期刊文献+
共找到907,538篇文章
< 1 2 250 >
每页显示 20 50 100
Hydrological Modeling of Upper OumErRabia Basin (Morocco), Comparative Study of the Event-Based and Continuous-Process HEC-HMS Model Methods
1
作者 Mohamed Msaddek George Kimbowa Abdelkader El Garouani 《Computational Water, Energy, and Environmental Engineering》 2020年第4期159-184,共26页
Human population growth and land-use changes raise demand and competition for water resources. The Upper OumErRabia River Basin is experiencing high rangeland and matorral conversion to irrigated agricultural land exp... Human population growth and land-use changes raise demand and competition for water resources. The Upper OumErRabia River Basin is experiencing high rangeland and matorral conversion to irrigated agricultural land expansion. Given Morocco’s per capita water availability, River-basin hydrologic </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> could potentially bring together agricultural, water resources </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> conservation objectives. However, not everywhere have hydrological models considered events and continuous assessment of climatic data. In this study, HEC-HMS </span><span style="font-family:Verdana;">modelling</span><span style="font-family:Verdana;"> approach is used to explore the event-based and continuous-process simulation of land-use and </span><span style="font-family:Verdana;">land cover</span><span style="font-family:Verdana;"> change (LULCC) impact on water balance. The use of HEC-GeoHMS facilitated the digital data processing for coupling with the model. The basin’s physical characteristics and the hydro-climatic data helped to generate a geospatial database for </span><span style="font-family:Verdana;">HEC-HMS</span><span style="font-family:Verdana;"> model. We analyzed baseline and future scenario changes for the 1980-2016 period using the SCS Curve-Number and the Soil Moisture Accounting (SMA) loss methods. SMA was coupled with the Hargreaves evapotranspiration method. Model calibration focused on reproducing observed basin runoff hydrograph. To evaluate the model performance for both calibration and validation</span></span><span style="font-family:Verdana;">, </span><span style="font-family:""><span style="font-family:Verdana;">the Coefficient of determination (R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">), Nash-Sutcliffe efficiency (NSE), Root Mean Square Error (RSR) </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> Percent Bias (PBIAS) criteria were exploited. The average calibration NSE values were</span></span><span style="font-family:""> </span><span style="font-family:""><span style="font-family:Verdana;">0.740 and 0.585 for event-based (daily) and continuous-process (annual) respectively. The R</span><sup><span style="font-family:Verdana;">2</span></sup><span style="font-family:Verdana;">, RSR </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> PBIAS values were 0.624, 0.634 </span><span style="font-family:Verdana;">and</span><span style="font-family:Verdana;"> +16.7 respectively. This is rated as good performance besides the validation simulations </span><span style="font-family:Verdana;">were</span><span style="font-family:Verdana;"> satisfactory for subsequent hydrologic analyses. We conclude that the basin’s hydrologic response to positive and negative LULCC scenarios is significant </span><span style="font-family:Verdana;">both</span><span style="font-family:Verdana;"> positive and negative scenarios. The study findings provide useful information for key stakeholders/decision-makers in water resources. 展开更多
关键词 hec-hms model Land-Use and Land Cover Change Soil Moisture Accounting (SMA) Upper OumErRabia Watershed
在线阅读 下载PDF
基于HEC-HMS的海浪河洪水模拟研究
2
作者 李港奥 刘沛显 +2 位作者 赵禹博 刘莹 贾青 《黑龙江水利科技》 2025年第8期17-21,共5页
研究以HEC-HMS水文模型为基础,对海浪河进行洪水模型的构建。经过率定和验证后,发现该模型的纳什效率系数在0.847~0.982之间,并且相对洪峰流量误差也在20%的允许范围内,模拟径流量曲线和实际径流量曲线能够很好地拟合,研究表明通过HEC-... 研究以HEC-HMS水文模型为基础,对海浪河进行洪水模型的构建。经过率定和验证后,发现该模型的纳什效率系数在0.847~0.982之间,并且相对洪峰流量误差也在20%的允许范围内,模拟径流量曲线和实际径流量曲线能够很好地拟合,研究表明通过HEC-HMS水文模型构建的海浪河流域洪水模型有良好的适用性。 展开更多
关键词 水文模型 hec-hms 海浪河流域 模拟
在线阅读 下载PDF
基于HEC-HMS模型的小流域洪水预报模拟分析
3
作者 何元翠 张健 尹树霞 《河南科技》 2025年第7期48-51,共4页
【目的】采用典型流域建模的方式,探索HEC-HMS模型在小流域的应用效果。【方法】以雪野水库流域为例,利用1963—2016年上游、茶叶口、峪门站降雨量和雪野水库入库流量,建立雪野水库流域的HEC-HMS模型,并进行模拟分析。【结果】该HEC-HM... 【目的】采用典型流域建模的方式,探索HEC-HMS模型在小流域的应用效果。【方法】以雪野水库流域为例,利用1963—2016年上游、茶叶口、峪门站降雨量和雪野水库入库流量,建立雪野水库流域的HEC-HMS模型,并进行模拟分析。【结果】该HEC-HMS模型在雪野水库流域模拟的洪水场次结果均合格,模拟效果较好;平均确定性系数为0.828,达到乙级精度。【结论】HEC-HMS模型在北方小流域的洪水预报中具有可行性。 展开更多
关键词 雪野水库流域 hec-hms 洪水预报模拟
在线阅读 下载PDF
HEC-HMS软件在调洪计算中的应用
4
作者 林春模 《水利科学与寒区工程》 2025年第2期134-137,共4页
调洪计算是水利工程设计中常规的计算,目前国内已开发了很多这方面的软件,对自由泄流的调洪计算算法比较成熟,误差较小。但是对下游有防洪任务的调洪计算相对自由泄流算法还不算多,而且调洪计算成果略有误差。HEC-HMS软件在这方面计算... 调洪计算是水利工程设计中常规的计算,目前国内已开发了很多这方面的软件,对自由泄流的调洪计算算法比较成熟,误差较小。但是对下游有防洪任务的调洪计算相对自由泄流算法还不算多,而且调洪计算成果略有误差。HEC-HMS软件在这方面计算比较成熟。 展开更多
关键词 调洪计算 控泄 hec-hms软件
在线阅读 下载PDF
基于HEC-HMS水文模型的潼三段流域2021年秋汛洪水模拟 被引量:1
5
作者 娄书建 刘世帆 《人民黄河》 CAS 北大核心 2024年第11期63-67,共5页
水库精细化调度是确保防洪安全与提高水库综合效益的主要措施。以三门峡库区潼关至三门峡大坝间流域(潼三段流域)无测控区为研究区域,基于土壤、土地利用、降水、径流等数据,构建HEC-HMS水文模型,对2021年潼三段流域整个秋汛洪水过程进... 水库精细化调度是确保防洪安全与提高水库综合效益的主要措施。以三门峡库区潼关至三门峡大坝间流域(潼三段流域)无测控区为研究区域,基于土壤、土地利用、降水、径流等数据,构建HEC-HMS水文模型,对2021年潼三段流域整个秋汛洪水过程进行模拟,分析区间各支流洪水叠加过程与径流量变化。采用径流系数法(算术平均法和泰森多边形法)计算潼三段流域径流总量并与实测值对比,验证HEC-HMS水文模型模拟结果的准确性。结果表明:HEC-HMS水文模型在潼三段流域表现出良好的适用性与可靠性,径流总量模拟值与实测值仅相差2.33%,模拟效果显著优于径流系数法。 展开更多
关键词 hec-hms水文模型 秋汛 洪水模拟 潼三段流域 三门峡库区
在线阅读 下载PDF
基于HEC-HMS模型的三峡区间洪水模拟 被引量:2
6
作者 王雨潇 刘波 +3 位作者 王文鹏 吴光东 张天宇 孙营营 《长江科学院院报》 CSCD 北大核心 2024年第6期76-83,共8页
三峡区间面积在长江上游的流域面积占比5.6%,但在三峡入库洪水组成中,区间形成的洪水占比可达10%以上,可见区间暴雨洪水是水库防洪安全必须考量的重要因素。采用2007—2011年三峡入库流量,上游边界寸滩和武隆站实测流量资料,建立了基于H... 三峡区间面积在长江上游的流域面积占比5.6%,但在三峡入库洪水组成中,区间形成的洪水占比可达10%以上,可见区间暴雨洪水是水库防洪安全必须考量的重要因素。采用2007—2011年三峡入库流量,上游边界寸滩和武隆站实测流量资料,建立了基于HEC-HMS的三峡区间洪水模拟模型,用于分析区间暴雨洪水与入库洪水的关系。根据入库洪水来源组成分析和资料特点,提出分类调参、分期检验的区间洪水建模方案:对以上游来水为主型洪水,率定汇流参数;对区间降水贡献较大型洪水,率定产流参数;对2012年以后的模拟洪水过程,以三峡水库运行实录发布的洪水过程线为比对基准。结果表明:模型精度良好,率定期和验证期洪峰流量相对误差在±20%以内,峰现时间误差<3 h;经与长江三峡工程运行实录比对,模型适用于模拟2012年后的三峡入库洪水过程。以20160626场次洪水为典型,分析该场区间洪水对入库洪水的峰值贡献率达27.2%,使得峰现时间提前16 h。研究成果可用于三峡区间洪水的影响研究,也可作为区间流域洪水模拟模型建模方案的技术参考。 展开更多
关键词 三峡区间 洪水过程模拟 hec-hms模型 参数率定
在线阅读 下载PDF
基于HEC-HMS的黄土高塬沟壑区流域城市化对洪水情势的影响 被引量:4
7
作者 钟芳倩 霍艾迪 +3 位作者 赵志欣 陈建 杨璐莹 王星 《人民黄河》 CAS 北大核心 2024年第2期67-72,79,共7页
黄土高塬沟壑区城市化过程中下垫面硬化会影响暴雨水文情势,增大洪水模拟预报难度。为实现对流域城市洪水灾害的预警,基于HEC-HMS水文模型,分别率定砚瓦川流域城市化前后不同时期土地利用条件下的产汇流参数,开展极端暴雨洪水情景设计,... 黄土高塬沟壑区城市化过程中下垫面硬化会影响暴雨水文情势,增大洪水模拟预报难度。为实现对流域城市洪水灾害的预警,基于HEC-HMS水文模型,分别率定砚瓦川流域城市化前后不同时期土地利用条件下的产汇流参数,开展极端暴雨洪水情景设计,揭示流域城市化对不同重现期洪水的水文效应。结果表明:建立的HEC-HMS降雨-径流模型适用于黄土高塬沟壑区洪水预报,其模拟综合合格率为81.25%,平均Nash效率系数为0.82;流域城市化对重现期短的洪水要素变化影响较大,且洪量变化幅度大于洪峰变化幅度,100 a一遇洪水的洪峰和洪量的增幅分别为4.54%和6.40%,5 a一遇洪水的洪峰和洪量的增幅分别为7.06%和9.49%;各子流域设计洪水对流域城市化的响应分布具有空间差异性,以西北部地区响应为最强,其次为南部地区,东北部地区最弱。 展开更多
关键词 hec-hms模型 流域城市化 洪水响应 砚瓦川流域 黄土高塬沟壑区
在线阅读 下载PDF
基于HEC-HMS的资料匮乏山区洪水模拟研究 被引量:2
8
作者 葛柯焱 万新宇 +2 位作者 徐洪军 范威 王森 《水力发电》 CAS 2024年第3期19-24,共6页
以白花河小流域为例,探讨缺资料地区HEC-HMS模型的适用效果。通过流域DEM等下垫面数据获取流域信息,采用SCS-CN曲线法、SCS单位线法、指数衰退法、马斯京根演算法进行流域产汇流计算及河道洪水演算,构建了HEC-HMS降雨径流模型,结合广东... 以白花河小流域为例,探讨缺资料地区HEC-HMS模型的适用效果。通过流域DEM等下垫面数据获取流域信息,采用SCS-CN曲线法、SCS单位线法、指数衰退法、马斯京根演算法进行流域产汇流计算及河道洪水演算,构建了HEC-HMS降雨径流模型,结合广东省综合单位线法与推理公式法的结果对模型参数进行率定。结果表明,设计洪水计算结果的误差均小于20%且平均相对误差均小于10%;实测洪水模拟的洪峰流量相对误差小于10%,Nash系数为0.90。HEC-HMS模型进行径流模拟效果较好,可适用于研究区山洪预报。 展开更多
关键词 无资料地区 hec-hms模型 GIS 山洪 模拟
在线阅读 下载PDF
HEC-HMS水文模型不同降雨损失方法对比研究 被引量:2
9
作者 赵直 冯民权 侯梓良 《水文》 CSCD 北大核心 2024年第2期83-88,共6页
为对比分析HEC-HMS模型三种降雨损失方法在沁河流域的适用性。借助Morris筛选法识别降雨损失方法的关键参数,选用流域内5场雨洪资料进行参数率定和模拟精度分析。结果表明:(1)SCS CN值曲线法、Green-Ampt法、Initial and Uniform法主要... 为对比分析HEC-HMS模型三种降雨损失方法在沁河流域的适用性。借助Morris筛选法识别降雨损失方法的关键参数,选用流域内5场雨洪资料进行参数率定和模拟精度分析。结果表明:(1)SCS CN值曲线法、Green-Ampt法、Initial and Uniform法主要敏感性参数分别为CN值、土壤饱和导水率、恒定损失率。(2)选取洪峰流量、洪水总量、峰现时刻误差以及Nash系数对模型模拟精度进行评价,SCS CN值曲线法和Initial and Uniform法模拟结果达到乙等精度,Green-Ampt法模拟结果达到丙等精度。研究成果可为半湿润地区中小流域降雨损失方法的选择提供参考。 展开更多
关键词 hec-hms 洪水模拟 降雨损失方法 参数敏感性分析 沁河流域
在线阅读 下载PDF
基于Hybrid Model的浙江省太阳总辐射估算及其时空分布特征
10
作者 顾婷婷 潘娅英 张加易 《气象科学》 2025年第2期176-181,共6页
利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模... 利用浙江省两个辐射站的观测资料,对地表太阳辐射模型Hybrid Model在浙江省的适用性进行评估分析。在此基础上,利用Hybrid Model重建浙江省71个站点1971—2020年的地表太阳辐射日数据集,并分析其时空变化特征。结果表明:Hybrid Model模拟效果良好,和A-P模型计算结果进行对比,杭州站的平均误差、均方根误差、平均绝对百分比误差分别为2.01 MJ·m^(-2)、2.69 MJ·m^(-2)和18.02%,而洪家站的平均误差、均方根误差、平均绝对百分比误差分别为1.41 MJ·m^(-2)、1.85 MJ·m^(-2)和11.56%,误差均低于A-P模型,且Hybrid Model在各月模拟的误差波动较小。浙江省近50 a平均地表总辐射在3733~5060 MJ·m^(-2),高值区主要位于浙北平原及滨海岛屿地区。1971—2020年浙江省太阳总辐射呈明显减少的趋势,气候倾向率为-72 MJ·m^(-2)·(10 a)^(-1),并在1980s初和2000年中期发生了突变减少。 展开更多
关键词 Hybrid model 太阳总辐射 误差分析 时空分布
在线阅读 下载PDF
HEC-HMS模型和TOPMODEL模型在东庄流域山洪预报的应用研究 被引量:15
11
作者 李娟芳 王文川 +1 位作者 车沛沛 李庆敏 《水电能源科学》 北大核心 2019年第3期50-53,8,共5页
水文模型是山洪预报的理论依据,不同模型间的结构、适用性、精度均不同。为探究HEC-HMS模型和TOPMODEL模型的特性及其模拟效果的差异,选取东庄流域10场代表性洪水,以峰现时间误差、径流深误差、时间误差和确定性系数为检验指标,进行场... 水文模型是山洪预报的理论依据,不同模型间的结构、适用性、精度均不同。为探究HEC-HMS模型和TOPMODEL模型的特性及其模拟效果的差异,选取东庄流域10场代表性洪水,以峰现时间误差、径流深误差、时间误差和确定性系数为检验指标,进行场次洪水模拟。结果表明,两模型的预报方案在东庄流域模拟中各评定指标均达标,率定期均为甲等精度,验证期均为丙等精度。HEC-HMS模型和TOPMODEL模型对蒸散发的差异性参考,使得在半干旱区HEC-HMS模型的适用性更好。研究成果对于HEC-HMS模型和TOPMODEL模型在该区域的应用及防灾减灾有重要意义。 展开更多
关键词 hec-hms模型 TOPmodel模型 应用 比较 东庄流域 山洪预报
原文传递
基于24Model的动火作业事故致因文本挖掘 被引量:1
12
作者 牛茂辉 李威君 +1 位作者 刘音 王璐 《中国安全科学学报》 北大核心 2025年第3期151-158,共8页
为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告... 为探究工业动火作业事故的根源,提出一种基于“2-4”模型(24Model)的文本挖掘方法。首先,收集整理220篇动火作业事故报告,并作为数据集,构建基于来自变换器的双向编码器表征量(BERT)的24Model分类器,使用预训练模型训练和评估事故报告数据集,构建分类模型;然后,通过基于BERT的关键字提取算法(KeyBERT)和词频-逆文档频率(TF-IDF)算法的组合权重,结合24Model框架,建立动火作业事故文本关键词指标体系;最后,通过文本挖掘关键词之间的网络共现关系,分析得到事故致因之间的相互关联。结果显示,基于BERT的24Model分类器模型能够系统准确地判定动火作业事故致因类别,通过组合权重筛选得到4个层级关键词指标体系,其中安全管理体系的权重最大,结合共现网络分析得到动火作业事故的7项关键致因。 展开更多
关键词 “2-4”模型(24model) 动火作业 事故致因 文本挖掘 指标体系
原文传递
基于HEC-HMS水文模型的中小流域洪水模拟预报分析 被引量:1
13
作者 张浩 蒋林杰 付成华 《四川水利》 2024年第1期55-60,共6页
水文预报对于我国中小型流域的抗洪减灾和水资源管理十分重要。以渠江流域为例,基于DEM数字高程信息建立流域数字模型,利用HEC-HMS水文模型分别对选定的20组率定期洪水和5组验证期洪水进行模拟,并在参数率定及模型验证的基础上对研究区... 水文预报对于我国中小型流域的抗洪减灾和水资源管理十分重要。以渠江流域为例,基于DEM数字高程信息建立流域数字模型,利用HEC-HMS水文模型分别对选定的20组率定期洪水和5组验证期洪水进行模拟,并在参数率定及模型验证的基础上对研究区域进行洪水预报分析,得出任一区域由降雨所引起的最大洪峰流量及峰现时间,可为流域防洪度汛提供一定的科学依据。 展开更多
关键词 水文预报 数字模型 hec-hms水文模型 防洪减灾
在线阅读 下载PDF
Prognostic model for esophagogastric variceal rebleeding after endoscopic treatment in liver cirrhosis: A Chinese multicenter study 被引量:2
14
作者 Jun-Yi Zhan Jie Chen +7 位作者 Jin-Zhong Yu Fei-Peng Xu Fei-Fei Xing De-Xin Wang Ming-Yan Yang Feng Xing Jian Wang Yong-Ping Mu 《World Journal of Gastroenterology》 SCIE CAS 2025年第2期85-101,共17页
BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized p... BACKGROUND Rebleeding after recovery from esophagogastric variceal bleeding(EGVB)is a severe complication that is associated with high rates of both incidence and mortality.Despite its clinical importance,recognized prognostic models that can effectively predict esophagogastric variceal rebleeding in patients with liver cirrhosis are lacking.AIM To construct and externally validate a reliable prognostic model for predicting the occurrence of esophagogastric variceal rebleeding.METHODS This study included 477 EGVB patients across 2 cohorts:The derivation cohort(n=322)and the validation cohort(n=155).The primary outcome was rebleeding events within 1 year.The least absolute shrinkage and selection operator was applied for predictor selection,and multivariate Cox regression analysis was used to construct the prognostic model.Internal validation was performed with bootstrap resampling.We assessed the discrimination,calibration and accuracy of the model,and performed patient risk stratification.RESULTS Six predictors,including albumin and aspartate aminotransferase concentrations,white blood cell count,and the presence of ascites,portal vein thrombosis,and bleeding signs,were selected for the rebleeding event prediction following endoscopic treatment(REPET)model.In predicting rebleeding within 1 year,the REPET model ex-hibited a concordance index of 0.775 and a Brier score of 0.143 in the derivation cohort,alongside 0.862 and 0.127 in the validation cohort.Furthermore,the REPET model revealed a significant difference in rebleeding rates(P<0.01)between low-risk patients and intermediate-to high-risk patients in both cohorts.CONCLUSION We constructed and validated a new prognostic model for variceal rebleeding with excellent predictive per-formance,which will improve the clinical management of rebleeding in EGVB patients. 展开更多
关键词 Esophagogastric variceal bleeding Variceal rebleeding Liver cirrhosis Prognostic model Risk stratification Secondary prophylaxis
暂未订购
Landslide Susceptibility Mapping Using RBFN-Based Ensemble Machine Learning Models 被引量:1
15
作者 Duc-Dam Nguyen Nguyen Viet Tiep +5 位作者 Quynh-Anh Thi Bui Hiep Van Le Indra Prakash Romulus Costache Manish Pandey Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期467-500,共34页
This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble lear... This study was aimed to prepare landslide susceptibility maps for the Pithoragarh district in Uttarakhand,India,using advanced ensemble models that combined Radial Basis Function Networks(RBFN)with three ensemble learning techniques:DAGGING(DG),MULTIBOOST(MB),and ADABOOST(AB).This combination resulted in three distinct ensemble models:DG-RBFN,MB-RBFN,and AB-RBFN.Additionally,a traditional weighted method,Information Value(IV),and a benchmark machine learning(ML)model,Multilayer Perceptron Neural Network(MLP),were employed for comparison and validation.The models were developed using ten landslide conditioning factors,which included slope,aspect,elevation,curvature,land cover,geomorphology,overburden depth,lithology,distance to rivers and distance to roads.These factors were instrumental in predicting the output variable,which was the probability of landslide occurrence.Statistical analysis of the models’performance indicated that the DG-RBFN model,with an Area Under ROC Curve(AUC)of 0.931,outperformed the other models.The AB-RBFN model achieved an AUC of 0.929,the MB-RBFN model had an AUC of 0.913,and the MLP model recorded an AUC of 0.926.These results suggest that the advanced ensemble ML model DG-RBFN was more accurate than traditional statistical model,single MLP model,and other ensemble models in preparing trustworthy landslide susceptibility maps,thereby enhancing land use planning and decision-making. 展开更多
关键词 Landslide susceptibility map spatial analysis ensemble modelling information values(IV)
在线阅读 下载PDF
HEC-HMS模型在江西省山区中小河流洪水预报中的适用性研究
16
作者 游云(文/翻译) 许小华 +3 位作者 朱龙辉 王小笑 刘业伟 付佳伟 《江西水利科技》 2024年第2期125-130,共6页
山区洪水暴涨陡落,常造成严重经济损失和人员伤亡,实现中小河流洪水预报在防洪减灾中十分重要。为探究HEC-HMS分布式水文模型在江西省山区中小河流的适用性,以蜀水流域为研究区,构建了基于HEC-HMS的蜀水流域分布式水文模型,选用2013-201... 山区洪水暴涨陡落,常造成严重经济损失和人员伤亡,实现中小河流洪水预报在防洪减灾中十分重要。为探究HEC-HMS分布式水文模型在江西省山区中小河流的适用性,以蜀水流域为研究区,构建了基于HEC-HMS的蜀水流域分布式水文模型,选用2013-2019年间的12场降雨对模型进行参数率定、敏感性分析和洪水过程模拟。结果表明:模型参数中CN值为最敏感参数;模型预测值与实测值结果显示洪峰流量和峰现时间合格率均为91.67%,径流深合格率为100%,确定性系数均高于0.7;HEC-HMS模型在蜀水流域中有较好的模拟效果,可为江西省山区中小河流域洪水预报提供参考。 展开更多
关键词 hec-hms 中小河流 洪水预报 蜀水流域 适用性
在线阅读 下载PDF
An integrated method of data-driven and mechanism models for formation evaluation with logs 被引量:1
17
作者 Meng-Lu Kang Jun Zhou +4 位作者 Juan Zhang Li-Zhi Xiao Guang-Zhi Liao Rong-Bo Shao Gang Luo 《Petroleum Science》 2025年第3期1110-1124,共15页
We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpr... We propose an integrated method of data-driven and mechanism models for well logging formation evaluation,explicitly focusing on predicting reservoir parameters,such as porosity and water saturation.Accurately interpreting these parameters is crucial for effectively exploring and developing oil and gas.However,with the increasing complexity of geological conditions in this industry,there is a growing demand for improved accuracy in reservoir parameter prediction,leading to higher costs associated with manual interpretation.The conventional logging interpretation methods rely on empirical relationships between logging data and reservoir parameters,which suffer from low interpretation efficiency,intense subjectivity,and suitability for ideal conditions.The application of artificial intelligence in the interpretation of logging data provides a new solution to the problems existing in traditional methods.It is expected to improve the accuracy and efficiency of the interpretation.If large and high-quality datasets exist,data-driven models can reveal relationships of arbitrary complexity.Nevertheless,constructing sufficiently large logging datasets with reliable labels remains challenging,making it difficult to apply data-driven models effectively in logging data interpretation.Furthermore,data-driven models often act as“black boxes”without explaining their predictions or ensuring compliance with primary physical constraints.This paper proposes a machine learning method with strong physical constraints by integrating mechanism and data-driven models.Prior knowledge of logging data interpretation is embedded into machine learning regarding network structure,loss function,and optimization algorithm.We employ the Physically Informed Auto-Encoder(PIAE)to predict porosity and water saturation,which can be trained without labeled reservoir parameters using self-supervised learning techniques.This approach effectively achieves automated interpretation and facilitates generalization across diverse datasets. 展开更多
关键词 Well log Reservoir evaluation Label scarcity Mechanism model Data-driven model Physically informed model Self-supervised learning Machine learning
原文传递
Predictability Study of Weather and Climate Events Related to Artificial Intelligence Models 被引量:2
18
作者 Mu MU Bo QIN Guokun DAI 《Advances in Atmospheric Sciences》 2025年第1期1-8,共8页
Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather an... Conducting predictability studies is essential for tracing the source of forecast errors,which not only leads to the improvement of observation and forecasting systems,but also enhances the understanding of weather and climate phenomena.In the past few decades,dynamical numerical models have been the primary tools for predictability studies,achieving significant progress.Nowadays,with the advances in artificial intelligence(AI)techniques and accumulations of vast meteorological data,modeling weather and climate events using modern data-driven approaches is becoming trendy,where FourCastNet,Pangu-Weather,and GraphCast are successful pioneers.In this perspective article,we suggest AI models should not be limited to forecasting but be expanded to predictability studies,leveraging AI's advantages of high efficiency and self-contained optimization modules.To this end,we first remark that AI models should possess high simulation capability with fine spatiotemporal resolution for two kinds of predictability studies.AI models with high simulation capabilities comparable to numerical models can be considered to provide solutions to partial differential equations in a data-driven way.Then,we highlight several specific predictability issues with well-determined nonlinear optimization formulizations,which can be well-studied using AI models,holding significant scientific value.In addition,we advocate for the incorporation of AI models into the synergistic cycle of the cognition–observation–model paradigm.Comprehensive predictability studies have the potential to transform“big data”to“big and better data”and shift the focus from“AI for forecasts”to“AI for science”,ultimately advancing the development of the atmospheric and oceanic sciences. 展开更多
关键词 PREDICTABILITY artificial intelligence models simulation and forecasting nonlinear optimization cognition–observation–model paradigm
在线阅读 下载PDF
Sensorless battery expansion estimation using electromechanical coupled models and machine learning 被引量:1
19
作者 Xue Cai Caiping Zhang +4 位作者 Jue Chen Zeping Chen Linjing Zhang Dirk Uwe Sauer Weihan Li 《Journal of Energy Chemistry》 2025年第6期142-157,I0004,共17页
Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper... Developing sensorless techniques for estimating battery expansion is essential for effective mechanical state monitoring,improving the accuracy of digital twin simulation and abnormality detection.Therefore,this paper presents a data-driven approach to expansion estimation using electromechanical coupled models with machine learning.The proposed method integrates reduced-order impedance models with data-driven mechanical models,coupling the electrochemical and mechanical states through the state of charge(SOC)and mechanical pressure within a state estimation framework.The coupling relationship was established through experimental insights into pressure-related impedance parameters and the nonlinear mechanical behavior with SOC and pressure.The data-driven model was interpreted by introducing a novel swelling coefficient defined by component stiffnesses to capture the nonlinear mechanical behavior across various mechanical constraints.Sensitivity analysis of the impedance model shows that updating model parameters with pressure can reduce the mean absolute error of simulated voltage by 20 mV and SOC estimation error by 2%.The results demonstrate the model's estimation capabilities,achieving a root mean square error of less than 1 kPa when the maximum expansion force is from 30 kPa to 120 kPa,outperforming calibrated stiffness models and other machine learning techniques.The model's robustness and generalizability are further supported by its effective handling of SOC estimation and pressure measurement errors.This work highlights the importance of the proposed framework in enhancing state estimation and fault diagnosis for lithium-ion batteries. 展开更多
关键词 Sensorless estimation Electromechanical coupling Impedance model Data-driven model Mechanical pressure
在线阅读 下载PDF
A Multi-Level Semantic Constraint Approach for Highway Tunnel Scene Twin Modeling 被引量:1
20
作者 LI Yufei XIE Yakun +3 位作者 CHEN Mingzhen ZHAO Yaoji TU Jiaxing HU Ya 《Journal of Geodesy and Geoinformation Science》 2025年第2期37-56,共20页
As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods ge... As a key node of modern transportation network,the informationization management of road tunnels is crucial to ensure the operation safety and traffic efficiency.However,the existing tunnel vehicle modeling methods generally have problems such as insufficient 3D scene description capability and low dynamic update efficiency,which are difficult to meet the demand of real-time accurate management.For this reason,this paper proposes a vehicle twin modeling method for road tunnels.This approach starts from the actual management needs,and supports multi-level dynamic modeling from vehicle type,size to color by constructing a vehicle model library that can be flexibly invoked;at the same time,semantic constraint rules with geometric layout,behavioral attributes,and spatial relationships are designed to ensure that the virtual model matches with the real model with a high degree of similarity;ultimately,the prototype system is constructed and the case region is selected for the case study,and the dynamic vehicle status in the tunnel is realized by integrating real-time monitoring data with semantic constraints for precise virtual-real mapping.Finally,the prototype system is constructed and case experiments are conducted in selected case areas,which are combined with real-time monitoring data to realize dynamic updating and three-dimensional visualization of vehicle states in tunnels.The experiments show that the proposed method can run smoothly with an average rendering efficiency of 17.70 ms while guaranteeing the modeling accuracy(composite similarity of 0.867),which significantly improves the real-time and intuitive tunnel management.The research results provide reliable technical support for intelligent operation and emergency response of road tunnels,and offer new ideas for digital twin modeling of complex scenes. 展开更多
关键词 highway tunnel twin modeling multi-level semantic constraints tunnel vehicles multidimensional modeling
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部