A series of adamantyl nitrates have been theoretically studied from gas to solid to search for new po-tential high energy density compounds (HEDCs). The heats of formation (HOFs) for the 26 title com-pounds were calcu...A series of adamantyl nitrates have been theoretically studied from gas to solid to search for new po-tential high energy density compounds (HEDCs). The heats of formation (HOFs) for the 26 title com-pounds were calculated by designing isodesmic reactions at the B3LYP/6-31G level. It was found that the HOFs of the 26 isomers with the same number of —ONO2 groups (n) are not correlated well with the corresponding substituted positions. According to the obtained heats of detonation (Q),detonation velocities (D),and detonation pressures (P) using the Kamlet-Jacobs equations,it was found that when n=7~8,the adamantyl nitrates meet the criterion as an HEDC. The calculations on bond dissociation energies of O—N (EO—N) showed that the adamantyl nitrates with gemi —ONO2 always have the worst stability among the isomers,and all the adamantyl nitrates with gemi —ONO2 have similar stability. Due to the complexity of their structures,values of EO—N do not decrease with the increase of the substituent number n obviously,and the stability of adamantyl nitrates is not determined by only one structural parameter. Considering the stability requirement,only 1,2,4,6,8,9,10-adamantyl heptanitrate is recom-mended as a feasible HEDC. Molecular packing searching for 1,2,4,6,8,9,10-adamantyl heptanitrate among 7 most possible space groups (P21/c,P-1,P212121,P21,Pbca,C2/c,and Pna21) using Compass and Dreiding force fields showed that this compound tends to crystallize in P21/c. Ab initio periodic calculations on the electronic structure of the predicted packing showed that the O—NO2 bond is the trigger bond during thermolysis,which agrees with the result derived from the study of dissociation energies of O—N bonds.展开更多
In this study,based on two attractive energetic compounds pentazole(PZ) and tetraazacubane(TAC),a new family of high energy and high nitrogen compounds pentazolyltetraazacubanes were designed.Then,a different number o...In this study,based on two attractive energetic compounds pentazole(PZ) and tetraazacubane(TAC),a new family of high energy and high nitrogen compounds pentazolyltetraazacubanes were designed.Then,a different number of NH2 or NO2 groups were introduced into the system to further adjust the property.The structures,properties,and the structure-property relationship of designed molecules were investigated theoretically.The results showed that all nine designed compounds have extremely high heat of formation(HOF,1226-2734 kJ/mol),good density(1,73-1.88 g/cm3),high detonation velocity(8.30-9.35 km/s),high detonation pressure(29.8-39.7 GPa) and acceptable sensitivity(△V:41-87 A3).These properties could be effectively positive adjusted by replacing one or two PZ rings by NH2 or/and NO2 groups,especially for the energy and sensitivity performance,which were increased and decreased obviously,respectively.As a result,two designed pentazolyltetraazacubanes were predicted to have higher energy and lower sensitivity than the famous high energy compound in use 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane,while two others have better co mbination property than 1,3,5-Trinitro-1,3,5-triazacyclohexane.In all,four new pentazolyltetraazacubanes with good combination performance were successfully designed by combining PZ with TAC,and the further property adjustment strategy of introducing a suitable amount of NH2/NO2 groups into the system.This work may help develop new cage energetic compounds.展开更多
基金the National Natural Science Foundation of China (Grant Nos. 10576016 and 10576030)the National 973 Project
文摘A series of adamantyl nitrates have been theoretically studied from gas to solid to search for new po-tential high energy density compounds (HEDCs). The heats of formation (HOFs) for the 26 title com-pounds were calculated by designing isodesmic reactions at the B3LYP/6-31G level. It was found that the HOFs of the 26 isomers with the same number of —ONO2 groups (n) are not correlated well with the corresponding substituted positions. According to the obtained heats of detonation (Q),detonation velocities (D),and detonation pressures (P) using the Kamlet-Jacobs equations,it was found that when n=7~8,the adamantyl nitrates meet the criterion as an HEDC. The calculations on bond dissociation energies of O—N (EO—N) showed that the adamantyl nitrates with gemi —ONO2 always have the worst stability among the isomers,and all the adamantyl nitrates with gemi —ONO2 have similar stability. Due to the complexity of their structures,values of EO—N do not decrease with the increase of the substituent number n obviously,and the stability of adamantyl nitrates is not determined by only one structural parameter. Considering the stability requirement,only 1,2,4,6,8,9,10-adamantyl heptanitrate is recom-mended as a feasible HEDC. Molecular packing searching for 1,2,4,6,8,9,10-adamantyl heptanitrate among 7 most possible space groups (P21/c,P-1,P212121,P21,Pbca,C2/c,and Pna21) using Compass and Dreiding force fields showed that this compound tends to crystallize in P21/c. Ab initio periodic calculations on the electronic structure of the predicted packing showed that the O—NO2 bond is the trigger bond during thermolysis,which agrees with the result derived from the study of dissociation energies of O—N bonds.
基金supported by the Natural Science Foundation of Nanjing Institute of Technology (CKJA201603)the Natural Science Foundation of Jiangsu Province(BK20170761,BK20160774)+3 种基金the Jiangsu Key Laboratory Opening Project of Advanced Structural Materials and Application Technology (ASMA201707)Science Innovation Project for Undergraduates of Jiangsu Province (201811276023Z)Outstanding Scientific and Technological Innovation Team in Colleges and Universities of Jiangsu ProvinceJiangsu Overseas Visiting Scholar Program for University Prominent Young & Middle-aged Teachers and Presidents
文摘In this study,based on two attractive energetic compounds pentazole(PZ) and tetraazacubane(TAC),a new family of high energy and high nitrogen compounds pentazolyltetraazacubanes were designed.Then,a different number of NH2 or NO2 groups were introduced into the system to further adjust the property.The structures,properties,and the structure-property relationship of designed molecules were investigated theoretically.The results showed that all nine designed compounds have extremely high heat of formation(HOF,1226-2734 kJ/mol),good density(1,73-1.88 g/cm3),high detonation velocity(8.30-9.35 km/s),high detonation pressure(29.8-39.7 GPa) and acceptable sensitivity(△V:41-87 A3).These properties could be effectively positive adjusted by replacing one or two PZ rings by NH2 or/and NO2 groups,especially for the energy and sensitivity performance,which were increased and decreased obviously,respectively.As a result,two designed pentazolyltetraazacubanes were predicted to have higher energy and lower sensitivity than the famous high energy compound in use 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane,while two others have better co mbination property than 1,3,5-Trinitro-1,3,5-triazacyclohexane.In all,four new pentazolyltetraazacubanes with good combination performance were successfully designed by combining PZ with TAC,and the further property adjustment strategy of introducing a suitable amount of NH2/NO2 groups into the system.This work may help develop new cage energetic compounds.