期刊文献+
共找到3,013篇文章
< 1 2 151 >
每页显示 20 50 100
Construction of supramolecular metal-halogen bonded organic frameworks for efficient solar energy conversion
1
作者 Hongqiang Dong Jiahao Zhao +7 位作者 Ya Lu Zhennan Tian Shumeng Wang Xuguan Bai Guanfei Gong Jike Wang Lu Wang Shigui Chen 《Journal of Energy Chemistry》 2025年第9期527-535,I0014,共10页
Efficient conversion and synergistic solar energy utilization are critical for advancing low-carbon and sustainable development.In this study,two Pt(Ⅱ)-based metal/halogen-bonded organic frameworks(MXOFBen and MXOF-A... Efficient conversion and synergistic solar energy utilization are critical for advancing low-carbon and sustainable development.In this study,two Pt(Ⅱ)-based metal/halogen-bonded organic frameworks(MXOFBen and MXOF-Anth)were designed to enhance photoconversion efficiency and enable multifunctional integration.The ligand L-terpyr is formed by coupling tripyridine with diphenylamine dipyridine,in which the tripyridine effectively acts as a metal-ligand to lower the band gap and promote nonradiative leaps,thereby enhancing the photoconversion ability.Meanwhile,diphenylamine dipyridine serves as a[N…I^(+)…N]halogen-bonding acceptor,imparting superhydrophilicity to the materials and increasing carrier density,further improving photocatalytic performance.Experimental results demonstrate that these two MXOFs achieve impressive interfacial water evaporation efficiencies of up to87.8%and 94.0%,respectively.Additionally,the materials exhibit excellent performance in photothermal power generation and photocatalysis of H_(2)O_(2).Notably,the MXOFs also deliver strong overall performance in integrated systems combining interfacial water evaporation with photothermal power generation or photocatalysis,underscoring their exceptional photoconversion efficiency and multifunctional potential.This work introduces a novel strategy by incorporating metal-ligand and halogen bonds,offering a pathway to enhance photoconversion efficiency and develop versatile materials for advanced solar energy applications,thereby fostering the progress of high-efficiency solar energy conversion and multifunctional organic materials. 展开更多
关键词 Solar energy conversion Light-conversion material [N…I^(+)…N]halogen bond Metal-halogen bonded organic framework
在线阅读 下载PDF
Electrode/Electrolyte Optimization‑Induced Double‑Layered Architecture for High‑Performance Aqueous Zinc‑(Dual)Halogen Batteries
2
作者 Chengwang Zhou Zhezheng Ding +7 位作者 Shengzhe Ying Hao Jiang Yan Wang Timing Fang You Zhang Bing Sun Xiao Tang Xiaomin Liu 《Nano-Micro Letters》 SCIE EI CAS 2025年第3期121-137,共17页
Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growt... Aqueous zinc-halogen batteries are promising candidates for large-scale energy storage due to their abundant resources,intrinsic safety,and high theoretical capacity.Nevertheless,the uncontrollable zinc dendrite growth and spontaneous shuttle effect of active species have prohibited their practical implementation.Herein,a double-layered protective film based on zinc-ethylenediamine tetramethylene phosphonic acid(ZEA)artificial film and ZnF2-rich solid electrolyte interphase(SEI)layer has been successfully fabricated on the zinc metal anode via electrode/electrolyte synergistic optimization.The ZEA-based artificial film shows strong affinity for the ZnF2-rich SEI layer,therefore effectively suppressing the SEI breakage and facilitating the construction of double-layered protective film on the zinc metal anode.Such double-layered architecture not only modulates Zn2+flux and suppresses the zinc dendrite growth,but also blocks the direct contact between the metal anode and electrolyte,thus mitigating the corrosion from the active species.When employing optimized metal anodes and electrolytes,the as-developed zinc-(dual)halogen batteries present high areal capacity and satisfactory cycling stability.This work provides a new avenue for developing aqueous zinc-(dual)halogen batteries. 展开更多
关键词 Zn metal anodes Double-layered protective film Electrode/electrolyte optimization Aqueous zinc-(dual)halogen batteries
在线阅读 下载PDF
Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects
3
作者 HUANG Rui LIU Shengjie +1 位作者 WU Qingyuan ZHENG Nanfeng 《无机化学学报》 北大核心 2025年第1期201-212,共12页
The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts c... The highly selective catalytic hydrogenation of halogenated nitroaromatics was achieved by employing Pd‑based catalysts that were co‑modified with organic and inorganic ligands.It was demonstrated that the catalysts contained Pd species in mixed valence states,with high valence Pd at the metal‑support interface and zero valence Pd at the metal surface.While the strong coordination of triphenylphosphine(PPh3)to Pd0 on the Pd surface prevents the adsorption of halogenated nitroaromatics and thus dehalogenation,the coordination of sodium metavanadate(NaVO3)to high‑valence Pd sites at the interface helps to activate H2 in a heterolytic pathway for the selective hydrogenation of nitro‑groups.The excellent catalytic performance of the interfacial active sites enables the selective hydrogenation of a wide range of halogenated nitroaromatics. 展开更多
关键词 halogenated nitroaromatic heterogeneous catalysis HYDROGENATION selectivity control interfacial effect
在线阅读 下载PDF
High-performance piezocatalytic hydrogen evolution over bismuth oxyhalides with halogen-dependent piezoelectricity and surface activity
4
作者 Hao-Ran Li Yu-Ming Chen +5 位作者 Cheng-Chao Jin Ai-Ze Hao Shania Rehmand Bing-Bing Chen Fei Wang Dai-Ming Liu 《Rare Metals》 2025年第8期5475-5485,共11页
The piezocatalytic characteristic of bismuth oxyhalides(BiOX,X=Cl,Br,and I) has been increasingly capturing interest for its potential in hydrogen evolution reaction(HER) through water splitting process.The performanc... The piezocatalytic characteristic of bismuth oxyhalides(BiOX,X=Cl,Br,and I) has been increasingly capturing interest for its potential in hydrogen evolution reaction(HER) through water splitting process.The performance regarding these piezocatalysts is closely related to the halogen element present in BiOX;yet,the specific influence mechanisms remain unclear.In this study,we prepared BiOX catalysts via a hydrothermal process and explored their piezocatalytic HER activities.Owing to the layered bismuth s tructure,the resulting sheet-like piezocatalysts can efficiently capture the mechanic stimulus and allow the robust piezoelectric field,contributing to the piezocatalytic operation.It demonstrates that the BiOBr achieves a remarkable piezocatalytic HER efficiency of 813 μmol g^(-1)h^(-1),outperforming BiOCl and BiOI.The density functional theory(DFT)calculation results reveal that the BiOBr with moderate halogen atom size and lattice layer spacing possesses the strongest piezoelectricity,which enhances the separation and transfer of electron-hole pairs.Meanwhile,the exposed Br atom layer facilitates a large Bader charge and a low surface Gibbs free energy(ΔG_(H)),enhancing charge transfer for hydrogen reduction at the solid-liquid surface,thereby increasing the HER efficiency.This research sheds light on the halogen-dependent piezocatalytic activity of BiOX catalysts,offering valuable insights for the development of high-performance piezocatalysts. 展开更多
关键词 Bismuth oxyhalide halogen Piezocatalysis HER Hydrogen energy
原文传递
Electronegativity-induced modulation of polysulfide adsorption in halogen-doped Ni_(2)P to accelerate conversion kinetics for lithium-sulfur batteries
5
作者 Lin Peng Yu Bai +2 位作者 Hang Li Zhenhua Wang Kening Sun 《Journal of Energy Chemistry》 2025年第9期190-198,I0007,共10页
Heteroatom doping has emerged as a powerful strategy to optimize the catalytic and adsorption abilities of electrocatalysts by regulating the electronic structure,thereby enabling the development of efficient electroc... Heteroatom doping has emerged as a powerful strategy to optimize the catalytic and adsorption abilities of electrocatalysts by regulating the electronic structure,thereby enabling the development of efficient electrocatalysts for lithium-sulfur(Li-S)batteries.However,the correlation between the properties of doped atoms and adsorptio n-catalytic ability,as well as the interconnection between adsorption strength and catalytic activity,remains underexplored.Herein,we employed halogen atoms(F,Cl,and Br)with different electronegativities to dope nickel phosphide(Ni_(2)P),aiming to modulate the adsorption properties toward lithium polysulfides(LiPSs).We systematically explored the relationship between the electronegativity of the doping atoms and the adsorption strength,followed by exploring the connection between adsorption and catalytic capabilities.Combined experimental and theoretical analyses reveal that doping halogen atoms effectively strengthens d-p orbital hybridization between Ni atoms and S atoms,thereby enhancing LiPSs anchoring and conversion.Specifically,the chemical adsorption capability is enhanced as the electronegativity of the doped atoms increases.Moreover,the catalytic activity presents a volcano-like trend with the enhancement of adsorption performance,wherein the activity initially increases and subsequently diminishes.Therefore,Cl-doped Ni_(2)P with moderate chemisorption ability exhibits optimal redox kinetics in bidirectional sulfur conversion.Consequently,the Li-S batteries with Cl-Ni_(2)P-separators deliver a high-rate capacity of 790 mAh g^(-1)at 5 C and achieve a remarkable areal capacity of 7.36 mAh cm^(-2)under practical conditions(sulfur loading:7.10 mg cm^(-2);electrolyte/sulfur(E/S)ratio:5μL mg^(-1)).This work uncovers the significance of achieving a balance between adsorption and catalytic capabilities,offering insights into designing efficient electrocatalysts for lithium-sulfur batteries. 展开更多
关键词 Doping halogen atoms Nickel phosphide ELECTRONEGATIVITY ADSORPTION Catalytic ability Lithium-sulfur batteries
在线阅读 下载PDF
Exposure and reduction of lipophilic halogenated contaminants in rice
6
作者 Wei Li Shimin Wu Lingzhi Cheong 《Grain & Oil Science and Technology》 2025年第3期213-220,共8页
Rice,a primary food staple for over half of the global population,is susceptible to environmental pollution.The presence of lipophilic halogenated contaminants,including halogenated polycyclic aromatic hydrocarbons(XP... Rice,a primary food staple for over half of the global population,is susceptible to environmental pollution.The presence of lipophilic halogenated contaminants,including halogenated polycyclic aromatic hydrocarbons(XPAHs),polychlorinated biphenyls(PCBs),organochlorine pesticides(OCPs),brominated flame retardants(BFRs),and polyfluoroalkyl substances(PFAS),has become a growing concern due to their potential health risks and environmental impact.This review focused on the research of lipophilic halogenated contaminants in rice.We summarized the physicochemical properties,toxicity profiles,and contamination levels in rice.Moreover,the strategies for reducing lipophilic halogenated contaminant levels in rice were summarized and proposed,such as phytoremediation and improved processing methods.These findings can provide a reference for the understanding and control of lipophilic halogenated contaminants during rice growing and processing,and therefore reduce the associated risks. 展开更多
关键词 RICE halogenated contaminants EXPOSURE Reduction strategy
在线阅读 下载PDF
Halogen‐Engineered Thiophene Additives Enable High‐Performance Layer‐by‐Layer Organic Solar Cells With 20.12% Efficiency
7
作者 Chentong Liao Wenwen Jin +4 位作者 Weilin Zhou Min Deng Xiaopeng Xu Liming Dai Qiang Peng 《Carbon Energy》 2025年第11期23-33,共11页
Organic solar cells(OSCs)have emerged as promising candidates for next‐generation photovoltaics,yet traditional bulk heterojunction(BHJ)devices face inherent limitations in morphology control and phase separation.La... Organic solar cells(OSCs)have emerged as promising candidates for next‐generation photovoltaics,yet traditional bulk heterojunction(BHJ)devices face inherent limitations in morphology control and phase separation.Layer‐by‐layer(LbL)processing with a p–i–n configuration offers an innovative solution by enabling precise control over donor–acceptor distribution and interfacial characteristics.Here,we systematically investigate nine halogen‐functionalized additives across three categories—methyl halides,thiophene halides,and benzene halides—for optimizing LbL device performance.These additives,distinguished by their diverse thermal properties and solid–liquid transformation capabilities below 100°C,are functionalized as both nucleation centers and morphology‐modulating plasticizers during thermal treatment.Among them,2‐bromo‐5‐iodothiophene(BIT)demonstrates superior performance through synergistic effects of its bromine–iodine combination and thiophene core in mediating donor–acceptor interactions.LbL devices processed with BIT achieve exceptional metrics in the PM6/L8‐BO system,including a open‐circuit voltage of 0.916 V,a short‐circuit current density of 27.12 mA cm−2,and an fill factor of 80.97%,resulting in an impressive power conversion efficiency of 20.12%.This study establishes a molecular design strategy for halogen‐functionalized additives that simultaneously optimizes both donor and acceptor layers while maintaining processing simplicity for potential industrial applications. 展开更多
关键词 halogen engineering LbL processing morphology optimization organic solar cells volatile additives
在线阅读 下载PDF
Trace analysis of 59 halogenated aromatic disinfection byproducts through the SPE-LC-MS/MS method and their occurrence and transformation during chlorine disinfection
8
作者 Shuang Chen Yue Qiao +5 位作者 Youwei Jiang Wei Qiu Shuang Zang Jing Zhang Xianshi Wang Jun Ma 《Journal of Environmental Sciences》 2025年第11期821-832,共12页
Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extr... Halogenated aromatic disinfection byproducts(DBPs)are gradually receiving attention due to their high detection frequency and usually higher toxicity than regulated DBPs.In this study,we established a solid phase extraction(SPE)-LC-MS/MS method to simultaneously trace analyze 59 halogenated aromatic DBPs.The limits of detection and limits of quantification of halogenated aromatic DBPs ranged from 0.03 to 135.23 ng/L and from 0.1 to 450.76 ng/L,respectively.The range of recoveries and relative standard deviation(RSD)in river water were between 72.41%to 119.54%and 1.86%to 16.03%,respectively.Therefore,this method can be used to accurately analyze trace levels of halogenated aromatic DBPs in drinking water.The occurrence and transformation of halogenated aromatic DBPs were explored based on this method.In the chlorinated simulated source water and chlorinated river water,20 and 45 halogenated aromatic DBPs were determined,respectively.The active halogen species(HOCl,HOBr,and HOI)first reacted with natural organic matter(NOM)to form halogenated aromatic DBPs.Then,chlorine further reacted with the halogenated aromatic DBPs to convert them into small-molecule halogenated aliphatic DBPs through oxidation,electrophilic substitution,and hydrolysis reaction,etc.In the chlorinated simulated source water,chlorinated river water,and tap water,the toxicity contribution of bromoacetic acids(Br-HAAs)accounted for themajority(>71.16%).Given that halogenated aromatic DBPs are intermediate products of halogenated aliphatic DBPs,controlling the formation of halogenated aromatic DBPs is beneficial in decreasing the formation of halogenated aliphatic DBPs,thereby diminishing the toxicity of drinking water. 展开更多
关键词 halogenated aromatic disinfection byproducts Trace analysis CHLORINE Drinking water Calculated toxicity
原文传递
FTIR Spectroscopic Study of Thioanisole and its Two Halogenated Derivatives
9
作者 Jiaqi Xin Jianzhi Xu +5 位作者 Ya-Ke Li Jianbao Zhao Brant EBillinghurst Hong Gao Ziqiu Chen Gao-Lei Hou 《Chinese Journal of Chemical Physics》 2025年第5期587-596,I0005-I0028,I0147,I0148,共36页
The rovibrational spectra of thioanisole(TA)and its halogenated derivatives,3-fluorothioanisole(3FTA)and 3-chlorothioanisole(3ClTA),were measured using synchrotron-based Fourier transform infrared spectroscopy(FTIR)at... The rovibrational spectra of thioanisole(TA)and its halogenated derivatives,3-fluorothioanisole(3FTA)and 3-chlorothioanisole(3ClTA),were measured using synchrotron-based Fourier transform infrared spectroscopy(FTIR)at the Canadian Light Source.Combined with density functional theory calculations,the stable structures and vibrational modes of TA,3FTA,and 3ClTA in their vibrational states were analyzed.The theoretical vibrational mode frequencies were corrected by simulating the rotational structure of a vibrational band.The contributions of the cis-and trans-isomers of 3FTA and 3ClTA to the FTIR spectra at 298 K were estimated using the Boltzmann distribution,revealing their coexistence in the experimental spectra.The results indicate that both fluorine and chlorine substitution significantly affect the vibrational modes,particularly in the benzene ring.Compared to TA,the FTIR spectra of 3FTA and 3ClTA show changes in the frequencies and intensities of some vibrational modes,with halogen substitution causing specific modes to shift to higher wavenumbers.A comparison of the FTIR spectra of TA,3FTA,and 3ClTA highlights the influence of halogen substitution on vibrational properties,emphasizing how the type and position of the substituent affect frequency shifts and spectral intensities.These findings provide deeper insights into how halogenation alters vibrational spectra,which is crucial for further spectral analysis and molecular structure determination. 展开更多
关键词 Fourier transform infrared spectroscopy THIOANISOLE halogenated derivatives
在线阅读 下载PDF
Light-driven activation of carbon-halogen bonds by readily available amines for photocatalytic hydrodehalogenation 被引量:3
10
作者 Di Meng Qian Zhu +5 位作者 Yan Wei Shengli Zhen Ran Duana Chuncheng Chen Wenjing Song Jincai Zhao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第10期1474-1479,共6页
A straightforward protocol using readily available aromatic amines,N,N,N',N'-tetramethyl-p-phenylenediamine or N,N,N',N'-tetramethylbenzidine,as photocatalysts was developed for theefficient hydrodehal... A straightforward protocol using readily available aromatic amines,N,N,N',N'-tetramethyl-p-phenylenediamine or N,N,N',N'-tetramethylbenzidine,as photocatalysts was developed for theefficient hydrodehalogenation of organic halides,such as 4'-bromoacetophenone,polyfluoroarenes,cholorobenzene,and 2,2',4,4'-tetrabromodiphenyl ether(a resistant and persistent organic pollu-tant).The strongly reducing singlet excited states of the amines enabled diffusion-controlled disso-ciative electron transfer to effectively cleave carbon-halogen bonds,followed by radical hydrogena-tion.Diisopropylethylamine served as the terminal electron/proton donor and regenerated theamine sensitizers. 展开更多
关键词 Carbon-halogen bond activation Photocatalysis halogenated organic pollutants Reductive dehalogenation Environmental remediation
在线阅读 下载PDF
Inverse Halogen Bonds Interactions Involving Br Atom in the Electronic Deficiency Systems of CH3+… Br-Y (Y--H, CCH, CN, NC)
11
作者 刘艳芝 袁煜 +4 位作者 吕玲玲 朱元成 唐慧安 左国防 李志锋 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第3期284-294,I0003,共12页
Inverse halogen bonds interactions involving Br in the electronic deficiency systems of CH3+...Br-Y (Y=H, CCH, CN, NC) have been investigated by B3LYP/6- 311++G(d, p) and MP2/6-311++G(d, p) methods. The cal... Inverse halogen bonds interactions involving Br in the electronic deficiency systems of CH3+...Br-Y (Y=H, CCH, CN, NC) have been investigated by B3LYP/6- 311++G(d, p) and MP2/6-311++G(d, p) methods. The calculated interaction energies with basis set super-position error correction of the four IXBs complexes are 218.87, 219.48, 159.18, and 143.05kJ/mol (MP2/6-311++G(d, p)), respectively. The relative stabilities of the four complexes increased in the order: CH3+ … BrCN〈CH3+…- BrNC〈CH3+… BrH≈CH3+ …BrCCH. Natural bond orbital theory analysis and the chemical shifts calculation of the related atoms revealed that the charges flow from Br-Y to CH3e. Here, the Br of Br-Y acts as both a halogen bond donor and an electron donor. Therefore, compared with conventional halogen bonds, the IXBs complexes formed between Br-Y and CH3+. Atoms-in-molecules theory has been used to investigate the topological properties of the critical points of the four IXBs structures which have more covalent content. 展开更多
关键词 CH3+ Electronic deficiency system Inverse halogen bond Electron density topological property
在线阅读 下载PDF
Determination of gaseous semi- and low-volatile organic halogen compounds by barrier-discharge atomic emission spectrometry
12
作者 Yifei Sun Nobuhisa Watanabe +1 位作者 Wei Wang Tianle Zhu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第1期213-219,共7页
A group parameter approach using "total organic halogen" is effective for monitoring gaseous organic halogen compounds, including fluorine, chlorine, and bromine compounds, generated from combustion. We described th... A group parameter approach using "total organic halogen" is effective for monitoring gaseous organic halogen compounds, including fluorine, chlorine, and bromine compounds, generated from combustion. We described the use of barrier-discharge radiofrequency- helium-plasma/atomic emission spectrometry, for the detection of semi- and low-volatile organic halogen compounds (SLVOXs), which can be collected by CarbotrapTM adsorbents and analyzed using thermal desorpfion. The optimal carder gas flow rates at the injection and desorption lines were established to be 100 mL/min. The detection range for SLVOXs in the gaseous samples was from 10 ng to tens of micrograms. Measuring F was more difficult than measuring C1 or Br, because the wavelength of F is close to that of air. The barrier- discharge radiofrequency-helium-plasma/atomic emission spectrometry measured from 85% to 103% of the SLVOXs in the gas sample. It has been found that Carbotrap B is appropriate for high-boiling-point compounds, and Carbotrap C is suitable for the determination of organic halogen compounds with lower boiling points, in the range 200-230℃. Under optimal analysis conditions, a chlorine- containing plastic was destroyed using different oxygen concentrations. Lower oxygen concentrations resulted in the production of lower amounts of organic halogen compounds. 展开更多
关键词 organic halogen semi- and low-volatile organic halogen radiofrequency helium plasma desorption
原文传递
Quantitative structure-activity study on the reductive dehalogenation potency of the halogenated aromatics
13
作者 Huang Qingguo Wang Liansheng Han Shuokui(Department of Environmental Science and Technology, Nanjing University , Nanjing 210008 , China) 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 1995年第2期183-189,共7页
Quantitativestructure-activitystudyonthereductivedehalogenationpotencyofthehalogenatedaromaticsHuangQingguo;... Quantitativestructure-activitystudyonthereductivedehalogenationpotencyofthehalogenatedaromaticsHuangQingguo;WangLiansheng;Han... 展开更多
关键词 quantitative structure - activity relationship(QSAR) halogenated arornatics dehalogenation poten-cy discriminant function.
在线阅读 下载PDF
Simultaneous Degradation, Dehalogenation, and Detoxification of Halogenated Antibiotics by Carbon Dioxide Radical Anions
14
作者 Yanzhou Ding Xia Yu +8 位作者 Shuguang Lyu Huajun Zhen Wentao Zhao Cheng Peng Jiaxi Wang Yiwen Zhu Chengfei Zhu Lei Zhou Qian Sui 《Engineering》 SCIE EI CAS CSCD 2024年第6期78-86,共9页
Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number ... Despite the extensive application of advanced oxidation processes(AOPs)in water treatment,the efficiency of AOPs in eliminating various emerging contaminants such as halogenated antibiotics is constrained by a number of factors.Halogen moieties exhibit strong resistance to oxidative radicals,affecting the dehalogenation and detoxification efficiencies.To address these limitations of AOPs,advanced reduction processes(ARPs)have been proposed.Herein,a novel nucleophilic reductant—namely,the carbon dioxide radical anion(CO_(2)^(·-))—is introduced for the simultaneous degradation,dehalogenation,and detoxification of florfenicol(FF),a typical halogenated antibiotic.The results demonstrate that FF is completely eliminated by CO_(2)^(·-),with approximately 100%of Cland 46%of Freleased after 120 min of treatment.Simultaneous detoxification is observed,which exhibits a linear response to the release of free inorganic halogen ions(R^(2)=0.97,p<0.01).The formation of halogen-free products is the primary reason for the superior detoxification performance of this method,in comparison with conventional hydroxyl-radical-based AOPs.Products identification and density functional theory(DFT)calculations reveal the underlying dehalogenation mechanism,in which the chlorine moiety of FF is more susceptible than other moieties to nucleophilic attack by CO_(2)^(·-).Moreover,CO_(2)^(·-)-based ARPs exhibit superior dehalogenation efficiencies(>75%)in degrading a series of halogenated antibiotics,including chloramphenicol(CAP),thiamphenicol(THA),diclofenac(DLF),triclosan(TCS),and ciprofloxacin(CIP).The system shows high tolerance to the pH of the solution and the presence of natural water constituents,and demonstrates an excellent degradation performance in actual groundwater,indicating the strong application potential of CO_(2)^(·-)-based ARPs in real life.Overall,this study elucidates the feasibility of CO_(2)^(·-)for the simultaneous degradation,dehalogenation,and detoxification of halogenated antibiotics and provides a promising method for their regulation during water or wastewater treatment. 展开更多
关键词 Carbon dioxide radical anions Advanced reduction processes halogenated antibiotics DEhalogenATION DETOXIFICATION
在线阅读 下载PDF
Risk Points of Flame Retardant Textiles by Halogen and Halogen-Free Laminating Film
15
作者 Yoon Jeong Baek Jeoung Hwa Shin 《Materials Sciences and Applications》 2014年第11期830-836,共7页
This study was to develop the flame retardant (FR) protective clothing which had multifunction such anti-bacterial, UV cut, FR function with water repellent and water vapor permeable laminating textiles for industrial... This study was to develop the flame retardant (FR) protective clothing which had multifunction such anti-bacterial, UV cut, FR function with water repellent and water vapor permeable laminating textiles for industrial workers. First of all, the FR yarn and FR textiles were developed for this purpose. Second, the comparison analysis between the halogen laminating textiles and halogen-free laminating textiles were tested to figure out the eco-friendly laminating method. Third, the flame retardant ability was compared the halogen laminated textiles to halogen-free laminated textiles. LOI, UV protection ratio, antibiosis after 50 laundry test, water proof pressure, and moisture permeability of developed textiles were tested. GC-HR-TOF-MS was used for analysis of laminating film (halogen and halogen-free). 4.1 wt% TiO2 yarn showed antibacterial function (Pneumococcus & Staphylococcus aureus: 99.9%), UV Protection (UVA: 90.8, UVB: 92.1), and LOI (33.6). The chosen optimal compounding ratio for PU compound of HRF and HFFR were as followed: PU resin 58.3%, DMF (Dimethyl formamide, δ = 12.2) 8.3%, MEK (Methylethylketone) 8.3% and FR (flame retardants) 25.0%. Binder for laminating should not be included over 10% of FRs because of adhesion between textiles and FR laminating film. There were detected phosphorus compounds in the textiles treated by halogenated type flame retardants and halogenated-free type flame retardants. There were not any detected harmful compounds from all textile samples. 展开更多
关键词 FLAME Retardant YARN FLAME Retardant TEXTILES GC-HR-TOF-MS halogen LAMINATING TEXTILES halogen-FREE LAMINATING TEXTILES
在线阅读 下载PDF
QSAR Study of Halogen Phenols Toxicity to Tetrahymena Pyriformis 被引量:16
16
作者 彭艳芬 刘天宝 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2009年第2期218-222,共5页
Structural parameters of 22 halogen phenols were computed at four levels using Hartree-Fock and DFT methods. Based on the experimental data of the acute toxicity to Tetrahymena pyriformis (-lgEC_50), three-parameter... Structural parameters of 22 halogen phenols were computed at four levels using Hartree-Fock and DFT methods. Based on the experimental data of the acute toxicity to Tetrahymena pyriformis (-lgEC_50), three-parameter (energy of the lowest unoccupied molecular orbital (E_LUMO), the molecular volume (V), and the lowest negative charge (Q_min)) dependent equations were developed using structural parameters as theoretical descriptors. Especially, -lgEC_50dependent equation calculated at the B3LYP/6-31G^** level is more advantageous than the others in view of their correlation and predictive abilities. This dependent equation was validated by variance inflation factors (VIF) and t-test methods. Upon comparison, the predictive abilities of our work are all more advantageous than those calculated from the semi-empirical PM3 method. 展开更多
关键词 halogen phenol QSAR tetrahymena pyriformis Hartree-fock DFT
在线阅读 下载PDF
Halogen Bonding or Hydrogen Bonding between 2,2,6,6-Tetramethyl- piperidine-noxyl Radical and Trihalomethanes CHX3 (X=CI, Br, I)
17
作者 赵晓冉 庞雪 +1 位作者 阎晓青 晋卫军 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2013年第2期172-180,I0003,共10页
The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentia... The halogen and hydrogen bonding complexes and trihalomethanes (CHX3, X=C1, Br, I) are between 2,2,6,6-tetramethylpiperidine-noxyl simulated by computational quantum chem- istry. The molecular electrostatic potentials, geometrical parameters and interaction energy of halogen and hydrogen bonding complexes combined with natural bond orbital analysis are obtained. The results indicate that both halogen and hydrogen bonding interactions obey the order CI〈Br〈I, and hydrogen bonding is stronger than the corresponding halogen bond- ing. So, hydrogen bonding complexes should be dominant in trihalomethanes. However, it is possible that halogen bonding complex is competitive, even preponderant, in triiodomethane due to the similar interaction energy. This work might provide useful information on specific solvent effects as well as for understanding the mechanism of nitroxide radicals as a bioprobe to interact with the halogenated compounds in biological and biochemical fields. 展开更多
关键词 halogen bonding Hydrogen bonding Theoretical study Nitroxide radical Natural bond orbital
在线阅读 下载PDF
Determination of the Toxicities of 16 Halogenated Benzenes to Photobacterium Phosphoreum and 2D- and 3D-QSAR Studies 被引量:5
18
作者 CAO Si-Tong WANG Xiu +2 位作者 LIU Hong-Xia YANG Guo-Ying WANG Zun-Yao 《Chinese Journal of Structural Chemistry》 SCIE CAS CSCD 2010年第7期1007-1014,共8页
In this paper we take photobacterium phosphoreum (T3) as the experimental bacteria, and determine the half-inhibitory concentration (-1gEC50) against the photobacterium phosphoreum of 16 halogenated benzenes. Usin... In this paper we take photobacterium phosphoreum (T3) as the experimental bacteria, and determine the half-inhibitory concentration (-1gEC50) against the photobacterium phosphoreum of 16 halogenated benzenes. Using B3LYP method of DFT in the Gaussian 03 program, we obtain the structural and thermodynamic descriptors of 16 halogenated benzenes by fully-optimized calculation at the 6-311G** level. Taking the structural and thermodynamic descriptors as theoretical descriptors, the 2D QSAR model (R2 = 0.983) was established, which can be utilized to predict -lgEC50 of halogenated benzene according to the corrected linear solvation energy theory based on the experimental data of-lgECs0. In addition, the relationship between the toxicity and 3D spatial structure of the compound is studied by comparing the molecular similarity index analysis (CoMSIA) of 3D-QSAR method. By cross validation, the correlation coefficient q2 of CoMSIA model is 0.687, and the conventional correlation coefficient R2 = 0.958. The model is stable and reliable with great predictive ability. The 3D-QSAR model shows that the toxicity of halogenated benzene compound is mainly affected by the characteristics of hydrophobie field of the substituted halogens. 展开更多
关键词 halogenated benzene toxicity (-lgEC50) DFT QSAR
在线阅读 下载PDF
Investigation on halogen-doped n-type SnTe thermoelectrics 被引量:7
19
作者 Chang-Rong Guo Bing-Chao Qin +1 位作者 Dong-Yang Wang Li-Dong Zhao 《Rare Metals》 SCIE EI CAS CSCD 2022年第11期3803-3814,共12页
Recent theoretical predictions and experimental findings on the transport properties of n-type SnTe have triggered extensive researches on this simple binary compound,despite the realization of n-type SnTe being a gre... Recent theoretical predictions and experimental findings on the transport properties of n-type SnTe have triggered extensive researches on this simple binary compound,despite the realization of n-type SnTe being a great challenge.Herein,Cl as a donor dopant can effectively regulate the position of Fermi level in Sn_(0.6)Pb_(0.4)Te matrix and successfully achieve the n-type transport behavior in SnTe.An outstanding power factor of~14.7μW·cm^(-1)·K^(-2) at 300 K was obtained for Cl-doped Sn_(0.6)Pb_(0.4)Te sample.By combining the experimental analysis with theoretical calculations,the transport properties of n-type SnTe thermoelectrics doped with different halogen dopants(Cl,Br,and I)were then systematically investigated and estimated.The results demonstrated that Br and I had better doping efficiencies compared with Cl,which contributed to the well-optimized carrier concentrations of~1.03×10^(19)and~1.11×10^(19)cm^(-3)at 300 K,respectively.The improved n-type carrier concentrations effectively lead to the significant enhancement on the thermoelectric performance of n-type SnTe.Our study further promoted the experimental progress and deep interpretation of the transport features in n-type SnTe thermoelectrics.The present results could also be crucial for the development of n-type counterparts for SnTe-based thermoelectric devices. 展开更多
关键词 Thermoelectric performance n-type SnTe halogen doping Doping efficiency
原文传递
Disinfection byproducts and halogen-specific total organic halogen speciation in chlorinated source waters——The impact of iopamidol and bromide 被引量:3
20
作者 Nana Osei B.Ackerson Hannah K.Liberatore +3 位作者 Michael J.Plewa Susan D.Richardson Thomas A.Ternes Stephen E.Duirk 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2020年第3期90-101,共12页
This study investigated the speciation of halogen-specific total organic halogen and disinfection byproducts(DBPs) upon chlorination of natural organic matter(NOM) in the presence of iopamidol and bromide(Br^-).Experi... This study investigated the speciation of halogen-specific total organic halogen and disinfection byproducts(DBPs) upon chlorination of natural organic matter(NOM) in the presence of iopamidol and bromide(Br^-).Experiments were conducted with low bromide source waters with different NOM characteristics from Northeast Ohio,USA and varied spiked levels of bromide(2-30 μmol/L) and iopamidol(1-5 μmol/L).Iopamidol was found to be a direct precursor to trihalomethane(THM) and haloacetic acid formation,and in the presence of Br^-favored brominated analogs.The concentration and speciation of DBPs formed were impacted by iopamidol and bromide concentrations,as well as the presence of NOM.As iopamidol increased the concentration of iodinated DBPs(iodo-DBPs) and THMs increased.However,as Br^-concentrations increased,the concentrations of nonbrominated iodo-and chloro-DBPs decreased while brominated-DBPs increased.Regardless of the concentration of either iopamidol or bromide,bromochloroiodomethane(CHBrClI) was the most predominant iodo-DBP formed except at the lowest bromide concentration studied.At relevant concentrations of iopamidol(1 μmol/L) and bromide(2 μmol/L),significant quantities of highly toxic iodinated and brominated DBPs were formed.However,the rapid oxidation and incorporation of bromide appear to inhibit iodoDBP formation under conditions relevant to drinking water treatment. 展开更多
关键词 IOPAMIDOL TOTAL ORGANIC halogen(TOX) Disinfection byproducts(DBPs) Chlorine Natural ORGANIC matter(NOM) pH
原文传递
上一页 1 2 151 下一页 到第
使用帮助 返回顶部