Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear ...Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.展开更多
A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Pe...A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through harmonic balance method with alternating frequency/time domain(HB-AFT) technique, and then compared with the results of numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the monodromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal design of rotor systems.展开更多
The studies on dynamics of a fault bearing system are prevalent in recent years, however, we are studying a completely different frequency range than the one where the bearing faults are best seen. Considering a local...The studies on dynamics of a fault bearing system are prevalent in recent years, however, we are studying a completely different frequency range than the one where the bearing faults are best seen. Considering a local defect on outer raceway,a two-degree-of-freedom analytical model of a rigid-rotor ball bearing system is established. Three pulse force models are introduced to simulate the local defect. The frequency domain method—harmonic balance method with alternating frequency/time domain technique (HB-AFT) is used to calculate the response in a large frequency range. By comparing the performance at different frequencies, the fault systems with different defect models and parameters reveal the super-harmonic resonances,and the reasons for this phenomenon are uncovered as well. Finally, the theoretical calculation is verified qualitatively by the experimental results, through comparing the frequency spectrums of the defective bearing rotor system to the fault-free one.Therefore, the super-harmonic resonances can be regarded as a dynamic feature. Besides, the obvious super-harmonic resonances indicate the magnification of the harmonics of the "characteristic defect frequency" for outer race in the corresponding speed regions, which may be helpful for the diagnosis of a rotor ball bearing system with a local defect.展开更多
The“synchronous impact”is a phenomenon that increases the dynamic load of the inter-shaft bearing,when the frequency of the aerodynamic excitation is close to the contact frequency of the inter-shaft bearing.This wo...The“synchronous impact”is a phenomenon that increases the dynamic load of the inter-shaft bearing,when the frequency of the aerodynamic excitation is close to the contact frequency of the inter-shaft bearing.This work addresses the“synchronous impact”phenomenon of an aero-engine.The 104 degree-of-freedom dynamical model of an aero-engine is established by the finite element method,in which the complex nonlinearity of the Hertzian contact force of the inter-shaft bearing with clearance is included,and the multi-frequency excitations such as the unbalanced excitations of the high-and low-pressure rotors and the aerodynamic excitation are considered.A harmonic balance method combined with the alternating frequency time-domain method(HB-AFT)is introduced to obtain periodic responses of the high-dimension complex nonlinear dual-rotor system.The results show that there emerges a peak value of the amplitude-frequency response for the contact frequency harmonic component of the outer ring of the inter-shaft bearing,when the aerodynamic excitation frequency is close to the contact frequency.In addition,the dynamic load of the inter-shaft bearing increases significantly.Moreover,the parametric analysis shows that the“synchronous impact”phenomenon is sensitive to the change of the speed ratio of the high-and low-pressure rotors.The dynamic load of inter-shaft bearing can be significantly reduced by changing the speed ratio by 1%.The results obtained in this paper not only provide more insight into the mechanism of the“synchronous impact”phenomenon but also demonstrate the HBAFT method as a potential semi-analytical tool to explore the high-dimension complex nonlinear system.展开更多
基金supported by the National Natural Science Foundation of China(No.10632040)
文摘Comparisons of the common methods for obtaining the periodic responses show that the harmonic balance method with alternating frequency/time (HB-AFT) do- main technique has some advantages in dealing with nonlinear problems of fractional exponential models. By the HB-AFT method, a rigid rotor supported by ball bearings with nonlinearity of Hertz contact and ball passage vibrations is considered. With the aid of the Floquet theory, the movement characteristics of interval stability are deeply studied. Besides, a simple strategy to determine the monodromy matrix is proposed for the stability analysis.
基金supported by the National Basic Research Program of China("973" Project)(Grant No.2015CB057400)the National Natural Science Foundation of China(Grant No.11302058)
文摘A dynamic model is established for an offset-disc rotor system with a mechanical gear coupling, which takes into consideration the nonlinear restoring force of rotor support and the effect of coupling misalignment. Periodic solutions are obtained through harmonic balance method with alternating frequency/time domain(HB-AFT) technique, and then compared with the results of numerical simulation. Good agreement confirms the feasibility of HB-AFT scheme. Moreover, the Floquet theory is adopted to analyze motion stability of the system when rotor runs at different speed intervals. A simple strategy to determine the monodromy matrix is introduced and two ways towards unstability are found for periodic solutions: the period doubling bifurcation and the secondary Hopf bifurcation. The results obtained will contribute to the global response analysis and dynamic optimal design of rotor systems.
基金supported by the National Key Basic Research Program of China (Grant No. 2015CB057400)the National Natural Science Foundation of China (Grant No. 11602070)China Postdoctoral Science Foundation(Grant No. 2016M590277).
文摘The studies on dynamics of a fault bearing system are prevalent in recent years, however, we are studying a completely different frequency range than the one where the bearing faults are best seen. Considering a local defect on outer raceway,a two-degree-of-freedom analytical model of a rigid-rotor ball bearing system is established. Three pulse force models are introduced to simulate the local defect. The frequency domain method—harmonic balance method with alternating frequency/time domain technique (HB-AFT) is used to calculate the response in a large frequency range. By comparing the performance at different frequencies, the fault systems with different defect models and parameters reveal the super-harmonic resonances,and the reasons for this phenomenon are uncovered as well. Finally, the theoretical calculation is verified qualitatively by the experimental results, through comparing the frequency spectrums of the defective bearing rotor system to the fault-free one.Therefore, the super-harmonic resonances can be regarded as a dynamic feature. Besides, the obvious super-harmonic resonances indicate the magnification of the harmonics of the "characteristic defect frequency" for outer race in the corresponding speed regions, which may be helpful for the diagnosis of a rotor ball bearing system with a local defect.
基金supported by the National Natural Science Foundation of China(Grant No.11972129)the National Major Science and Technology Projects of China(Grant No.2017-IV-0008-0045)+1 种基金Department of Science&Technology of Liaoning Province(Grant No.2019BS182)the Educational Department of Liaoning Province(Grant No.LJGD2019009)。
文摘The“synchronous impact”is a phenomenon that increases the dynamic load of the inter-shaft bearing,when the frequency of the aerodynamic excitation is close to the contact frequency of the inter-shaft bearing.This work addresses the“synchronous impact”phenomenon of an aero-engine.The 104 degree-of-freedom dynamical model of an aero-engine is established by the finite element method,in which the complex nonlinearity of the Hertzian contact force of the inter-shaft bearing with clearance is included,and the multi-frequency excitations such as the unbalanced excitations of the high-and low-pressure rotors and the aerodynamic excitation are considered.A harmonic balance method combined with the alternating frequency time-domain method(HB-AFT)is introduced to obtain periodic responses of the high-dimension complex nonlinear dual-rotor system.The results show that there emerges a peak value of the amplitude-frequency response for the contact frequency harmonic component of the outer ring of the inter-shaft bearing,when the aerodynamic excitation frequency is close to the contact frequency.In addition,the dynamic load of the inter-shaft bearing increases significantly.Moreover,the parametric analysis shows that the“synchronous impact”phenomenon is sensitive to the change of the speed ratio of the high-and low-pressure rotors.The dynamic load of inter-shaft bearing can be significantly reduced by changing the speed ratio by 1%.The results obtained in this paper not only provide more insight into the mechanism of the“synchronous impact”phenomenon but also demonstrate the HBAFT method as a potential semi-analytical tool to explore the high-dimension complex nonlinear system.