To address the environmental and health hazards of nitrate(NO_(3)^(-))in water,a denitrification advanced reduction process(ARP)using only formic acid(HCOOH)activated by ultraviolet(UV)light was proposed.The efficienc...To address the environmental and health hazards of nitrate(NO_(3)^(-))in water,a denitrification advanced reduction process(ARP)using only formic acid(HCOOH)activated by ultraviolet(UV)light was proposed.The efficiency,influencing factors,mechanism,and kinetics of the reduction were investigated through component analysis and radical detection.Results show that,after 90 min of UV illumination,the reduction and gas conversion ratios of 50 mg/L NO_(3)^(-)-N reach 99.9%and 99.8%,respectively,under 9 mM of C_(0)(HCOOH),pH=3.0,and N_(2) aeration.Meanwhile,96.7%of HCOOH is consumed and converted into gas.The NO_(3)^(-)-N conversion process includes the transformation to NO_(2)^(-)-N,followed by a further reduction to gas and a direct conversion into gas,introducing small amounts of nitrite and ammonia.The carbon dioxide anion radical(·CO_(2)^(-))from HCOOH/HCOO^(-)is the principal cause of NO_(3)^(-)-N reduction by UV/HCOOH/N 2 ARP.In contrast,·CO_(2)^(-)production is caused by the hydroxyl radical(·OH).The NO_(3)^(-)-N reduction efficiency is enhanced by the increase in the light intensity,considerably affected by the initial pH,and less affected by inorganic anions,including Cl^(-),H_(2)PO_(4)^(-),and HCO_(3)^(-)/CO_(3)^(2-).The initial HCOOH concentration and light intensity are the main factors that influence the NO_(3)^(-)-N reduction rate.展开更多
A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak....A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of -30 mW, and a power stability 〈10% in 50 rain. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase- comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign.展开更多
CO_(2)hydrogenation to value-added chemicals is a promising pathway to solve CO_(2)-relevant environmental problems but still remains a great challenge.Herein,we report a CeO_(2)nanostructure supported Rh single atoms...CO_(2)hydrogenation to value-added chemicals is a promising pathway to solve CO_(2)-relevant environmental problems but still remains a great challenge.Herein,we report a CeO_(2)nanostructure supported Rh single atoms(Rh-SAs/CeO_(2))catalyst and was used for the efficient CO_(2)hydrogenation to HCOOH.The Rh-SAs/CeO_(2)exhibited high catalytic activity with turnover numbers(TON)up to 221 at 200℃,which was 4-fold to that of CeO_(2)supported Rh nanoparticles(Rh-NPs/CeO_(2)).Moreover,HCOOH selectivity for Rh-SAs/CeO_(2)reached 85%,much higher than that of Rh-NPs/CeO_(2)(46%).Mechanism studies revealed that Rh single atoms in the Rh-SAs/CeO_(2)with high metal atoms utilization efficiency not only provided abundant active sites to promote the catalytic activity,but also suppressed the decomposition of HCOOH to CO and benefited the formation of HCOOH.展开更多
In this paper, 2,3,5-trimethyl-1,4-benzoquinone(TMBQ) was synthesized through the direct oxidation of1,2,4-trimethylbenzene(pseudocumene, TMB) in the HCOOH–H2O2 system. The influence ofthree active species was st...In this paper, 2,3,5-trimethyl-1,4-benzoquinone(TMBQ) was synthesized through the direct oxidation of1,2,4-trimethylbenzene(pseudocumene, TMB) in the HCOOH–H2O2 system. The influence ofthree active species was studied, including performic acid(PFA) generated in formic acid, peracetic acid(PAA) generated in acetic acid, and trifluoroperacetic(TFPA) acid generated in trifluoroacetic acid. The effects ofsulfuric acid and sodium formate addition were investigated, the overoxidation ofTMB was discussed, and the main reason for the decreasing selectivity was revealed. The oxidation ofTMB can be controlled and improved through adjusting the reaction temperature, mole ratio ofoxidant to substrate, and reactant concentration. The TMBQ yield of28% was achieved with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of6:1, and reaction temperature 37 ℃. The selectivity of72% was obtained with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of5:1, and reaction temperature of27 ℃. The reaction mechanisms were proposed and discussed based on the gas chromatography–flame ionization detection(GC–FID) and gas chromatography–mass spectrometer(GC–MS) results.展开更多
Artificial photosynthesis presents a sustainable and cost-effective approach to harnessing solar energy to produce value-added chemicals[1,2].In particular,the simultaneous photocatalytic conversion of CO_(2)and H_(2)...Artificial photosynthesis presents a sustainable and cost-effective approach to harnessing solar energy to produce value-added chemicals[1,2].In particular,the simultaneous photocatalytic conversion of CO_(2)and H_(2)O into formic acid(HCOOH)and hydrogen peroxide(H2O2)has emerged as a promising strategy to mitigate global warming driven by CO_(2)emissions.HCOOH is a versatile chemical and hydrogen carrier,offering economic and practical advantages due to its compatibility with existing industrial processes and energy storage/conversion systems.Meanwhile,H_(2)O_(2)is among the world’s top 100 essential chemicals,with a global market valued at$4.0 billion in 2020 and projected to grow to$5.2 billion by 2026.展开更多
基金The National Major Science and Technology Project(No.2017ZX07202-004-005)。
文摘To address the environmental and health hazards of nitrate(NO_(3)^(-))in water,a denitrification advanced reduction process(ARP)using only formic acid(HCOOH)activated by ultraviolet(UV)light was proposed.The efficiency,influencing factors,mechanism,and kinetics of the reduction were investigated through component analysis and radical detection.Results show that,after 90 min of UV illumination,the reduction and gas conversion ratios of 50 mg/L NO_(3)^(-)-N reach 99.9%and 99.8%,respectively,under 9 mM of C_(0)(HCOOH),pH=3.0,and N_(2) aeration.Meanwhile,96.7%of HCOOH is consumed and converted into gas.The NO_(3)^(-)-N conversion process includes the transformation to NO_(2)^(-)-N,followed by a further reduction to gas and a direct conversion into gas,introducing small amounts of nitrite and ammonia.The carbon dioxide anion radical(·CO_(2)^(-))from HCOOH/HCOO^(-)is the principal cause of NO_(3)^(-)-N reduction by UV/HCOOH/N 2 ARP.In contrast,·CO_(2)^(-)production is caused by the hydroxyl radical(·OH).The NO_(3)^(-)-N reduction efficiency is enhanced by the increase in the light intensity,considerably affected by the initial pH,and less affected by inorganic anions,including Cl^(-),H_(2)PO_(4)^(-),and HCO_(3)^(-)/CO_(3)^(2-).The initial HCOOH concentration and light intensity are the main factors that influence the NO_(3)^(-)-N reduction rate.
基金supported by the National Magnetic Confinement Fusion Science Programs of China(Nos.2010GB101002 and 2014GB109001)National Natural Science Foundation of China(Nos.11075048 and 11275059)
文摘A multichannel methanoic acid (HCOOH, λ=432.5 μm) laser interferometer/polarimeter is being developed from the previous eight-channel hydrogen cyanide (HCN, λ=337 μm) laser interferometer in the HL-2A tokamak. A conventional Michelson-type interometer is used for the electron density measurement, and a Dodel-Kunz-type polarimeter is used for the Faraday rotation effect measurement, respectively. Each HCOOH laser can produce a linearly polarized radiation at a power lever of -30 mW, and a power stability 〈10% in 50 rain. A beam waist (diameter d0 ≈12.0 mm, about 200 mm away from the outlet) is finally determined through a chopping modulation technique. The latest optical layout of the interferometer/polarimeter has been finished, and the hardware data processing system based on the fast Fourier transform phase- comparator technique is being explored. In order to demonstrate the feasibility of the diagnostic scheme, two associated bench simulation experiments were carried out in the laboratory, in which the plasma was simulated by a piece of polytetrafluoroethene plate, and the Faraday rotation effect was simulated by a rotating half-wave plate. Simulation results agreed well with the initial experimental conditions. At present, the HCOOH laser interferometer/polarimeter system is being assembled on HL-2A, and is planned to be applied in the 2014-2015 experimental campaign.
基金supported by Natural Science Foundation of China(91945301)Program of Shanghai Academic/Technology Research Leader(20XD1404000)+2 种基金Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(QYZDB-SSWSLH035)the“Transformational Technologies for Clean Energy and Demonstration”and Strategic Priority Research Program of CAS(XDA21020600)the Youth Innovation Promotion Association of CAS。
文摘CO_(2)hydrogenation to value-added chemicals is a promising pathway to solve CO_(2)-relevant environmental problems but still remains a great challenge.Herein,we report a CeO_(2)nanostructure supported Rh single atoms(Rh-SAs/CeO_(2))catalyst and was used for the efficient CO_(2)hydrogenation to HCOOH.The Rh-SAs/CeO_(2)exhibited high catalytic activity with turnover numbers(TON)up to 221 at 200℃,which was 4-fold to that of CeO_(2)supported Rh nanoparticles(Rh-NPs/CeO_(2)).Moreover,HCOOH selectivity for Rh-SAs/CeO_(2)reached 85%,much higher than that of Rh-NPs/CeO_(2)(46%).Mechanism studies revealed that Rh single atoms in the Rh-SAs/CeO_(2)with high metal atoms utilization efficiency not only provided abundant active sites to promote the catalytic activity,but also suppressed the decomposition of HCOOH to CO and benefited the formation of HCOOH.
基金supported by the National Basic Research Program of China ("973" Program) (No. 2012CB720302)the Program for Changjiang Scholars and Innovative Research Teams in Universities (No. IRT0936)
文摘In this paper, 2,3,5-trimethyl-1,4-benzoquinone(TMBQ) was synthesized through the direct oxidation of1,2,4-trimethylbenzene(pseudocumene, TMB) in the HCOOH–H2O2 system. The influence ofthree active species was studied, including performic acid(PFA) generated in formic acid, peracetic acid(PAA) generated in acetic acid, and trifluoroperacetic(TFPA) acid generated in trifluoroacetic acid. The effects ofsulfuric acid and sodium formate addition were investigated, the overoxidation ofTMB was discussed, and the main reason for the decreasing selectivity was revealed. The oxidation ofTMB can be controlled and improved through adjusting the reaction temperature, mole ratio ofoxidant to substrate, and reactant concentration. The TMBQ yield of28% was achieved with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of6:1, and reaction temperature 37 ℃. The selectivity of72% was obtained with a TMB concentration of0.2 mol/L, H2O2/TMB mole ratio of5:1, and reaction temperature of27 ℃. The reaction mechanisms were proposed and discussed based on the gas chromatography–flame ionization detection(GC–FID) and gas chromatography–mass spectrometer(GC–MS) results.
文摘Artificial photosynthesis presents a sustainable and cost-effective approach to harnessing solar energy to produce value-added chemicals[1,2].In particular,the simultaneous photocatalytic conversion of CO_(2)and H_(2)O into formic acid(HCOOH)and hydrogen peroxide(H2O2)has emerged as a promising strategy to mitigate global warming driven by CO_(2)emissions.HCOOH is a versatile chemical and hydrogen carrier,offering economic and practical advantages due to its compatibility with existing industrial processes and energy storage/conversion systems.Meanwhile,H_(2)O_(2)is among the world’s top 100 essential chemicals,with a global market valued at$4.0 billion in 2020 and projected to grow to$5.2 billion by 2026.
基金National Key R&D Program of China(2017YFE0127400)National Natural Science Foundation of China(51872317,21835007)Science and Technology Commission of Shanghai(20520711900)。