Updating high-definition maps is imperative for the safety of autonomous vehicles.However,positional changes in lane lines are hard to be detected in a timely manner due to a limited number of expensive surveying vehi...Updating high-definition maps is imperative for the safety of autonomous vehicles.However,positional changes in lane lines are hard to be detected in a timely manner due to a limited number of expensive surveying vehicles over a large geo-graphic area.Herein,a novel method is proposed to detect the geometric changes of lane lines using low-cost sensors,such as consumer-grade global navigation satellite system(GNSS)hardware receivers and cameras.The proposed framework geometric change detection using low-cost sensors(GCD-L)and algorithm change segment compare(CSC),which are based on the lane width between the curb line and the adjacent leftmost lane line,can perceive the positional changes of the leftmost lane line on highway and expressway roads.The effectiveness of the proposed method is verified by evaluating it on a real-world typical urban ring road dataset.The experimental results show that 71%detected change segments are valid with only two round crowdsourced maps.展开更多
With the growth in the vehicle industry,autonomous driving has become a hot topic worldwide and has attracted increasing attention from both industrial and academic sectors.Maps,as pivotal geospatial information carri...With the growth in the vehicle industry,autonomous driving has become a hot topic worldwide and has attracted increasing attention from both industrial and academic sectors.Maps,as pivotal geospatial information carriers,play a vital role in route planning and navigation service.Compared with conventional maps,high-definition(HD)maps possesses higher precision,richer information,and various services and are regarded as critical infrastructure for autonomous driving.However,heterogeneous HD map data standards and models have different characteristics and advantages,and thus they rarely meet all autonomous driving requirements for different driving objectives.This research presents an interoperable map data model,the Open HD Map Service Model(OHDMSM),to provide a reference for HD map development.The designed OHDMSM,which contains three data layers and a set of corresponding interfaces,demonstrates high interoperability for HD map data fusion and application.As a proof of concept,an HD map data system is implemented with all functions following the designed data model and interfaces of OHDMSM.The design and development of OHDMSM data structures,interfaces and systems will benefit data requesting,updating,and interoperation for HD map data worldwide,which can be helpful for developing autonomous driving and intelligent transportation in the Digital Earth.展开更多
High-definition(HD)maps are key components that provide rich topologic and semantic information for decision-making in vehicle autonomous driving systems.A complete ground orthophoto is usually used as the base image ...High-definition(HD)maps are key components that provide rich topologic and semantic information for decision-making in vehicle autonomous driving systems.A complete ground orthophoto is usually used as the base image to construct the HD map.The ground orthophoto is obtained through inverse perspective transformation and image mosaicing.During the image mosaicing,multiple consecutive orthophotos are stitched together using pose information and image registration.In this study,wavelet transform is introduced to the image mosaicing process to alleviate the information loss caused by image overlapping.In the orthophoto wavelet transform,high-frequency and low-frequency components are fused using different strategies to form a complete base image with clearer local details.Experimental results show that the accuracy of the orthophotos generated using this method is improved.展开更多
Plant trichomes originate from epidermal cells.In this work,we demonstrated that a homeodomain-leucine zipper(HD-Zip)gene,Gh_A06G1283(Gh HD-1A),was related to the leaf trichome trait in allotetraploid cotton and could...Plant trichomes originate from epidermal cells.In this work,we demonstrated that a homeodomain-leucine zipper(HD-Zip)gene,Gh_A06G1283(Gh HD-1A),was related to the leaf trichome trait in allotetraploid cotton and could be a candidate gene for the T_1 locus.The ortholog of GhHD-1A in the hairless accession Gossypium barbadense cv.Hai7124 was interrupted by a long terminal repeat(LTR)retrotransposon,while GhHD-1A worked well in the hairy accession Gossypium hirsutum acc.T586.Sequence and phylogenetic analysis showed that GhHD-1A belonged to the HD-Zip IV gene family,which mainly regulated epidermis hair development in plants.Silencing of GhHD-1A and its homoeologs GhHD-1D in allotetraploid T586and Hai7124 could significantly reduce the density of leaf hairs and affect the expression levels of other genes related to leaf trichome formation.Further analysis found that GhHD-1A mainly regulated trichome initiation on the upper epidermal hairs of leaves in cotton,while the up-regulated expression of GhHD-1A in different organs/tissues also altered epidermal trichome development.This study not only helps to unravel the important roles of GhHD-1A in regulating trichome initiation in cotton,but also provides a reference for exploring the different forms of trichome development in plants.展开更多
基金sponsored by the National Natural Science Foundation of China-52102426,U1864203 and 61773234the Project Funded by China Postdoctoral Science Foundation-2019M660622.
文摘Updating high-definition maps is imperative for the safety of autonomous vehicles.However,positional changes in lane lines are hard to be detected in a timely manner due to a limited number of expensive surveying vehicles over a large geo-graphic area.Herein,a novel method is proposed to detect the geometric changes of lane lines using low-cost sensors,such as consumer-grade global navigation satellite system(GNSS)hardware receivers and cameras.The proposed framework geometric change detection using low-cost sensors(GCD-L)and algorithm change segment compare(CSC),which are based on the lane width between the curb line and the adjacent leftmost lane line,can perceive the positional changes of the leftmost lane line on highway and expressway roads.The effectiveness of the proposed method is verified by evaluating it on a real-world typical urban ring road dataset.The experimental results show that 71%detected change segments are valid with only two round crowdsourced maps.
基金supported by National Key Research and Development Program of China:[Grant Number 2021YFB2501101]Smart Cities Research Institute(Q-CDA7)at the Hong Kong Polytechnic University:[Grant Number Q-CDA7]Guangdong Science and Technology Strategic Innovation Fund(the Guangdong–Hong Kong-Macao Joint Laboratory Program):Guangdong Science and Technology Strategic Innovation Fund:[Grant Number 2020B12120300092020B1212030009].
文摘With the growth in the vehicle industry,autonomous driving has become a hot topic worldwide and has attracted increasing attention from both industrial and academic sectors.Maps,as pivotal geospatial information carriers,play a vital role in route planning and navigation service.Compared with conventional maps,high-definition(HD)maps possesses higher precision,richer information,and various services and are regarded as critical infrastructure for autonomous driving.However,heterogeneous HD map data standards and models have different characteristics and advantages,and thus they rarely meet all autonomous driving requirements for different driving objectives.This research presents an interoperable map data model,the Open HD Map Service Model(OHDMSM),to provide a reference for HD map development.The designed OHDMSM,which contains three data layers and a set of corresponding interfaces,demonstrates high interoperability for HD map data fusion and application.As a proof of concept,an HD map data system is implemented with all functions following the designed data model and interfaces of OHDMSM.The design and development of OHDMSM data structures,interfaces and systems will benefit data requesting,updating,and interoperation for HD map data worldwide,which can be helpful for developing autonomous driving and intelligent transportation in the Digital Earth.
基金the National Natural Science Foundation of China(No.U1764264/61873165)the Shanghai Automotive Industry Science and Technology Development Foundation(No.1807)the Guangxi Key Laboratory of Automobile Components and Vehicle Technology Research Project(No.2020GKLACVTKF02)。
文摘High-definition(HD)maps are key components that provide rich topologic and semantic information for decision-making in vehicle autonomous driving systems.A complete ground orthophoto is usually used as the base image to construct the HD map.The ground orthophoto is obtained through inverse perspective transformation and image mosaicing.During the image mosaicing,multiple consecutive orthophotos are stitched together using pose information and image registration.In this study,wavelet transform is introduced to the image mosaicing process to alleviate the information loss caused by image overlapping.In the orthophoto wavelet transform,high-frequency and low-frequency components are fused using different strategies to form a complete base image with clearer local details.Experimental results show that the accuracy of the orthophotos generated using this method is improved.
基金supported by the National Natural Science Foundation of China (31471539)the Jiangsu Collaborative Innovation Center for Modern Crop Production Project, China (No.10)
文摘Plant trichomes originate from epidermal cells.In this work,we demonstrated that a homeodomain-leucine zipper(HD-Zip)gene,Gh_A06G1283(Gh HD-1A),was related to the leaf trichome trait in allotetraploid cotton and could be a candidate gene for the T_1 locus.The ortholog of GhHD-1A in the hairless accession Gossypium barbadense cv.Hai7124 was interrupted by a long terminal repeat(LTR)retrotransposon,while GhHD-1A worked well in the hairy accession Gossypium hirsutum acc.T586.Sequence and phylogenetic analysis showed that GhHD-1A belonged to the HD-Zip IV gene family,which mainly regulated epidermis hair development in plants.Silencing of GhHD-1A and its homoeologs GhHD-1D in allotetraploid T586and Hai7124 could significantly reduce the density of leaf hairs and affect the expression levels of other genes related to leaf trichome formation.Further analysis found that GhHD-1A mainly regulated trichome initiation on the upper epidermal hairs of leaves in cotton,while the up-regulated expression of GhHD-1A in different organs/tissues also altered epidermal trichome development.This study not only helps to unravel the important roles of GhHD-1A in regulating trichome initiation in cotton,but also provides a reference for exploring the different forms of trichome development in plants.