) manifold of P-1(alpha) (resp.P-0(alpha)). The exponential trichotomy and the unified and geometrical method are used to prove their results. 展开更多
关键词 nonhyperbolic equilibrium heteroclinic manifold exponential trichotomy Melnikov vector
全文增补中
Applications of knot theory to the detection of heteroclinic connections between quasi-periodic orbits
15
作者 Danny Owen Nicola Baresi 《Astrodynamics》 CSCD 2024年第4期577-595,共19页
Heteroclinic connections represent unique opportunities for spacecraft to transfer between isoenergetic libration point orbits for zero deterministic∆V expenditure.However,methods of detecting them can be limited,typi... Heteroclinic connections represent unique opportunities for spacecraft to transfer between isoenergetic libration point orbits for zero deterministic∆V expenditure.However,methods of detecting them can be limited,typically relying on human-in-the-loop or computationally intensive processes.In this paper we present a rapid and fully systematic method of detecting heteroclinic connections between quasi-periodic invariant tori by exploiting topological invariants found in knot theory.The approach is applied to the Earth–Moon,Sun–Earth,and Jupiter–Ganymede circular restricted three-body problems to demonstrate the robustness of this method in detecting heteroclinic connections between various quasiperiodic orbit families in restricted astrodynamical problems. 展开更多
关键词 circular restricted three-body problem(CR3BP) quasi-periodic torus heteroclinic connection knot theory
原文传递
HETEROCLINIC BIFURCATIONS OF A PREY-PREDATOR FISHERY MODEL WITH IMPULSIVE HARVESTING 被引量:4
16
作者 CHUNJIN WEI LANSUN CHEN 《International Journal of Biomathematics》 2013年第5期85-99,共15页
In this paper, we consider a prey-predator fishery model with Allee effect and state- dependent impulsive harvesting. First, we investigate the existence of order-1 heteroclinic cycle. Second, choosing p as a control ... In this paper, we consider a prey-predator fishery model with Allee effect and state- dependent impulsive harvesting. First, we investigate the existence of order-1 heteroclinic cycle. Second, choosing p as a control parameter, we obtain the sufficient conditions for the existence and uniqueness of order-1 periodic solution of system (2.3) by using the geometry theory of semi-continuous dynamic systems. Finally, on the basis of the theory of rotated vector fields, heteroclinic bifurcation to perturbed system of system (2.3) is also studied. The methods used in this paper are novel to prove the existence of order-1 heteroclinic cycle and heteroclinic bifurcations. 展开更多
关键词 Rotated vector fields successor function heteroclinic cycle heteroclinicbifurcations periodic solution.
原文传递
临界情况下Heteroclinic环的稳定性
17
作者 冯贝叶 《科学通报》 1988年第19期1514-1515,共2页
设系统±=P(x,y),y=Q(x,y),P、Q∈C^(1)有一孤立的Heteroclinic环S^((n)),S^((n))由n个初等鞍点O_(i)(x_(i),y_(i))及n条Hetero-clinic轨道S_(ij)(x=φ_(ij);(t),y=ψ_(ij)(t))组成。
关键词 heteroclinic 稳定性
原文传递
Bifurcations of Rough Heteroclinic Loops with Three Saddle Points 被引量:14
18
作者 JIN Yin Lai ZHU De Ming Department of Mathematics. Linyi Teachers University. Shandong 276005. P. R. China Department of Mathematics. East China Normal University. Shanghai 200062. P. R. China Department of Mathematics. East China Normal University. Shanghai 200062. P. R. China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2002年第1期199-208,共10页
In this paper, we study the bifurcation problems of rough heteroclinic loups cormecting threc saddle points for a higher-dimensional system. Under some transversal conditions and the nontwisted condition. the existenc... In this paper, we study the bifurcation problems of rough heteroclinic loups cormecting threc saddle points for a higher-dimensional system. Under some transversal conditions and the nontwisted condition. the existence. uniqueness. nd incoexistencc of thc l-heteroclinic loop with threc or two saddle pomts. l-homoclinic orbit and l-periodic orbit near T are obtained. Nleanwhile, the bifurcation surfaces and existence regions are also given. Moreover. the above bifurcation results are extended to the case for heteroclinic loop with l saddle points. 展开更多
关键词 Local coordinates heteroclinic loop Homoclinic orbit Periodic orbit Bifurcation surface
原文传递
Bifurcations of heteroclinic loops 被引量:6
19
作者 朱德明 夏志宏 《Science China Mathematics》 SCIE 1998年第8期837-848,共12页
By generalizing the Floquet method from periodic systems to systems with exponential dichotomy, a local coordinate system is established in a neighborhood of the heteroclinic loop \%Γ\% to study the bifurcation probl... By generalizing the Floquet method from periodic systems to systems with exponential dichotomy, a local coordinate system is established in a neighborhood of the heteroclinic loop \%Γ\% to study the bifurcation problems of homoclinic and periodic orbits. Asymptotic expressions of the bifurcation surfaces and their relative positions are given. The results obtained in literature concerned with the 1\|hom bifurcation surfaces are improved and extended to the nontransversal case. Existence regions of the 1\|per orbits bifurcated from Γ are described, and the uniqueness and incoexistence of the 1\|hom and 1\|per orbit and the inexistence of the 2\|hom and 2\|per orbit are also obtained. 展开更多
关键词 heteroclinic orbit homoclinlc bifurcation periodic orbit bifurcation
原文传递
Bifurcations of nontwisted heteroclinic loop 被引量:3
20
作者 田清平 朱德明 《Science China Mathematics》 SCIE 2000年第8期818-828,共11页
Bifurcations of nontwisted and fine heteroclinic loops are studied for higher dimensional systems. The existence and its associated existing regions are given for the 1-hom orbit and the 1-per orbit, respectively, and... Bifurcations of nontwisted and fine heteroclinic loops are studied for higher dimensional systems. The existence and its associated existing regions are given for the 1-hom orbit and the 1-per orbit, respectively, and bifurcation surfaces of the two-fold periodic orbit are also obtained. At last, these bifurcation results are applied to the fine heteroclinic loop for the planar system, which leads to some new and interesting results. 展开更多
关键词 heteroclinic ORBIT HOMOCLINIC ORBIT PERIODIC ORBIT INSIDE stability.
原文传递
上一页 1 2 5 下一页 到第
使用帮助 返回顶部