In total hip arthroplasty, judgment of the appropriateness of stem hammering is dependent on the experience and feelings of the surgeon and no objective evaluation method has been established. In this study, a frequen...In total hip arthroplasty, judgment of the appropriateness of stem hammering is dependent on the experience and feelings of the surgeon and no objective evaluation method has been established. In this study, a frequency analysis of the hammering sounds in total hip arthroplasty was performed to investigate objective judgment criteria capable of preventing problems during surgery. Stem hammering was applied following the surgeon’s feelings as usual in an operating room. A directional microphone was placed at a distance about 2 m from the surgical field and the peak frequency reaching the maximum amplitude was determined by Fourier analysis. It was clarified that the same peak frequency repeats when appropriate fixation is acquired during surgery, suggesting that intraoperative fracture and postoperative loosening can be prevented by stopping hammering at the time the peak frequency converged. Investigation of changes in the hammering sound frequency may serve as objective judgment criteria capable of preventing problems during surgery.展开更多
When a stem is inserted into the femur during total hip arthroplasty, sufficient fixation depends on the surgeon’s experience. An objective method of evaluating whether the stem has been correctly fixed may aid clini...When a stem is inserted into the femur during total hip arthroplasty, sufficient fixation depends on the surgeon’s experience. An objective method of evaluating whether the stem has been correctly fixed may aid clinicians in their decision. We examined the relationship between the sound frequency caused by hammering the stem and the internal stress in artificial femurs, and evaluated the utility of sound frequency analysis to prevent intraoperative fracture. Surgeons inserted one of two types of cementless stems (SL-PLUS and modified CLS) using routine operational procedures into 13 artificial femurs. These are the standard Zweymüllers used in Europe. The difference is the lateral shape;SL-PLUS has holes for removal and the modified CLS has fins to prevent rotation. We estimated stress in the femur via finite element analysis, measured the hammering force, and recorded the sound of hammering for frequency analysis. Finite element analysis revealed that the hammering sound frequency decreased as the maximum stress increased. A decrease in frequency suggested that fixation was sufficient and that continued hammering would increase the risk of fracture. Thus, evaluation of the change in sound frequency during stem insertion may indicate when the hammering force should be reduced, thereby preventing intraoperative periprosthetic fractures. Further frequency change may also predict fractures prior to visual confirmation. We concluded that sound frequency analysis has potential as an objective evaluation method to help prevent intraoperative periprosthetic fractures during stem insertion.展开更多
Failure during total hip arthroplasty may lead to bedridden of the elderly. Since the acetabulum cup fix in an anatomically deep region, failures, such as loosening and fracture, occur three times more frequently comp...Failure during total hip arthroplasty may lead to bedridden of the elderly. Since the acetabulum cup fix in an anatomically deep region, failures, such as loosening and fracture, occur three times more frequently compared with failures of the stem fix in the femur. We investigated the possibility of evaluating whether fixation was acquired by frequency analysis of the hammering sound of implanting a cup into the acetabulum. The subjects were 11 patients (11 joints) who underwent total hip arthroplasty, biomechanical test materials, and orthopedic models. Surgeries and experiments were performed by orthopedists specialized in the hip. A system was constructed with a tablet PC and directional microphone, the peak frequency at which the amplitude reached the maximum was determined, and judgment processing (stable, unstable) of cup fixability was performed in real time. The stable maximum peak frequency observed in the clinical trials was 4.42 ± 4.02 kHz. The mean stable maximum peak frequency in the biomechanical tests was 4.46 ± 1.19 kHz in biomechanical test materials and 4.56 ± 2.02 kHz in orthopaedicmodels. When hammering was continued, the frequency leading to fracture decreased in both biomechanical test materials and orthopaedicmodels. In conclusion, in clinical trials and biomechanical studies, variation of the maximum peak frequency decreased when fixation was acquired and the frequency stabilized. It was suggested that this method can serve as a fixability evaluation method of acetabular cups because analysis can be performed in real time during surgery, for which prevention of intraoperative fracture can be expected.展开更多
<strong>Background: </strong>The 1st peak frequency of the hammering sound in total hip arthroplasty may serve as an evaluation index to prevent intraoperative fracture. Fixation of the stem and femur cann...<strong>Background: </strong>The 1st peak frequency of the hammering sound in total hip arthroplasty may serve as an evaluation index to prevent intraoperative fracture. Fixation of the stem and femur cannot be acquired unless the 1st peak frequency of hammering the stem into the femur stabilizes, and fixation can be judged as acquired when the 1st peak frequency becomes constant. To investigate whether the environmental sound in the operating room can be differentiated from the hammering sound of total hip arthroplasty, the 1st peak frequency of the hammering sound when impacting the stem into the femur with a hammer was identified. <strong>Method:</strong> The hammering sound of impacting the stem into a biomechanical test material through an impactor was analyzed using a fast Fourier transform analyzer. Environmental sound in the operating room was simulated and the 1st peak frequency of the sound on collision between the operator’s voice and the surgical instrument was measured. The 1st peak frequency of hammering sound was compared between patients indicated for total hip arthroplasty and healthy individuals to investigate whether there is a difference due to bone quality. <strong>Results:</strong> The natural frequency of the impactor was 3.41 ± 0.05 kHz, and the 1st peak frequency of the femur, stem, and impactor was 2.43 ± 1.45 kHz. The 1st peak frequency of hammering sound on simulated femur in patients indicated for total hip arthroplasty was 2.98 ± 0.73 kHz and that in healthy individuals was 2.15 ± 0.32 kHz. This suggested that the hammering sound in total hip arthroplasty-indicated patients overlaps with the frequency of the collision sound of surgical instruments.<strong> Conclusion: </strong>To develop a system to prevent intraoperative fracture, countermeasures, such as noise canceling, are necessary to prevent false detection of hammering sounds.展开更多
Background: The aim of this study is to identify the factors influence on the broaching hammering sound character during cementless total hip arthroplasty. Methods: We analyzed frequency spectrum of the hammering soun...Background: The aim of this study is to identify the factors influence on the broaching hammering sound character during cementless total hip arthroplasty. Methods: We analyzed frequency spectrum of the hammering sound for 49 cases of uncomplicated cementless THAs using two types of proximal-coated stem performed by experienced surgeons. Normalized sound pressure (NSP) of each 0.5 kHz frequency band in final stage of broach procedure was determined by the fast Fourier transform analysis. The relationships between those sound characteristics and femoral morphology such as canal calcar ratio (CCR), Canal flare index (CFI), morphological cortical index (MCI) and femoral shaft length (FSL) in different cementless stem were investigated. Results: In Accolade 2, CCR was positively related to NSP in several bands [Frequency band (kHz);r: 2.0 - 2.5;0.37, 4.5 - 5.0;0.37, 9.5 - 10.0;0.44], and negatively related to 7.5 - 8.0 kHz (r = -0.39). Negative correlations were observed among CFI and MCI in specific frequency bands (4.5 - 5.0, 5.0 - 5.5, and 7.5 - 8.0 kHz). In Taperloc Microplasty, strong correlations were found between FSL and the NSP of 7.5. - 8.0 kHz (r = 0.78) and CCR and the 7.5 - 8.0 kHz bands. There was significant difference of NSPs between high and low group divided by morphological parameters. Acoustic characteristics of NSPs between Accolade 2 and Microplasty were significantly different in 9 frequency bands. Conclusions: The hammering sound correlated with four parameters of the femoral morphology and differed in different types of proximal-coated stem. Those novel five factors are important to consider when to predict complications using acoustic analysis.展开更多
In total hip arthroplasty, intraoperative femoral fractures can be avoided by analyzing the hammering sounds from the stem inserted into the femur. This procedure is based on a hammering test that makes use of the fac...In total hip arthroplasty, intraoperative femoral fractures can be avoided by analyzing the hammering sounds from the stem inserted into the femur. This procedure is based on a hammering test that makes use of the fact that sound depends on the stability of the object. This technique is generally used in engineering. A system designed to avoid excessive stem hammering by predicting the intraoperative fracture risk based on this technique and software for real-time spectra analysis has been developed with repetitive improvements. The remaining technical challenge lies in selecting an appropriate sound collection device and building a compact and easy unit for use. This study reviewed the types of directional microphones suitable for the sound collection system to develop a practical THA support system. Four types of microphones based on selected methods were used to collect and compare the peak frequencies of the hammering sounds and make comparisons between them, and the built system was used to conduct clinical trials. For miniaturization and operational ease of the unit, plug-in unidirectional microphones are appropriate. However, no laboratory-level data has been collected, and thus, further data accumulation is necessary.展开更多
In the words of the late Sir Colin Blakemore,neurologists have historically sought to infer brain functions in a manner akin to to king a hammer to a computeranalyzing localized anatomical lesions caused by trauma,tum...In the words of the late Sir Colin Blakemore,neurologists have historically sought to infer brain functions in a manner akin to to king a hammer to a computeranalyzing localized anatomical lesions caused by trauma,tumors,or strokes,noting deficits,and inferring what functions certain brain regions may be responsible for.This approach exemplifies a deletion heuristic,where the absence of a specific function reveals insights about the underlying structures or mechanisms responsible for it.By observing what is lost when a particular brain region is damaged,throughout the history of the field,neurologists have pieced together the intricate relationship between anatomy and function.展开更多
With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure m...With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined.展开更多
Machine Hammer Peening(MHP)is an emergent treatment that induces high compressive Residual Stresses(RS)which can enhance the in-service performance of components.This paper studies the use of small diameter MHP tools ...Machine Hammer Peening(MHP)is an emergent treatment that induces high compressive Residual Stresses(RS)which can enhance the in-service performance of components.This paper studies the use of small diameter MHP tools to improve the Surface Integrity(SI)of the nickel-based alloy Inconel 718 used in critical aero-engine components.Complementarily,the relaxation of RS is analyzed by in-situ annealing tests at in-service temperature combined with X-ray diffraction measurement.For this purpose,age hardened Inconel 718 discs were turned as reference condition,and then a pneumatic MHP tool was used under different conditions:two tool diameters(4 mm and 12 mm),feed rates(2.5 m/min and 5.0 m/min)and stepover distances(0.07 mm and 0.35 mm).Subsequently,surface topography characterization,RS measurements,nanoindentation tests,and microstructural observations were conducted.The in-situ annealing tests were done in the X-ray diffractometer at 550°C for exposure periods from 0 to 20 h.The results demonstrate that 4 mm diameter tools generate smooth surfaces and induce significant compressive RS within a0.5 mm thick layer.Residual stresses are relaxed,but they remain compressive even after a long thermal exposure.The microstructure of the surface layer(<10–15μm)was affected by the preceding turning operation,but importantly,MHP did not induce additional damage.展开更多
Fault container and shaking table tests are crucial for studying co-seismic dislocation in cross-fault tunnels,with the design and functionality of the container significantly affecting the accuracy of dynamic respons...Fault container and shaking table tests are crucial for studying co-seismic dislocation in cross-fault tunnels,with the design and functionality of the container significantly affecting the accuracy of dynamic response analyses of tunnel linings.This research introduces a fault container developed as part of a significant active fault-crossing tunnel project in the high-intensity seismic zone of western China.The container is designed to simulate both strike-slip and dip-slip fault characteristics with adjustable fault angles.Extensive testing,including shaking table tests under strong seismic conditions,three-dimensional(3D)finite element numerical simulations,and hammer tests,were conducted to evaluate the modal characteristics of the container under various conditions.The study highlights the resonance characteristics of the soil-container system,the signal consistency across different dislocations,and the dynamic response patterns both with and without pulse-like seismic motions and varying intensities.The results indicate that the natural frequencies of the container and the model soil,determined through white noise scanning,are 23.74 Hz and 6.355 Hz,respectively,suggesting no resonance in the model soil-container structure.The dynamic response characteristics of the empty container show good integrity and versatility under various seismic excitations.The consistency of the free-field time history curve confirms that the newly developed fault container effectively simulates the continuity and boundary conditions of the free-field.Time domain analysis conducted before and after fault dislocation demonstrates the capability of the container to accurately replicate the coupling effects of fault and seismic motions.展开更多
OVER 2,000 years ago,the bronze craftsmen in today’s Datong City,Shanxi Province,had already mastered the superb skills of copper production.Datong bronze-making craft was included in China’s state-level intangible ...OVER 2,000 years ago,the bronze craftsmen in today’s Datong City,Shanxi Province,had already mastered the superb skills of copper production.Datong bronze-making craft was included in China’s state-level intangible cultural heritage list in 2014.The craftsmanship which has been passed down through the millennia still shines brightly today after countless hammer blows and engravings.展开更多
Pneumatic down-the-hole hammer, serving as rock-breaking tool, possesses appeal for directional drilling due to its high rate of penetration. However, corresponding experimental studies on existing hammers for directi...Pneumatic down-the-hole hammer, serving as rock-breaking tool, possesses appeal for directional drilling due to its high rate of penetration. However, corresponding experimental studies on existing hammers for directional drilling have rarely been reported, and a model for evaluating their output performance is absent. This study proposes a novel structure of self-rotating pneumatic hammer(NSH)with a built-in rotational mechanism, which converts partial impact energy of the piston to rotate the drill bit and, consequently, enables dual functions of impact and rotate drill bit. The energy is converted via a screw key-groove mechanism, and the wedge-shaped teeth mechanism ensures that the drill bit rotates clockwise during the piston moves downward. The computational fluid dynamics method is applied to simulate the dynamic response of airflow and piston during the operation of Φ127NSH.Meanwhile, a test bench is established to record data concerning chamber pressure and piston displacement, as well as recording its operational status and rock fragmentation during drilling into granite. The results showed that the maximum error between simulated and experimental data is 8.2%.The Φ127NSH successfully achieves dual impact and rotary drilling functions, and granite smoothly feeds and forms a continuous shear rock zone. In addition, the effects of torque load, engagement distance in rotation sleeves, and well deviation angle towards the performance of NSH were studied in detail. The designed Φ127NSH operates at an impact velocity of 3.98 m/s, impact frequency of 12.55 Hz, and rotational speed of 29.51 r/min under a mass-flow rate of 0.18 kg/s, torque load of 400 N·m, engagement distance of 40 mm, and well deviation angle of 0°. The torque load adversely affects the NSH output performance. Increasing the engagement distance improves impact performance while reducing rotational performance. The performance variation of the NSH is minimal when drilling directional wells with varying deviation angles.展开更多
The differences in damage values,residual stresses,microstructure and mechanical properties of Ti–6Al–4V alloy under hammer forging and press forging were explored through physical experiments and numerical simulati...The differences in damage values,residual stresses,microstructure and mechanical properties of Ti–6Al–4V alloy under hammer forging and press forging were explored through physical experiments and numerical simulations.The results showed that the temperature field and equivalent strain field of forgings under the hammer forging process were more uniformly distributed,resulting in smaller surface cracks and better residual stress distribution.The impact dynamic loading of hammer forging leads to forgings with higher dislocation densities,while the stabilized strain rate of press forging results in forgings exhibiting finer grain sizes.In this context,the yield strength enhancement of forgings by both processes was nearly identical,while the forgings demonstrated more excellent elongation under the hammer forging process.Additionally,increasing the number of blows in the hammer forging process or enhancing the loading rate in the press forging process can optimize the residual stress distribution of the forgings while simultaneously promoting dislocation multiplication and grain refinement.展开更多
A total of 393 potholes(368 fluvial and 25 marine potholes)were studied at seven different sites in both the fluvial and marine environments.Diverse bedrock properties and large-scale delivery of tools and grinders re...A total of 393 potholes(368 fluvial and 25 marine potholes)were studied at seven different sites in both the fluvial and marine environments.Diverse bedrock properties and large-scale delivery of tools and grinders regulate the dynamic growth,truncation,and amalgamation of potholes.Therefore,the principal objectives of the study are(i)to examine the relationship between the growth of potholes and substrate lithological with structural characteristics(applying geospatial and Schmidt hammer for rock strength analysis)and(ii)to measure the morphology,and size of tools and grinders,processes of truncation and amalgamation in hydro-geomorphic environment using various indices and field techniques.The result showed that large potholes are stretched in the direction of lineament axes and roughly parallel to the river flow direction.Here,the steady growth of pothole depth-diameter is controlled by active bedrock structures,tools,or grinders,and monsoonal high-velocity bank full discharge.Consequently,the deepening and widening of potholes are relatively slow at Bindu,Deuli,and marine beach Neil Island due to fewer structures and little supply of tools or grinders.In small stretches,(Damodar,Subarnarekha,and Rarhu)canyons and gorge-like features(bedrock incision)are formed at Rajrappa,Bhakuyadi,and Guridih sites due to cyclic truncation and amalgamation.Truncation and amalgamation processes restrict the vertical depth threshold value of potholes within 3m,particularly at Rajrappa,Bhakuyadi,and Guridih sites.Scientific study of the pothole's dynamic growth is greatly necessary for the different environmental engineering and river hydraulic projects like excavation,dredging,and dam or barrage construction.Successively,it is essential to compute the cost of rock excavation or dredging,primarily for the mechanical strength of the bedrock river channel and its stability.展开更多
2The joint opening degree is a critical index for assessing the stability of jointed rock masses,which directly impacts the rock mass quality.It is also a key factor influencing the design of tunnel support structures...2The joint opening degree is a critical index for assessing the stability of jointed rock masses,which directly impacts the rock mass quality.It is also a key factor influencing the design of tunnel support structures.Hammer and rotary drilling rigs,commonly employed as rock-breaking equipment in tunneling,inevitably encounter joints with varying opening degrees during construction.This research aims to enhance the sampling frequency of hammer and rotary drilling rigs and optimize the joint detection algorithm,thereby equipping these rigs with the capability to detect joint opening degrees.This paper develops high-frequency acquisition equipment for drilling parameters to realize millimeter-level data acquisition.Drilling experiments on jointed rock mass are conducted under conditions corresponding to joint opening degrees of 1 mm,3 mm,and 5 mm.The relationships among joint opening degree,drilling parameters,and width of rock failure region are investigated.A joint opening degree detection algorithm is proposed based on the drilling parameters and moving average filter.The results indicate that the curves of penetration velocity and rotary pressure along the drilling direction exhibit a three-segment distribution,i.e."stable segment-adjustment segment-stable segment".The variation curves of drilling parameters display a“velocity mountain”and a“pressure valley”in the failure region.The relative errors in joint opening degree estimation based on penetration velocity and rotary pressure range from 3.4%to 32%and from 6%to 35%,with average relative errors of 12.95%and 16.24%,respectively.展开更多
Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pre...Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pressure signal. The field-sampled water hammer signal is often disturbed by noise interference. Noise interference exists in various pumping stages during water hammer diagnostics, with significantly different frequency range and energy distribution. Clarifying the differences in frequency range and energy distribution between effective water hammer signals and noise is the basis of setting specific filtering parameters, including filtering frequency range and energy thresholds. Filtering specifically could separate the effective signal and noise, which is the key to ensuring the accuracy of water hammer diagnosis. As an emerging technique, there is a lack of research on the frequency range and energy distribution of effective signals in water hammer diagnostics. In this paper, the frequency range and energy distribution characteristics of field-sampled water hammer signals were clarified quantitatively and qualitatively for the first time by a newly proposed comprehensive water hammer segmentation-energy analysis method. The water hammer signals were preprocessed and divided into three segments, including pre-shut-in, water hammer oscillation, and leak-off segment. Then, the three segments were analyzed by energy analysis and correlation analysis. The results indicated that, one aspect, the frequency range of water hammer oscillation spans from 0 to 0.65 Hz, considered as effective water hammer signal. The pre-shut-in and leak-off segment ranges from 0 to 0.35 Hz and 0-0.2 Hz respectively. Meanwhile, odd harmonics were manifested in water hammer oscillation segment, with the harmonic frequencies ranging approximately from 0.07 to 0.75 Hz. Whereas integer harmonics were observed in pre-shut-in segment, ranging from 6 to 40 Hz. The other aspect, the energy distribution of water hammer signals was analyzed in different frequency ranges. In 0-1 Hz, an exponential decay was observed in all three segments. In 1-100 Hz, a periodical energy distribution was observed in pre-shut-in segment, an exponential decay was observed in water hammer oscillation, and an even energy distribution was observed in leak-off segment. In 100-500 Hz, an even energy distribution was observed in those three segments, yet the highest magnitude was noted in leak-off segment. In this study, the effective frequency range and energy distribution characteristics of the field-sampled water hammer signals in different segments were sufficiently elucidated quantitatively and qualitatively for the first time, laying the groundwork for optimizing the filtering parameters of the field filtering models and advancing the accuracy of identifying downhole event locations.展开更多
In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated fl...In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.展开更多
文摘In total hip arthroplasty, judgment of the appropriateness of stem hammering is dependent on the experience and feelings of the surgeon and no objective evaluation method has been established. In this study, a frequency analysis of the hammering sounds in total hip arthroplasty was performed to investigate objective judgment criteria capable of preventing problems during surgery. Stem hammering was applied following the surgeon’s feelings as usual in an operating room. A directional microphone was placed at a distance about 2 m from the surgical field and the peak frequency reaching the maximum amplitude was determined by Fourier analysis. It was clarified that the same peak frequency repeats when appropriate fixation is acquired during surgery, suggesting that intraoperative fracture and postoperative loosening can be prevented by stopping hammering at the time the peak frequency converged. Investigation of changes in the hammering sound frequency may serve as objective judgment criteria capable of preventing problems during surgery.
文摘When a stem is inserted into the femur during total hip arthroplasty, sufficient fixation depends on the surgeon’s experience. An objective method of evaluating whether the stem has been correctly fixed may aid clinicians in their decision. We examined the relationship between the sound frequency caused by hammering the stem and the internal stress in artificial femurs, and evaluated the utility of sound frequency analysis to prevent intraoperative fracture. Surgeons inserted one of two types of cementless stems (SL-PLUS and modified CLS) using routine operational procedures into 13 artificial femurs. These are the standard Zweymüllers used in Europe. The difference is the lateral shape;SL-PLUS has holes for removal and the modified CLS has fins to prevent rotation. We estimated stress in the femur via finite element analysis, measured the hammering force, and recorded the sound of hammering for frequency analysis. Finite element analysis revealed that the hammering sound frequency decreased as the maximum stress increased. A decrease in frequency suggested that fixation was sufficient and that continued hammering would increase the risk of fracture. Thus, evaluation of the change in sound frequency during stem insertion may indicate when the hammering force should be reduced, thereby preventing intraoperative periprosthetic fractures. Further frequency change may also predict fractures prior to visual confirmation. We concluded that sound frequency analysis has potential as an objective evaluation method to help prevent intraoperative periprosthetic fractures during stem insertion.
文摘Failure during total hip arthroplasty may lead to bedridden of the elderly. Since the acetabulum cup fix in an anatomically deep region, failures, such as loosening and fracture, occur three times more frequently compared with failures of the stem fix in the femur. We investigated the possibility of evaluating whether fixation was acquired by frequency analysis of the hammering sound of implanting a cup into the acetabulum. The subjects were 11 patients (11 joints) who underwent total hip arthroplasty, biomechanical test materials, and orthopedic models. Surgeries and experiments were performed by orthopedists specialized in the hip. A system was constructed with a tablet PC and directional microphone, the peak frequency at which the amplitude reached the maximum was determined, and judgment processing (stable, unstable) of cup fixability was performed in real time. The stable maximum peak frequency observed in the clinical trials was 4.42 ± 4.02 kHz. The mean stable maximum peak frequency in the biomechanical tests was 4.46 ± 1.19 kHz in biomechanical test materials and 4.56 ± 2.02 kHz in orthopaedicmodels. When hammering was continued, the frequency leading to fracture decreased in both biomechanical test materials and orthopaedicmodels. In conclusion, in clinical trials and biomechanical studies, variation of the maximum peak frequency decreased when fixation was acquired and the frequency stabilized. It was suggested that this method can serve as a fixability evaluation method of acetabular cups because analysis can be performed in real time during surgery, for which prevention of intraoperative fracture can be expected.
文摘<strong>Background: </strong>The 1st peak frequency of the hammering sound in total hip arthroplasty may serve as an evaluation index to prevent intraoperative fracture. Fixation of the stem and femur cannot be acquired unless the 1st peak frequency of hammering the stem into the femur stabilizes, and fixation can be judged as acquired when the 1st peak frequency becomes constant. To investigate whether the environmental sound in the operating room can be differentiated from the hammering sound of total hip arthroplasty, the 1st peak frequency of the hammering sound when impacting the stem into the femur with a hammer was identified. <strong>Method:</strong> The hammering sound of impacting the stem into a biomechanical test material through an impactor was analyzed using a fast Fourier transform analyzer. Environmental sound in the operating room was simulated and the 1st peak frequency of the sound on collision between the operator’s voice and the surgical instrument was measured. The 1st peak frequency of hammering sound was compared between patients indicated for total hip arthroplasty and healthy individuals to investigate whether there is a difference due to bone quality. <strong>Results:</strong> The natural frequency of the impactor was 3.41 ± 0.05 kHz, and the 1st peak frequency of the femur, stem, and impactor was 2.43 ± 1.45 kHz. The 1st peak frequency of hammering sound on simulated femur in patients indicated for total hip arthroplasty was 2.98 ± 0.73 kHz and that in healthy individuals was 2.15 ± 0.32 kHz. This suggested that the hammering sound in total hip arthroplasty-indicated patients overlaps with the frequency of the collision sound of surgical instruments.<strong> Conclusion: </strong>To develop a system to prevent intraoperative fracture, countermeasures, such as noise canceling, are necessary to prevent false detection of hammering sounds.
文摘Background: The aim of this study is to identify the factors influence on the broaching hammering sound character during cementless total hip arthroplasty. Methods: We analyzed frequency spectrum of the hammering sound for 49 cases of uncomplicated cementless THAs using two types of proximal-coated stem performed by experienced surgeons. Normalized sound pressure (NSP) of each 0.5 kHz frequency band in final stage of broach procedure was determined by the fast Fourier transform analysis. The relationships between those sound characteristics and femoral morphology such as canal calcar ratio (CCR), Canal flare index (CFI), morphological cortical index (MCI) and femoral shaft length (FSL) in different cementless stem were investigated. Results: In Accolade 2, CCR was positively related to NSP in several bands [Frequency band (kHz);r: 2.0 - 2.5;0.37, 4.5 - 5.0;0.37, 9.5 - 10.0;0.44], and negatively related to 7.5 - 8.0 kHz (r = -0.39). Negative correlations were observed among CFI and MCI in specific frequency bands (4.5 - 5.0, 5.0 - 5.5, and 7.5 - 8.0 kHz). In Taperloc Microplasty, strong correlations were found between FSL and the NSP of 7.5. - 8.0 kHz (r = 0.78) and CCR and the 7.5 - 8.0 kHz bands. There was significant difference of NSPs between high and low group divided by morphological parameters. Acoustic characteristics of NSPs between Accolade 2 and Microplasty were significantly different in 9 frequency bands. Conclusions: The hammering sound correlated with four parameters of the femoral morphology and differed in different types of proximal-coated stem. Those novel five factors are important to consider when to predict complications using acoustic analysis.
文摘In total hip arthroplasty, intraoperative femoral fractures can be avoided by analyzing the hammering sounds from the stem inserted into the femur. This procedure is based on a hammering test that makes use of the fact that sound depends on the stability of the object. This technique is generally used in engineering. A system designed to avoid excessive stem hammering by predicting the intraoperative fracture risk based on this technique and software for real-time spectra analysis has been developed with repetitive improvements. The remaining technical challenge lies in selecting an appropriate sound collection device and building a compact and easy unit for use. This study reviewed the types of directional microphones suitable for the sound collection system to develop a practical THA support system. Four types of microphones based on selected methods were used to collect and compare the peak frequencies of the hammering sounds and make comparisons between them, and the built system was used to conduct clinical trials. For miniaturization and operational ease of the unit, plug-in unidirectional microphones are appropriate. However, no laboratory-level data has been collected, and thus, further data accumulation is necessary.
文摘In the words of the late Sir Colin Blakemore,neurologists have historically sought to infer brain functions in a manner akin to to king a hammer to a computeranalyzing localized anatomical lesions caused by trauma,tumors,or strokes,noting deficits,and inferring what functions certain brain regions may be responsible for.This approach exemplifies a deletion heuristic,where the absence of a specific function reveals insights about the underlying structures or mechanisms responsible for it.By observing what is lost when a particular brain region is damaged,throughout the history of the field,neurologists have pieced together the intricate relationship between anatomy and function.
基金Supported by the National Natural Science Foundation of China(Grant No.52078283)Shandong Provincial Natural Science Foundation(Project No.ZR2024MA094)。
文摘With the change of the main influencing factors such as structural configuration and impact conditions,reinforced concrete slabs exhibit different mechanical behaviors with different failure patterns,and the failure modes are transformed.In order to reveal the failure mode and transformation rule of reinforced concrete slabs under impact loads,a dynamic impact response test was carried out using a drop hammer test device.The dynamic data pertaining to the impact force,support reaction force,structural displacement,and reinforcement strain were obtained through the use of digital image correlation technology(DIC),impact force measurement,and strain measurement.The analysis of the ultimate damage state of the reinforced concrete slab identified four distinct types of impact failure modes:local failure by stamping,overall failure by stamping,local-overall coupling failure,and local failure by punching.Additionally,the influence laws of hammerhead shape,hammer height,and reinforcement ratio on the dynamic response and failure mode transformation of the slab were revealed.The results indicate that:(1)The local damage to the slab by the plane hammer is readily apparent,while the overall damage by the spherical hammer is more pronounced.(2)In comparison to the high reinforcement ratio slabs,the overall bending resistance of the low reinforcement ratio slabs is significantly inferior,and the slab back exhibits further cracks.(3)As the hammer height increases,the slab failure mode undergoes a transformation,shifting from local failure by stamping and overall failure by stamping to local-overall coupling failure and local failure by punching.(4)Three failure mode thresholds have been established,and by comparing the peak impact force with the failure thresholds,the failure mode of the slab can be effectively determined.
基金the financial support given by EPSRC to the Grant LOFAMO(No.EP/X023281/1)the Basque Government for the financial support given from Elkartek Program to the Project FRONTIERS 2022—Superficies Multifuncionales en la Frontera del Conocimiento(No.KK2022/00109)。
文摘Machine Hammer Peening(MHP)is an emergent treatment that induces high compressive Residual Stresses(RS)which can enhance the in-service performance of components.This paper studies the use of small diameter MHP tools to improve the Surface Integrity(SI)of the nickel-based alloy Inconel 718 used in critical aero-engine components.Complementarily,the relaxation of RS is analyzed by in-situ annealing tests at in-service temperature combined with X-ray diffraction measurement.For this purpose,age hardened Inconel 718 discs were turned as reference condition,and then a pneumatic MHP tool was used under different conditions:two tool diameters(4 mm and 12 mm),feed rates(2.5 m/min and 5.0 m/min)and stepover distances(0.07 mm and 0.35 mm).Subsequently,surface topography characterization,RS measurements,nanoindentation tests,and microstructural observations were conducted.The in-situ annealing tests were done in the X-ray diffractometer at 550°C for exposure periods from 0 to 20 h.The results demonstrate that 4 mm diameter tools generate smooth surfaces and induce significant compressive RS within a0.5 mm thick layer.Residual stresses are relaxed,but they remain compressive even after a long thermal exposure.The microstructure of the surface layer(<10–15μm)was affected by the preceding turning operation,but importantly,MHP did not induce additional damage.
基金supported by the National Natural Science Foundation of China(Grant Nos.52108361 and 41977252)the Sichuan Science and Technology Program of China(Grant Nos.2024ZYD0154 and 2024NSFSC0159)the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection Independent Research Project(Grant Nos.SKLGP2022Z015 and SKLGP2020Z001).
文摘Fault container and shaking table tests are crucial for studying co-seismic dislocation in cross-fault tunnels,with the design and functionality of the container significantly affecting the accuracy of dynamic response analyses of tunnel linings.This research introduces a fault container developed as part of a significant active fault-crossing tunnel project in the high-intensity seismic zone of western China.The container is designed to simulate both strike-slip and dip-slip fault characteristics with adjustable fault angles.Extensive testing,including shaking table tests under strong seismic conditions,three-dimensional(3D)finite element numerical simulations,and hammer tests,were conducted to evaluate the modal characteristics of the container under various conditions.The study highlights the resonance characteristics of the soil-container system,the signal consistency across different dislocations,and the dynamic response patterns both with and without pulse-like seismic motions and varying intensities.The results indicate that the natural frequencies of the container and the model soil,determined through white noise scanning,are 23.74 Hz and 6.355 Hz,respectively,suggesting no resonance in the model soil-container structure.The dynamic response characteristics of the empty container show good integrity and versatility under various seismic excitations.The consistency of the free-field time history curve confirms that the newly developed fault container effectively simulates the continuity and boundary conditions of the free-field.Time domain analysis conducted before and after fault dislocation demonstrates the capability of the container to accurately replicate the coupling effects of fault and seismic motions.
文摘OVER 2,000 years ago,the bronze craftsmen in today’s Datong City,Shanxi Province,had already mastered the superb skills of copper production.Datong bronze-making craft was included in China’s state-level intangible cultural heritage list in 2014.The craftsmanship which has been passed down through the millennia still shines brightly today after countless hammer blows and engravings.
基金supported by the Natural Science Foundation of Jilin Province(YDZJ202101ZYTS143).
文摘Pneumatic down-the-hole hammer, serving as rock-breaking tool, possesses appeal for directional drilling due to its high rate of penetration. However, corresponding experimental studies on existing hammers for directional drilling have rarely been reported, and a model for evaluating their output performance is absent. This study proposes a novel structure of self-rotating pneumatic hammer(NSH)with a built-in rotational mechanism, which converts partial impact energy of the piston to rotate the drill bit and, consequently, enables dual functions of impact and rotate drill bit. The energy is converted via a screw key-groove mechanism, and the wedge-shaped teeth mechanism ensures that the drill bit rotates clockwise during the piston moves downward. The computational fluid dynamics method is applied to simulate the dynamic response of airflow and piston during the operation of Φ127NSH.Meanwhile, a test bench is established to record data concerning chamber pressure and piston displacement, as well as recording its operational status and rock fragmentation during drilling into granite. The results showed that the maximum error between simulated and experimental data is 8.2%.The Φ127NSH successfully achieves dual impact and rotary drilling functions, and granite smoothly feeds and forms a continuous shear rock zone. In addition, the effects of torque load, engagement distance in rotation sleeves, and well deviation angle towards the performance of NSH were studied in detail. The designed Φ127NSH operates at an impact velocity of 3.98 m/s, impact frequency of 12.55 Hz, and rotational speed of 29.51 r/min under a mass-flow rate of 0.18 kg/s, torque load of 400 N·m, engagement distance of 40 mm, and well deviation angle of 0°. The torque load adversely affects the NSH output performance. Increasing the engagement distance improves impact performance while reducing rotational performance. The performance variation of the NSH is minimal when drilling directional wells with varying deviation angles.
基金supported by the National Natural Science Foundation of China(Nos.52175145 and 51775427)the Key Research and Development Projects of Shaanxi Province(Grant No.2023-YBGY-335).
文摘The differences in damage values,residual stresses,microstructure and mechanical properties of Ti–6Al–4V alloy under hammer forging and press forging were explored through physical experiments and numerical simulations.The results showed that the temperature field and equivalent strain field of forgings under the hammer forging process were more uniformly distributed,resulting in smaller surface cracks and better residual stress distribution.The impact dynamic loading of hammer forging leads to forgings with higher dislocation densities,while the stabilized strain rate of press forging results in forgings exhibiting finer grain sizes.In this context,the yield strength enhancement of forgings by both processes was nearly identical,while the forgings demonstrated more excellent elongation under the hammer forging process.Additionally,increasing the number of blows in the hammer forging process or enhancing the loading rate in the press forging process can optimize the residual stress distribution of the forgings while simultaneously promoting dislocation multiplication and grain refinement.
文摘A total of 393 potholes(368 fluvial and 25 marine potholes)were studied at seven different sites in both the fluvial and marine environments.Diverse bedrock properties and large-scale delivery of tools and grinders regulate the dynamic growth,truncation,and amalgamation of potholes.Therefore,the principal objectives of the study are(i)to examine the relationship between the growth of potholes and substrate lithological with structural characteristics(applying geospatial and Schmidt hammer for rock strength analysis)and(ii)to measure the morphology,and size of tools and grinders,processes of truncation and amalgamation in hydro-geomorphic environment using various indices and field techniques.The result showed that large potholes are stretched in the direction of lineament axes and roughly parallel to the river flow direction.Here,the steady growth of pothole depth-diameter is controlled by active bedrock structures,tools,or grinders,and monsoonal high-velocity bank full discharge.Consequently,the deepening and widening of potholes are relatively slow at Bindu,Deuli,and marine beach Neil Island due to fewer structures and little supply of tools or grinders.In small stretches,(Damodar,Subarnarekha,and Rarhu)canyons and gorge-like features(bedrock incision)are formed at Rajrappa,Bhakuyadi,and Guridih sites due to cyclic truncation and amalgamation.Truncation and amalgamation processes restrict the vertical depth threshold value of potholes within 3m,particularly at Rajrappa,Bhakuyadi,and Guridih sites.Scientific study of the pothole's dynamic growth is greatly necessary for the different environmental engineering and river hydraulic projects like excavation,dredging,and dam or barrage construction.Successively,it is essential to compute the cost of rock excavation or dredging,primarily for the mechanical strength of the bedrock river channel and its stability.
基金the National Natural Science Foundation of China(No.52378411)for the support in this research.
文摘2The joint opening degree is a critical index for assessing the stability of jointed rock masses,which directly impacts the rock mass quality.It is also a key factor influencing the design of tunnel support structures.Hammer and rotary drilling rigs,commonly employed as rock-breaking equipment in tunneling,inevitably encounter joints with varying opening degrees during construction.This research aims to enhance the sampling frequency of hammer and rotary drilling rigs and optimize the joint detection algorithm,thereby equipping these rigs with the capability to detect joint opening degrees.This paper develops high-frequency acquisition equipment for drilling parameters to realize millimeter-level data acquisition.Drilling experiments on jointed rock mass are conducted under conditions corresponding to joint opening degrees of 1 mm,3 mm,and 5 mm.The relationships among joint opening degree,drilling parameters,and width of rock failure region are investigated.A joint opening degree detection algorithm is proposed based on the drilling parameters and moving average filter.The results indicate that the curves of penetration velocity and rotary pressure along the drilling direction exhibit a three-segment distribution,i.e."stable segment-adjustment segment-stable segment".The variation curves of drilling parameters display a“velocity mountain”and a“pressure valley”in the failure region.The relative errors in joint opening degree estimation based on penetration velocity and rotary pressure range from 3.4%to 32%and from 6%to 35%,with average relative errors of 12.95%and 16.24%,respectively.
基金support from the National Natural Science Foundation of China(No.52374019).
文摘Water hammer diagnostics is an important fracturing diagnosis technique to evaluate fracture locations and other downhole events in fracturing. The evaluation results are obtained by analyzing shut-in water hammer pressure signal. The field-sampled water hammer signal is often disturbed by noise interference. Noise interference exists in various pumping stages during water hammer diagnostics, with significantly different frequency range and energy distribution. Clarifying the differences in frequency range and energy distribution between effective water hammer signals and noise is the basis of setting specific filtering parameters, including filtering frequency range and energy thresholds. Filtering specifically could separate the effective signal and noise, which is the key to ensuring the accuracy of water hammer diagnosis. As an emerging technique, there is a lack of research on the frequency range and energy distribution of effective signals in water hammer diagnostics. In this paper, the frequency range and energy distribution characteristics of field-sampled water hammer signals were clarified quantitatively and qualitatively for the first time by a newly proposed comprehensive water hammer segmentation-energy analysis method. The water hammer signals were preprocessed and divided into three segments, including pre-shut-in, water hammer oscillation, and leak-off segment. Then, the three segments were analyzed by energy analysis and correlation analysis. The results indicated that, one aspect, the frequency range of water hammer oscillation spans from 0 to 0.65 Hz, considered as effective water hammer signal. The pre-shut-in and leak-off segment ranges from 0 to 0.35 Hz and 0-0.2 Hz respectively. Meanwhile, odd harmonics were manifested in water hammer oscillation segment, with the harmonic frequencies ranging approximately from 0.07 to 0.75 Hz. Whereas integer harmonics were observed in pre-shut-in segment, ranging from 6 to 40 Hz. The other aspect, the energy distribution of water hammer signals was analyzed in different frequency ranges. In 0-1 Hz, an exponential decay was observed in all three segments. In 1-100 Hz, a periodical energy distribution was observed in pre-shut-in segment, an exponential decay was observed in water hammer oscillation, and an even energy distribution was observed in leak-off segment. In 100-500 Hz, an even energy distribution was observed in those three segments, yet the highest magnitude was noted in leak-off segment. In this study, the effective frequency range and energy distribution characteristics of the field-sampled water hammer signals in different segments were sufficiently elucidated quantitatively and qualitatively for the first time, laying the groundwork for optimizing the filtering parameters of the field filtering models and advancing the accuracy of identifying downhole event locations.
基金Project(2022-Major-14)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘In order to accommodate higher speeds,heavier axle weights,and vibration damping criteria,a new floating slab structure was proposed.The new type of floating slab track structure was composed of three prefabricated floating slabs longitudinally interconnected with magnesium ammonium phosphate concrete(MPC).This study investigated the dynamic performance of the structure.We constructd a full-scale indoor experimental model to scrutinize the disparities in the impact performance between a longitudinally connected floating slab track and its longitudinally disconnected counterpart.Additionally,a long-term fatigue experiment was conducted to assess the impact performance of longitudinally connected floating slab tracks under fatigue loading.The findings are described in the following.1)The new structure effectively suppresses ground vibrations,exhibiting a well-balanced energy distribution profile.However,the imposition of fatigue loading leads to a reduction in the damping performance of the steel spring damping system,thereby reducing its capacity to attenuate structural vibrations and leading to an increase in ground vibration energy;2)After 107 loading cycles,the attenuation rate of the vibration acceleration for the MPC increases by 171.9%.Conversely,at the corresponding disconnected location,the attenuation rate of ground vibration acceleration decreases by 65.6%.In conclusion,longitudinally connected floating slab tracks exhibit superior vibration reduction performance.While the vibration reduction performance of longitudinally connected floating slab tracks may diminish to some extent during long-term service,these tracks continue to meet specific vibration reduction requirements.