The Ni80Nb20 films were prepared by ion beam assisted deposition (IBAD) with various Ar+ ion energies. A phase evolution of fcc→amorphous→Ni+Nb→Ni+hcp was observed with the increasing of ion beam energy from 2 keV ...The Ni80Nb20 films were prepared by ion beam assisted deposition (IBAD) with various Ar+ ion energies. A phase evolution of fcc→amorphous→Ni+Nb→Ni+hcp was observed with the increasing of ion beam energy from 2 keV to 8 keV. When bombarded by Ar+ ions of 8 keV during deposition, a new crystalline phase with hcp structure was obtained, of which the lattice parameters are a=0.286 nm and c=0.483 nm, different from those of the similar A3B-type hcp phase previously reported. The experimental results were discussed in terms of thermodynamics and restricted kinetic conditions in the far-from-equilibrium process of IBAD. The formation of hep phase may also be related to the valence electron effect.展开更多
Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the ...Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the crystal grows into facet dendrites,displaying six-fold symmetry. The size of initial crystals has an effect on the branching-off of the principal branch tip along the<100> direction, which is eliminated by setting the b/a(a and b are the semi-major and semi-minor sizes in the initial elliptical crystals, respectively) value to be less than or equal to 1. With an increase in the undercooling value, the equilibrium morphology of the crystal changes from a star-like shape to facet dendrites without side branches. The steady-state tip velocity increases exponentially when the dimensionless undercooling is below the critical value. With a further increase in the undercooling value, the equilibrium morphology of the crystal grows into a developed side-branch structure, and the steady-state tip velocity of the facet dendrites increases linearly. The facet dendrite growth has controlled diffusion and kinetics.展开更多
Highly excited vibrational dynamics of phosphaethyne(HCP)integrable system are investigated based on its dynamic potentials.Taking into consideration the 2:1 Fermi resonance between H–C–P bending vibrational mode an...Highly excited vibrational dynamics of phosphaethyne(HCP)integrable system are investigated based on its dynamic potentials.Taking into consideration the 2:1 Fermi resonance between H–C–P bending vibrational mode and C–P stretching vibrational mode,it is found that the effects of H–C stretching vibrational mode on vibrational dynamic features of the HCP integrable system are significant and regularly vary with Polyad numbers(P number).The geometrical profiles of the dynamic potentials and the corresponding fixed points are sensitive to the variation of H–C stretching vibrational strength when P numbers are small,but are not sensitive when P numbers become larger and the corresponding threshold values become lower.The phase space trajectories of different energy levels in a designated dynamic potential(P=28)were studied and the results indicated that the dynamic potentials govern the various dynamic environments in which the vibrational states lie.Furthermore,action integrals of the energy levels contained in dynamic potential(P=28)were quantitatively analyzed and elucidated.It was determined that the dynamic environments could be identified by the numerical values of the action integrals of trajectories of phase space,which is equivalent with dynamic potentials.展开更多
基金The work was supported in part by the National Natural Sci ence Foundation of China(No.19875027)The Ministry of Science and Technology of China(No.G200067207-1),by the Adninistration of Tsinghua University.
文摘The Ni80Nb20 films were prepared by ion beam assisted deposition (IBAD) with various Ar+ ion energies. A phase evolution of fcc→amorphous→Ni+Nb→Ni+hcp was observed with the increasing of ion beam energy from 2 keV to 8 keV. When bombarded by Ar+ ions of 8 keV during deposition, a new crystalline phase with hcp structure was obtained, of which the lattice parameters are a=0.286 nm and c=0.483 nm, different from those of the similar A3B-type hcp phase previously reported. The experimental results were discussed in terms of thermodynamics and restricted kinetic conditions in the far-from-equilibrium process of IBAD. The formation of hep phase may also be related to the valence electron effect.
基金financially supported by the National Natural Science Foundation of China(No.51805389)the Key R&D Program of Hubei Province,China(No.2021BAA048)+1 种基金the“111”Project,China(No.B17034)the Fund of the Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology,China(No.XDQCKF2021011)。
基金Project(10834015) supported by the National Natural Science Foundation of ChinaProject(12SKY01-1) supported by the Doctoral Fund of Shangluo University,ChinaProject(14JK1223) supported by the Scientific Research Program of Shaanxi Provincial Education Department,China
文摘Numerical simulations based on a new regularized phase-field model were presented, to simulate the solidification of hexagonal close-packed materials with strong interfacial energy anisotropies. Results show that the crystal grows into facet dendrites,displaying six-fold symmetry. The size of initial crystals has an effect on the branching-off of the principal branch tip along the<100> direction, which is eliminated by setting the b/a(a and b are the semi-major and semi-minor sizes in the initial elliptical crystals, respectively) value to be less than or equal to 1. With an increase in the undercooling value, the equilibrium morphology of the crystal changes from a star-like shape to facet dendrites without side branches. The steady-state tip velocity increases exponentially when the dimensionless undercooling is below the critical value. With a further increase in the undercooling value, the equilibrium morphology of the crystal grows into a developed side-branch structure, and the steady-state tip velocity of the facet dendrites increases linearly. The facet dendrite growth has controlled diffusion and kinetics.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11505027 and 11104156)the Open Foundation of Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation(Grant No.JXMS201605)+1 种基金the Science and Technology Project of Education Department of Jiangxi Province in2016the National High Technology Research and Development Program of China(Grant No.2014AA052701)
文摘Highly excited vibrational dynamics of phosphaethyne(HCP)integrable system are investigated based on its dynamic potentials.Taking into consideration the 2:1 Fermi resonance between H–C–P bending vibrational mode and C–P stretching vibrational mode,it is found that the effects of H–C stretching vibrational mode on vibrational dynamic features of the HCP integrable system are significant and regularly vary with Polyad numbers(P number).The geometrical profiles of the dynamic potentials and the corresponding fixed points are sensitive to the variation of H–C stretching vibrational strength when P numbers are small,but are not sensitive when P numbers become larger and the corresponding threshold values become lower.The phase space trajectories of different energy levels in a designated dynamic potential(P=28)were studied and the results indicated that the dynamic potentials govern the various dynamic environments in which the vibrational states lie.Furthermore,action integrals of the energy levels contained in dynamic potential(P=28)were quantitatively analyzed and elucidated.It was determined that the dynamic environments could be identified by the numerical values of the action integrals of trajectories of phase space,which is equivalent with dynamic potentials.
基金Acknowledgments This work has benefited from the use of 1) Los Alamos Neutron Science Facility at Los Alamos National Laboratory and 2) ISIS Pulsed Neutron and Muon Source at Rutherford-Appleton Laboratory. The financial support of the National Science Foundation's 1) International Materials Institutes (IMI) under DMR-0231320, 2) Integrative Graduate Education and Research Training (IGERT) under DGE-9987548, 3) Combined Research and Curriculum Development (CRCD) under EEC-9527527 and EEC-0203415, and 4) Major Research Instrumentation (MRI) under DMR-0231320 at the University of Tennessee with Dr HUBER C, Dr Van HARTESVELDT C J, Dr DUTTA D, Dr JENNINGS W, Dr G0LDBERG L, Ms P0ATS M, and Dr B0ULDIN C R as the Program Directors, is greatly appreciated. Additional funding for this project was gratefully received from the Tennessee Advanced Materials Laboratory, with Prof. PLUMMER E W as the Director.