期刊文献+
共找到2,373篇文章
< 1 2 119 >
每页显示 20 50 100
Synthesis of hexagonal diamond:A review
1
作者 CHEN De-si LI Heng-yu +1 位作者 DONG Jia-jun YAO Ming-guang 《新型炭材料(中英文)》 北大核心 2025年第3期584-596,共13页
Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown tha... Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond,making it highly promising for groundbreaking applications in superhard cutting tools,wide-bandgap semiconductor devices,and materials for extreme environments.As a result,the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science.This review briefly outlines the progress in this area,with a focus on the mechanisms governing its key synthesis conditions,its intrinsic physical properties,and its potential applications in various fields. 展开更多
关键词 hexagonal diamond GRAPHITE High pressure and high temperature Phase transition mechanism Widebandgap semiconductors
在线阅读 下载PDF
Observation of Topological Nodal-Ring Phonons in Monolayer Hexagonal Boron Nitride
2
作者 Zhiyu Tao Yani Wang +7 位作者 Shuyi He Jiade Li Siwei Xue Zhibin Su Jiatao Sun Hailin Peng Jiandong Guo Xuetao Zhu 《Chinese Physics Letters》 2025年第2期206-228,共23页
Topological physics has evolved from its initial focus on fermionic systems to the exploration of bosonic systems,particularly phononic excitations in crystalline materials.Two-dimensional(2D)topological phonons emerg... Topological physics has evolved from its initial focus on fermionic systems to the exploration of bosonic systems,particularly phononic excitations in crystalline materials.Two-dimensional(2D)topological phonons emerge as promising candidates for future technological applications.Currently,experimental verification of 2D topological phonons has remained exclusively limited to graphene,a constraint that hinders their applications in phononic devices.Here,we report experimental evidence of topological phonons in monolayer hexagonal boron nitride using advanced high-resolution electron energy loss spectroscopy.Our high-precision measurements explicitly demonstrate two topological nodal rings in monolayer hexagonal boron nitride,protected by mirror symmetry,expanding the paradigm of 2D topological phonons beyond graphene.This research not only deepens fundamental understanding of 2D topological phonons,but also establishes a phononic device platform based on wide-bandgap insulators,crucial for advancements in electronics and photonics applications. 展开更多
关键词 spectroscopy TOPOLOGICAL hexagonal
原文传递
Comparative Study of the Hexagonal Structure of the SiC JBS Source Region
3
作者 Yili Xu Xin Li 《Journal of Electronic Research and Application》 2025年第1期61-66,共6页
Silicon carbide(SiC)junction barrier Schottky(JBS)diode has been widely used in power electronic systems due to its excellent physical characteristics and electrical performance,and the structural design of its source... Silicon carbide(SiC)junction barrier Schottky(JBS)diode has been widely used in power electronic systems due to its excellent physical characteristics and electrical performance,and the structural design of its source area has a particularly significant impact on the performance.This study provides a comparative analysis of the SiC JBS diode performance of different hexagonal structures,aiming to provide theoretical support and practical guidance for the optimization of JBS diode performance.Through theoretical derivation,experimental verification and data processing,the paper deeply analyzes the influence of hexagonal structure on JBS diode current distribution and breakdown voltage,and proposes a targeted optimization strategy. 展开更多
关键词 SIC JBS diode Hexagon structure Performance comparison
在线阅读 下载PDF
Solution of multigroup neutron diffusion equation in 3D hexagonal geometry using nodal Green's function method
4
作者 Il-Mun Ho Kum-Hyok Ok Chol So 《Nuclear Science and Techniques》 2025年第9期33-42,共10页
In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional tran... In this paper,we propose a numerical calculation model of the multigroup neutron diffusion equation in 3D hexagonal geometry using the nodal Green's function method and verified it.We obtained one-dimensional transverse integrated equations using the transverse integration procedure over 3D hexagonal geometry and denoted the solutions as a nodal Green's functions under the Neumann boundary condition.By applying a quadratic polynomial expansion of the transverse-averaged quantities,we derived the net neutron current coupling equation,equation for the expansion coefficients of the transverse-averaged neutron flux,and formulas for the coefficient matrix of these equations.We formulated the closed system of equations in correspondence with the boundary conditions.The proposed model was tested by comparing it with the benchmark for the VVER-440 reactor,and the numerical results were in good agreement with the reference solutions. 展开更多
关键词 NGFM hexagonal geometry Multigroup neutron diffusion equation
在线阅读 下载PDF
Influence of Height of Bionic Hexagonal Texture on Tactile Perception
5
作者 WANG Lei ZHU Yuqin +2 位作者 FANG Xingxing WANG Shuai TANG Wei 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期461-468,共8页
It is significant to process textures with special functions similar to animal surfaces based on bionics and improve the friction stability and contact comfort of contact surfaces for the surface texture design of tac... It is significant to process textures with special functions similar to animal surfaces based on bionics and improve the friction stability and contact comfort of contact surfaces for the surface texture design of tactile products.In this paper,a bionic hexagonal micro-convex texture was prepared on an acrylic surface by laser processing.The friction mechanism of a finger touching the bionic hexagonal micro-convex texture under different touch speeds and pressures,and the effect of the height of the texture on tactile perception were investigated by finite element,subjective evaluation,friction,and EEG tests.The results showed that the deformation friction was the main friction component when the finger touched the bionic hexagonal texture,and the slipperiness and friction factor showed a significant negative correlation.As the touch speed decreased or the touch force increased,the hysteresis friction of the fingers as well as the interlocking friction increased,and the slipperiness perception decreased.The bionic hexagonal texture with higher convexity caused a higher friction factor,lower slipperiness perception,and lower P300 peak.Hexagonal textures with lower convexity,lower friction factor,and higher slipperiness perception required greater brain attentional resources and intensity of tactile information processing during tactile perception. 展开更多
关键词 bionic hexagonal texture tactile perception FRICTION event-related potentials subjective evaluation
原文传递
Research on the X-ray polarization deconstruction method based on hexagonal convolutional neural network
6
作者 Ya-Nan Li Jia-Huan Zhu +5 位作者 Huai-Zhong Gao Hong Li Ji-Rong Cang Zhi Zeng Hua Feng Ming Zeng 《Nuclear Science and Techniques》 2025年第2期49-61,共13页
Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagon... Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagonal grid track images obtained using gas pixel detectors(GPDs)for better anisotropy do not match the classical rectangle-based CNN,and converting the track images from hexagonal to square results in a loss of information.We developed a new hexagonal CNN algorithm for track reconstruction and polarization estimation in X-ray polarimeters,which was used to extract the emission angles and absorption points from photoelectron track images and predict the uncer-tainty of the predicted emission angles.The simulated data from the PolarLight test were used to train and test the hexagonal CNN models.For individual energies,the hexagonal CNN algorithm produced 15%-30%improvements in the modulation factor compared to the moment analysis method for 100%polarized data,and its performance was comparable to that of the rectangle-based CNN algorithm that was recently developed by the Imaging X-ray Polarimetry Explorer team,but at a lower computational and storage cost for preprocessing. 展开更多
关键词 X-ray polarization Track reconstruction Deep learning hexagonal conventional neural network
在线阅读 下载PDF
Optimization of carbon irradiation parameters for creating spin defects in hexagonal boron nitride
7
作者 Fei Ren Zongwei Xu Yiyuan Wu 《Nanotechnology and Precision Engineering》 2025年第3期149-158,共10页
Negatively charged boron vacancy(V_(B)^(-))spin defects are stable in nanoscale hexagonal boron nitride(hBN)flakes,which can be easily integrated into two-dimensional materials and devices to serve as both sensors and... Negatively charged boron vacancy(V_(B)^(-))spin defects are stable in nanoscale hexagonal boron nitride(hBN)flakes,which can be easily integrated into two-dimensional materials and devices to serve as both sensors and protective materials.Ion irradiation is frequently employed to create V_(B)^(-)spin defects in hBN.However,the optimal ion irradiation parameters remain unclear,even though they play a crucial role in determining the depth and density of the defects,which in turn affect sensing sensitivity.In this work,we optimize the carbon ion irradiation parameters for creating V_(B)^(-)spin defects by varying the irradiation dose and the incident angle.For 30 keV carbon ion irradiation,the optimal irradiation dose to create a V_(B)^(-)ensemble is determined to be 4×10^(13)ions/cm^(2),and both continuous and pulsed optically detected magnetic resonance measurements are used to estimate the magnetic sensitivity and spin coherence properties.Moreover,the incident angle of energetic ions is found to influence both the depth and density distributions of the V_(B)^(-)ensemble,a factor that is often overlooked.These results pave the way for improving the performance of quantum sensors based on hBN spin defects by optimizing the irradiation parameters. 展开更多
关键词 hexagonal boron nitride Ion irradiation Spin defect ODMR Coherence properties Quantum sensing
在线阅读 下载PDF
Effects of helium ion irradiation and thermal annealing on the optical and structural properties of hexagonal boron nitride
8
作者 Guan-Lin Liu Ji-Lian Xu +13 位作者 Peng-Tao Jing Jing-Jing Shao Xu Guo Yun-Tao Wu Feng Qin Zhen Cheng Deming Liu Yang Bao Hai Xu Li-Gong Zhang Da Zhan Jia-Xu Yan Lei Liu De-Zhen Shen 《Chinese Physics B》 2025年第5期578-586,共9页
Hexagonal boron nitride(h-BN)has emerged as a promising two-dimensional material for quantum and optoelectronic applications,with its unique ability to host engineered defects enabling single-photon emission and spin ... Hexagonal boron nitride(h-BN)has emerged as a promising two-dimensional material for quantum and optoelectronic applications,with its unique ability to host engineered defects enabling single-photon emission and spin manipulation.This study investigates defect formation in h-BN using focused helium ion beam(He^(+)FIB)irradiation and post-annealing treatments.We demonstrate that helium ion irradiation at doses up to 2×10^(9) ions/μm^(2) does not induce phase transitions or amorphization.Spectroscopic analyses,including differential reflectance spectroscopy(DRS),photoluminescence(PL),and Raman spectroscopy,reveal substantial defect formation and structural modifications.Notably,the irradiation induces a softening of in-plane and interlayer phonon modes,characterized by frequency redshifts of 10.5 cm^(-1) and 3.2 cm^(-1),respectively.While high-temperature thermal annealing mitigates lattice defects and facilitates single-photon emission,the E_(2g) peak width remains 38%broader and the shear mode peak width is 60%broader compared to pre-annealing conditions in the Raman spectra,indicating residual structural degradation.These findings provide insights into defect engineering mechanisms in h-BN,offering guidance for optimizing processing conditions and advancing quantum and optoelectronic device technologies. 展开更多
关键词 hexagonal boron nitride focused ion beam defect engineering quantum materials SPECTROSCOPY
原文传递
Synergistic effects and electrocatalytic insight of single-phase hexagonal structure as low-temperature solid oxide fuel cell cathode
9
作者 Yuzheng Lu Asma Noor +6 位作者 Jahangeer Ahmed Najah Alwadie Majid Niaz Akhtar Sara Abid Muhammad Yousaf Mustafa Mahmoud Muhammad Aslam 《Journal of Rare Earths》 2025年第7期1390-1399,共10页
Enhancing the electrocatalytic activity of the electrode materials,specifically oxygen reduction reaction(ORR),at lower operating temperatures(<600℃)is the prime rank to realize the commercialization of solid oxid... Enhancing the electrocatalytic activity of the electrode materials,specifically oxygen reduction reaction(ORR),at lower operating temperatures(<600℃)is the prime rank to realize the commercialization of solid oxide fuel cells(SOFCs)research.Herein,a new hexagonal structure-based cathode material was developed with the co-doping of Gd_(2)O_(3)and Cr_(2)O_(3)of parent SrFe_(12)O_(19)oxide,respectively.At 550-475℃,Sr_(0.90)Gd_(0.10)Fe_(11.90)Cr_(0.10)O_(19)(SFO-10)cathode sample leading to the large peak power density(PPD)of 395 mW/cm^(2),has appropriate surface oxygen defects(O_(β))up to 17%,as verified by X-ray photoelectron microscopy(XPS).Theoretical calculations reveal that the co-doping of Gd and Cr oxides creates lattice disorder at the hexagonal lattice,which decreases the energy barrier for ion transport and enhances the electrocatalytic characteristics of ORR.Consequently,the SFO-10 cathode shows a favorable ORR activity with the least lower polarization resistance(ASR)at 550℃with gadolinium-doped ceria(GDC)electrolyte.This work provides a self-assembled single-phase hexagonal cathode to accelerate the lowtemperature hindrance of SOFC technology. 展开更多
关键词 hexagonal structure Solid oxide fuel cell(SOFC) Electrocatalytic activity CATHODE Gd and Cr doping Rare earths
原文传递
The transition from rate-independent to rate-controlled ductility of hexagonal titanium upon cryogenic deformation
10
作者 Zhuang-zhuang Liu Yang Zhang +4 位作者 Dan-yang Li Qiang Zhu Peng Zhang Hao Wu Guo-hua Fan 《Rare Metals》 2025年第10期7973-7983,共11页
Strain rate is a critical factor influencing the mechanical response of hexagonal close-packed titanium under cryogenic conditions.In this study,uniaxial tensile tests were performed on commercially pure titanium at 7... Strain rate is a critical factor influencing the mechanical response of hexagonal close-packed titanium under cryogenic conditions.In this study,uniaxial tensile tests were performed on commercially pure titanium at 77 K over a broad strain rate range from 0.001 to 1 s^(-1).A critical strain rate of approximately 0.5 s^(-1)was identified,above which ductility exhibits a pronounced reduction,whereas below this threshold,ductility remains relatively stable.Through comprehensive analyses of strain evolution,deformed microstructure,and fracture morphology,this behavior is attributed to severe localized adiabatic heating resulting from inhomogeneous deformation,rather than conventional twin or shear mechanisms. 展开更多
关键词 strain rate rate controlled ductility cryogenic deformation cryogenic conditionsin tensile tests hexagonal titanium rate independent comprehensive analyses strain evolutiondefo
原文传递
Phonon Thermal Transport at Interfaces of Graphene/Quasi-Hexagonal Phase Fullerene Heterostructure
11
作者 Rui-Peng Wang Tao-Tao Yu +4 位作者 Muhammad Asif Shakoori Ming-JunHan Yu-Xiao Hu Ho-Kin Tang Hai-Peng Li 《Chinese Physics Letters》 2025年第4期67-72,共6页
In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC... In this study,we employed molecular dynamics simulations to investigate the interfacial thermal conductance(ITC)and phonon transport of heterostructures composed of graphene(GE)and quasi-hexagonal phase fullerene(qHPC60).We examined the effects of size,interface interaction coefficients,and thermal equilibrium time on the ITC of the GE/qHPC60 heterostructure. 展开更多
关键词 molecular dynamics simulations GRAPHENE phonon transport quasi hexagonal phase fullerene HETEROSTRUCTURE phonon thermal transport interfacial thermal conductance interfacial thermal conductance itc
原文传递
On the interfacial behavior of a one-dimensional hexagonal piezoelectric quasicrystal film based on the beam theory
12
作者 Wenkai ZHANG C.S.LU +2 位作者 Minghao ZHAO Cuiying FAN Huayang DANG 《Applied Mathematics and Mechanics(English Edition)》 2025年第2期289-304,共16页
In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical ... In this paper,the mechanical response of a one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)thin film is analyzed under electric and temperature loads.Based on the Euler-Bernoulli beam theory,a theoretical model is proposed,resulting in coupled governing integral equations that account for interfacial normal and shear stresses.To numerically solve these integral equations,an expansion method using orthogonal Chebyshev polynomials is employed.The results provide insights into the interfacial stresses,axial force,as well as axial and vertical deformations of the PQC film.Additionally,fracture criteria,including stress intensity factors,mode angles,and the J-integral,are evaluated.The solution is compared with the membrane theory,neglecting the normal stress and bending deformation.Finally,the effects of stiffness and aspect ratio on the PQC film are thoroughly discussed.This study serves as a valuable guide for controlling the mechanical response and conducting safety assessments of PQC film systems. 展开更多
关键词 one-dimensional(1D)hexagonal piezoelectric quasicrystal(PQC)film beam theory electric and temperature loads Chebyshev polynomial interfacial behavior
在线阅读 下载PDF
Elevating dual-redox photocatalysis with p-n junction:Hydrangea-like Zn_(3)In_(2)S_(6)nanoflowers coupled hexagonal Co_(3)O_(4)for cooperative hydrogen and benzaldehyde production
13
作者 Xin-Quan Tan Grayson Zhi Sheng Ling +3 位作者 Tan Ji Siang Xianhai Zeng Abdul Rahman Mohamed Wee-Jun Ong 《Nano Materials Science》 2025年第2期169-179,共11页
Despite advances in photocatalytic half-reduction reactions,challenges remain in effectively utilizing electron-hole pairs in concurrent redox processes.The present study involved the construction of a p-n junction Co... Despite advances in photocatalytic half-reduction reactions,challenges remain in effectively utilizing electron-hole pairs in concurrent redox processes.The present study involved the construction of a p-n junction Co_(3)O_(4)/Zn_(3)In_(2)S_(6)(CoZ)hybrid with a complementary band edge potential.The photocatalyst formed by the 2D assembled-nanostructure portrayed an optimal yield of 13.8(H_(2))and 13.1(benzaldehyde)mmol g^(-1)h^(-1)when exposed to light(λ>420 nm),surpassing 1%Pt-added ZIS(12.4(H_(2))and 10.71(benzaldehyde)mmol g^(-1)h^(-1)).Around 95%of the electron-hole utilization rate was achieved.The solar-to-hydrogen(STH)and apparent quantum yield(AQY)values of 0.466%and 4.96%(420nm)achieved by this system in the absence of sacrificial agents exceeded those of previous works.The exceptional performance was mostly ascribed to the synergistic development of adjoining p-n heterojunctions and the built-in electric field for effective charge separation.Moreover,scavenger studies elucidated the intricate mechanistic enigma of the dual-redox process,in which benzaldehyde was produced via O-H activation and subsequent C-H cleavage of benzyl alcohol over CoZ hybrids.Furthermore,the widespread use of the optimal 1-CoZ composites was confirmed in multiple photoredox systems.This work presents an innovative perspective on the construction of dual-functioning p-n heterojunctions for practical photoredox applications. 展开更多
关键词 hexagonal Co_(3)O_(4) Zn_(3)In_(2)S_(6)nanoflowers Dual photoredox reaction Hydrogen evolution Benzyl alcohol oxidation p-n heterojunction
在线阅读 下载PDF
Hexagonal boron nitride based slippery liquid infused porous surface with anti-corrosion, anti-contaminant and anti-icing properties for protecting magnesium alloy 被引量:3
14
作者 Wenhao Yan Shuaiya Xue +2 位作者 Xuerui Zhao Wei Zhang Jian Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第4期532-538,共7页
In an era where the concept of green development is deeply rooted, magnesium(Mg) alloy as a light metal has a long-term development prospect in the process of energy saving, emission reduction and environmental improv... In an era where the concept of green development is deeply rooted, magnesium(Mg) alloy as a light metal has a long-term development prospect in the process of energy saving, emission reduction and environmental improvement. However, anti-corrosion performance of Mg alloy is poor due to the high chemical activity and low equilibrium potential, which limits the development of Mg alloy products.Herein, three-dimensional mesopore hollow polypyrrole spheres(MHPS) were prepared, and the MHPS was inserted into the middle of the stacked hexagon boron nitride(h-BN) lamellae, which allowed the hBN to be separated forming a further composite with abundant pore structure. Subsequently, the MHPS/hBN-OH composite was uniformly sprayed on the Mg alloy surface via simple spraying method to form the superhydrophobic surface(SHS). Finally, the slippery liquid infused porous surface(SLIPS) was successfully fabricated by applying drops of silicone lubricant on the superhydrophobic coating surface. After a series of characterization and testing, the results showed that the stacking of h-BN lamellae was significantly reduced after h-BN was successfully embedded by MHPS. In addition, the fabricated SLIPS have excellent self-cleaning, mechanical stability, anti-icing and anti-corrosion properties. Therefore, the method of embedding polymer microspheres not only offers a new strategy for h-BN exfoliation, but also the successful prepared SLIPS largely retards the corrosion of Mg alloy while providing new ideas for the development of SLIPS. 展开更多
关键词 ANTI-CORROSION Mg alloy Hexagon boron nitride POLYPYRROLE SLIPS
原文传递
A Generalized Array Factor for Time-Modulated Hexagonal Based Antenna Array Geometry With Novel Trapezoidal Switching
15
作者 Gopi Ram 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第9期1967-1972,共6页
The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The va... The concept of the time-modulated array has been emerging as an alternative to the complex phase shifters,which lowers the cost of the array feeding network due to the utilization of radio frequency(RF)switches.The various forms of hexagonal antenna array geometries can be used for applications like surveillance tracking in phased array radar and wireless communication systems.This work proposes the generalized array factor(AF)for the hexagonal antenna array geometry based on time modulation.The time modulation in generalized hexagonal geometry can maintain the fixed static amplitude excitation,giving more flexibility over time.Furthermore,a novel trapezoidal switching function is also proposed and applied to the generalized array factor to enable future researchers to use this array factor in the field of advancement to observe how switching schemes like trapezoidal and rectangular affect the array pattern's side lobe level(SLL).The generalized equation can be utilized for the analysis and synthesis of radiation characteristics of the time-modulated hexagonal array(TMHA),time-modulated concentric hexagonal array(TMCHA),time-modulated hexagonal cylindrical array(TMHCA),and time-modulated hexagonal concentric cylindrical array(TMHCCA).The numerical result illustrates the generation of AF of time-modulated hexagonal structures and also shows that the trapezoidal switching sequence outperforms the rectangular switch using the cat swarm optimization(CSO)approach. 展开更多
关键词 hexagonal array geometry radiation pattern time-modulation trapezoidal pulse
在线阅读 下载PDF
Understanding the Thermal Impedance of Silicone Rubber/Hexagonal Boron Nitride Composites as Thermal Interface Materials
16
作者 Yuan Ji Shi-Da Han +3 位作者 Hong Wu Shao-Yun Guo Feng-Shun Zhang Jian-Hui Qiu 《Chinese Journal of Polymer Science》 SCIE EI CAS CSCD 2024年第3期352-363,I0008,共13页
Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected... Silicone rubber(SR) composites are most widely used as thermal interface materials(TIMs) for electronics heat dissipation. Thermal impedance as the main bottleneck limiting the performance of TIMs is usually neglected. Herein, the thermal impedance of SR composites loaded with different levels of hexagonal boron nitride(h-BN) as TIMs was elaborated for the first time by the ASTM D 5470 standard test and finite element analysis. It was found that elastic modulus and surface roughness of SR composites increased with the increase of h-BN content, indicating that the conformity was reduced. When the assembly pressure was 0.69 MPa, there existed an optimal h-BN content at which the contact resistance was minimum(0.39 K·cm^(2)·W^(-1)). Although the decreased bond line thickness(BLT) by increasing the assembly pressure was beneficial to reduce the thermal impedance, the proper assembly pressure should be selected to prevent the warpage of the contact surfaces and the increase in contact resistance, according to the compression properties of the SR composites. This study provides valuable insights into fabrication of high-performance TIMs for modern electronic device applications. 展开更多
关键词 Thermal interface materials hexagonal boron nitride Thermal impedance SURFACES
原文传递
六边形断面超高层建筑风荷载研究 被引量:2
17
作者 王磊 尹伊 +2 位作者 陈凯 唐意 郝玮 《应用力学学报》 北大核心 2025年第1期164-173,共10页
为了研究六边形断面超高层建筑的静力和动力风荷载,开展了一系列刚性测压模型和多自由度气弹模型风洞试验,测量了刚性模型表面风压和气弹模型风致位移。对于静力风荷载,分析了体型系数和静风力系数的变化规律,建立了顺风向平均基底弯矩... 为了研究六边形断面超高层建筑的静力和动力风荷载,开展了一系列刚性测压模型和多自由度气弹模型风洞试验,测量了刚性模型表面风压和气弹模型风致位移。对于静力风荷载,分析了体型系数和静风力系数的变化规律,建立了顺风向平均基底弯矩系数和平均阻力系数的经验公式。对于动力风荷载,分析了横风向荷载功率谱和均方根基底弯矩,建立了横风向广义风荷载功率谱和归一化均方根基底弯矩系数的经验公式。最后,基于多自由度气弹模型的风致振动试验结果,验证了经验公式的精确性。 展开更多
关键词 超高层建筑 六边形断面 风荷载 风洞试验
原文传递
煅烧针铁矿与六方水钠锰矿复合室温降解甲醛
18
作者 邹雪华 黄爱娣 +6 位作者 韩正严 陈进永 周之琳 王祁梦子 钱玲娜 刘海波 陈天虎 《硅酸盐学报》 北大核心 2025年第8期2229-2238,共10页
水钠锰矿具有良好的常温氧化降解甲醛活性,但单一水钠锰矿也暴露出表面活性位点不足,无法满足长期高效净化甲醛的需求。以不同温度煅烧针铁矿得到赤铁矿产物为载体,通过氧化还原法制备了系列赤铁矿复合六方水钠锰矿催化剂,探究了其在室... 水钠锰矿具有良好的常温氧化降解甲醛活性,但单一水钠锰矿也暴露出表面活性位点不足,无法满足长期高效净化甲醛的需求。以不同温度煅烧针铁矿得到赤铁矿产物为载体,通过氧化还原法制备了系列赤铁矿复合六方水钠锰矿催化剂,探究了其在室温下氧化降解甲醛的性能及作用机制。采用X射线衍射仪、比表面积分析仪、X射线光电子能谱仪、拉曼光谱仪、透射电子显微镜和原位红外光谱仪等方法对样品进行表征。结果表明:对比赤铁矿和单一六方水钠锰矿,300℃煅烧针铁矿得到的赤铁矿复合水钠锰矿样品(K0.6hbir@Hem-300)室温下具有更优异的氧化降解甲醛活性,在甲醛初始浓度1 mg/L、空速为400 L/(g·h)和室温条件下,甲醛去除率在24 h内可维持在100%,且具有良好的循环稳定性。这是因为赤铁矿的引入增加了复合催化剂Mn(Ⅲ)和表面活性氧物种含量,提升了其催化氧化甲醛的能力。相较于六方水钠锰矿复合针铁矿材料,六方水钠锰矿复合赤铁矿对甲醛(10 mg/L)的氧化能力显著增强,CO_(2)转化率约为55%,显著优于前者的40%,表明煅烧针铁矿得到的赤铁矿比原样更适合作为载体。原位红外及淬灭实验表明,在氧化降解甲醛过程中,·O_(2)^(-)促进DOM向甲酸盐的转化,而·OH影响中间产物向终产物CO_(2)和H_(2)O矿化。 展开更多
关键词 六方水钠锰矿 针铁矿 赤铁矿 氧化降解 甲醛
原文传递
二维纳米填料/聚乙烯醇新型阻湿涂布液的制备及其性能研究
19
作者 杨芳 田潇 +5 位作者 巩佳豪 曹稳 葛畅 王海英 程有亮 方长青 《包装工程》 北大核心 2025年第17期96-105,共10页
目的制备椰油酰胺丙基甜菜碱(CAB)改性蒙脱土(OMMT)和改性六方氮化硼(M-h-BN)与聚乙烯醇(PVA)混合后的涂布液,研究二维纳米填料种类和比例对复合涂布液性能的影响规律。方法利用X射线衍射仪、傅里叶红外分光光度计、扫描电子显微镜等现... 目的制备椰油酰胺丙基甜菜碱(CAB)改性蒙脱土(OMMT)和改性六方氮化硼(M-h-BN)与聚乙烯醇(PVA)混合后的涂布液,研究二维纳米填料种类和比例对复合涂布液性能的影响规律。方法利用X射线衍射仪、傅里叶红外分光光度计、扫描电子显微镜等现代分析手段对二维填料、复合涂布液及涂布纸进行表征与性能测试。结果MMT和h-BN改性后,其层间距增大,得到的OMMT和M-h-BN在PVA溶液中分散性良好。涂布纸的拉伸强度和断裂伸长率随填料含量的增加,呈现先上升后下降的趋势。当OMMT/M-h-BN复合填料质量分数为4%时,涂布纸的拉伸强度和断裂伸长率最大为35.35 MPa、108.03%。质量分数为4%OMMT/M-h-BN/PVA涂布纸的24 h水蒸气透过率仅为22 g/(m^(2)·d),较纯PVA降低63%。OMMT/M-h-BN/PVA涂布纸的吸湿和放湿率分别稳定在3.77%和2.71%,较纯PVA分别降低48%和54.5%。结论适当的OMMT和M-h-BN添加量可以显著提升涂布纸的拉伸强度、断裂伸长率和阻湿性能,同时复合填料由于OMMT与M-h-BN的协同作用,相比单一填料能更有效地提升涂布纸的综合性能。 展开更多
关键词 椰油酰胺丙基甜菜碱 有机蒙脱土 六方氮化硼 复合填料
在线阅读 下载PDF
六边形网格的平均重力异常数据构建及其统计优势分析
20
作者 李新星 李建成 +1 位作者 周睿 范昊鹏 《武汉大学学报(信息科学版)》 北大核心 2025年第3期507-514,共8页
传统地理网格在重力场数据处理和解算中被广泛使用,但也带来诸多不便,例如网格面积不等、各向同性差等。针对地球重力场中地理网格的使用所带来的局限性,首次提出采用具有分层结构的六边形网格系统对重力测量数据分布区域进行划分,基于... 传统地理网格在重力场数据处理和解算中被广泛使用,但也带来诸多不便,例如网格面积不等、各向同性差等。针对地球重力场中地理网格的使用所带来的局限性,首次提出采用具有分层结构的六边形网格系统对重力测量数据分布区域进行划分,基于开源的H3离散球面网格系统构建中国大陆陆地重力测量数据区域3种分辨率的六边形网格,并利用中国81万余条实测重力资料,构建了上述3种分辨率下的六边形网格平均重力异常数值模型,以及平均大小与之对应的地理网格平均重力异常数值模型,最后统计对比了地理网格和六边形网格两种剖分方式下网格平均空间重力异常值的代表误差大小。结果表明,剖分层级L=3、4、5的六边形网格与面积近似相等的67.8′、24.5′、9.2′的四边形地理网格相比,网格内包含实测点的网格数量占总网格数量比更高,包含实测点的网格占比分别提高1.54%、1.44%和2.81%;平均网格重力异常代表误差分别减小0.398 mGal、0.259 mGal和0.188 mGal。综上所述,分层六边形网格系统因其近似等积和各项同性特征,在地球重力场数据统计和数据生产中具有应用优势。尽管层次六边形网格系统在地球重力场的球谐合成与分析、地形效应的快速计算、数值积分计算等方面也有良好的应用前景,但不可否认的是,它的使用和推广仍面临许多需要解决的难题,例如六边形网格的非等纬度分布引起的Legendre计算问题,以及如何使用快速傅里叶变换技术在该不规律分布下实现高效计算。 展开更多
关键词 代表误差 地球重力场模型 空间重力异常 六边形网格
原文传递
上一页 1 2 119 下一页 到第
使用帮助 返回顶部