Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks...Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.展开更多
Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relat...Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements.展开更多
All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercializat...All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.展开更多
Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic str...Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic structure. In this work, Sb^(3+)/Te^(4+)ions doped Zn-based halide single crystals(SCs) with two STEs emissions have been synthesized and the possibility of its anti-counterfeiting application was explored.Further, the relationship between the strength of electron-phonon coupling and photoluminescence quantum yields(PLQYs) for STEs in a series of metal halides has been studied. And the semi-empirical range of the Huang-Rhys factors(S) for metal halides with excellent photoluminescence(PL) property has been summarized. This work provides ideas for further research into the relationship between luminescence performance and electron-phonon coupling of metal halides, and also provides a reference for designing the metal halides with high PLQYs.展开更多
Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated wi...Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.展开更多
Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of...Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of polyfluoroarenes with alkyl halides under mild conditions is reported.Polyfluoroarenes(3~6 F)can reacted smoothly with a diverse range of alkyl halides,such as primary,secondary,and tertiary alkyl iodides.The efficient formation of C(sp2)—C(sp3)can be achieved through the combination of Ni catalysis and(Bpin)2/K2CO3 as terminal reductant.展开更多
Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is...Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is attributed to the instability of Sn^(2+),which easily oxidizes to Sn^(4+),creating Sn vacancies and increasing the open-circuit voltage loss.In this work,we implemented tin thiocyanate(Sn(SCN)_(2))as an additive for passivating the bulk defects of a germanium-doped tin halide perovskite film.Adding Sn^(2+)and SCN-ions reduces the Sn and iodine vacancies,limiting non-radiative recombination and favoring longer charge-carrier dynamics.Moreover,the addition of Sn(SCN)_(2) induces a higher film crystallinity and preferential orientation of the(l00)planes parallel to the substrate.The passivated devices showed improved photovoltaic parameters with the best open-circuit voltage of 0.716 V and the best efficiency of 12.22%,compared to 0.647 V and 10.2%for the reference device.In addition,the passivated solar cell retains 88.7%of its initial efficiency after 80 min of illumination under 100 mW cm^(-2) and is substantially better than the control device,which reaches 82.6%of its initial power conversion efficiency only after 30 min.This work demonstrates the passivation potential of tin-based additives,which combined with different counterions give a relatively large space of choices for passivation of Sn-based perovskites.展开更多
The demand for neodymium(NdFeB) permanent magnets for electric vehicles and eco-friendly generators is increasing.However,NdFeB magnets contain rare earth elements(REEs),which are limited in supply.In this study,we pe...The demand for neodymium(NdFeB) permanent magnets for electric vehicles and eco-friendly generators is increasing.However,NdFeB magnets contain rare earth elements(REEs),which are limited in supply.In this study,we performed an exchange reaction between magnesium halides(fluoride and chloride) and waste NdFeB scrap and then compared the characteristics of the extracted halides salts.The compositions of the ternary Mg fluoride(LiF:NaF:MgF_(2)=50:40:10 in mole ratio) and chloride(LiCl:NaCl:MgCl_(2)=10:50:40 in mole ratio) salts were thermodynamically determined for achieving low eutectic temperatures.The reactions between the NdFeB scrap powder(1-2 mm) and Mg halide salts were carried out at 1073 and 873 K for the fluoride and chloride systems,respectively,in an argon atmosphere.After the reaction,we separated Nd halide from the residual salt and evaluated the Ndextraction rate.The phase formation of the salt was analyzed using X-ray diffraction(XRD),and the extraction rate of Nd was analyzed using inductively coupled plasma optical emission spectroscopy(ICPOES).Nd was extracted in the form of Nd halide(NdF_(3) or NdCl_(3)),and the extraction rates in the fluoride and chloride systems are 98.64% and 84.59%,respectively.Thus,the fluoride system is more effective than the chloride system for Nd extraction.Our study provides a comprehensive comparative analysis of the effectiveness of fluo ride and chlo ride systems in extracting REEs from NdFeB magnet scrap.Our study findings can be used to develop an effective method for recycling magnet scraps.展开更多
Two-dimensional(2D)chiral halide perovskites(CHPs)have attracted broad interest due to their distinct spin-dependent properties and promising applications in chiroptics and spintronics.Here,we report a new type of 2D ...Two-dimensional(2D)chiral halide perovskites(CHPs)have attracted broad interest due to their distinct spin-dependent properties and promising applications in chiroptics and spintronics.Here,we report a new type of 2D CHP single crystals,namely R/S-3BrMBA_(2)PbBr_(4).The chirality of the as-prepared samples is confirmed by exploiting circular dichroism spectroscopy,indicating a successful chirality transfer from chiral organic cations to their inorganic perovskite sublattices.Furthermore,we observed bright photoluminescence spanning from 380 to 750 nm in R/S-3BrMBA_(2)PbBr_(4)crystals at room temperature.Such broad photoluminescence originates from free excitons and self-trapped excitons.In addition,efficient second-harmonic generation(SHG)performance was observed in chiral perovskite single crystals with high circular polarization ratios and non-linear optical circular dichroism.This demonstrates that R/S-3BrMBA_(2)PbBr_(4)crystals can be used to detect and generate left-and righthanded circularly polarized light.Our study provides a new platform to develop high-performance chiroptical and spintronic devices.展开更多
Recent advancements in lead halide perovskites opened up an avenue for vast optoelectronic applications.However,lead toxicity and the complicated synthesis process posed major obstacles to their further practical appl...Recent advancements in lead halide perovskites opened up an avenue for vast optoelectronic applications.However,lead toxicity and the complicated synthesis process posed major obstacles to their further practical applications.To address these issues,a facile and robust mechanochemical synthesis of cesium manganese halide(Cs_(3)MnX_(5),X=halide element)was developed via a highly efficient solvent-free ball milling strategy.展开更多
In past decades,ABX_(3) halide perovskites have attracted great interest in solar cells due to excellent opto-electronic properties,such as high carrier mobility.However,instability and toxicity are obstacles on the c...In past decades,ABX_(3) halide perovskites have attracted great interest in solar cells due to excellent opto-electronic properties,such as high carrier mobility.However,instability and toxicity are obstacles on the commercial route for perovskites.Many studies have turned to exploring A_(2) BX_(6) and A_(3) B_(2) X_(9) for better stability.Unfortunately,the carrier mobilities of these two types are inferior to ABX_(3),lower by an order of magnitude.Furthermore,the mobility of ABX_(3) is distributed over a large range of 1.78-4500 cm^(2) V^(−1) s^(−1) in experiments,which contributes to another diversity of mobilities.In this paper,we aim at reveal-ing the physical origin of the above-mentioned diversities by theoretical studies on CsBX_(3),Cs_(2) BX_(6),and Cs_(3) B_(2) X_(9)(B=Sn,Pb,Sb,Bi,X=Br,Cl).The difference in group velocities is the major reason responsible for the variation in these types.The unique three-dimensional connected conductive network of CsBX_(3) determines its large group velocity.As for carrier scattering,ionized impurity scattering dominates at low carrier and high ionized impurity concentrations.Detailed analysis reveals that band degeneracy is strongly related to the impurity scattering rate,while dielectric constant is almost immune.Our study provides a better understanding of the relationship between electronic structures and mobilities for po-tential applications in photovoltaics.展开更多
A dual-halide solid electrolyte,Li_(3)YCl_(3)Br_(3),was synthesized using a wet-chemistry route instead of the conventional mechanical ball-milling route.Li_(3)YCl_(3)Br_(3) exhibits an ion conductivity of 2.08 mS/cm ...A dual-halide solid electrolyte,Li_(3)YCl_(3)Br_(3),was synthesized using a wet-chemistry route instead of the conventional mechanical ball-milling route.Li_(3)YCl_(3)Br_(3) exhibits an ion conductivity of 2.08 mS/cm and an electro-chemical stability window of 3.8 V.Additionally,an all-solid-state lithium-ion battery using Li_(3)YCl_(3)Br_(3) and LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(NCM811)as the cathode material achieves a capacity retention of 93%after 200 cycles at 0.3C and maintains a specific capacity of 115 mA·h/g during 2C cycling.This exceptional performance is attributed to the high oxidative stability of Li_(3)YCl_(3)Br_(3) and the in-situ formation of Y_(2)O_(3) inert protective layer on the NCM811 surface under high voltage.Consequently,the study demonstrates the feasibility of a simple,cost-effective wet-chemistry route for synthesizing multi-component halides,highlighting its potential for large-scale production of halide solid electrolytes for practical applications.展开更多
The relentless pursuit of advanced X-ray detection technologies has been significantly bolstered by the emergence of metal halides perovskites(MHPs)and their derivatives,which possess remarkable light yield and X-ray ...The relentless pursuit of advanced X-ray detection technologies has been significantly bolstered by the emergence of metal halides perovskites(MHPs)and their derivatives,which possess remarkable light yield and X-ray sensitivity.This comprehensive review delves into cutting-edge approaches for optimizing MHP scintillators performances by enhancing intrinsic physical properties and employing engineering radioluminescent(RL)light strategies,underscoring their potential for developing materials with superior high-resolution X-ray detection and imaging capabilities.We initially explore into recent research focused on strategies to effectively engineer the intrinsic physical properties of MHP scintillators,including light yield and response times.Additionally,we explore innovative engineering strategies involving stacked structures,waveguide effects,chiral circularly polarized luminescence,increased transparency,and the fabrication of flexile MHP scintillators,all of which effectively manage the RL light to achieve high-resolution and high-contrast X-ray imaging.Finally,we provide a roadmap for advancing next-generation MHP scintillators,highlighting their transformative potential in high-performance X-ray detection systems.展开更多
Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.None...Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.Nonetheless,stability issues are a key barrier to their practical application.In past reports,the analysis of halide electrolyte stability and its enhancement methods lacked relevance,which limited the design and optimization of halide solid electrolytes.This review focus on stability issues from a chemical,electrochemical,and interfacial point of view,with particular emphasis on the interaction of halide SSEs with anode and cathode interfaces.By focusing on innovative strategies to address the stability issue,this paper aims to further deepen the understanding and development of halide all-solid-state batteries by proposing to focus research efforts on improving their stability in order to address their inherent challenges and match higher voltage cathodes,paving the way for their wider application in the next generation of energy storage technologies.展开更多
All-solid-state batteries(ASSBs)have garnered significant interest as the next-generation in battery technology,praised for their superior safety and high energy density.However,a conductive agent accelerates the unde...All-solid-state batteries(ASSBs)have garnered significant interest as the next-generation in battery technology,praised for their superior safety and high energy density.However,a conductive agent accelerates the undesirable side reactions of sulfide-based solid electrolytes(SEs),resulting in poor electrochemical properties with increased interfacial resistance.Here,we propose a wet chemical method rationally designed to achieve a conformal coating of lithium-indium chloride(Li_(3)InCl_(6))onto vapor-grown carbon fibers(VGCFs)as conductive agents.First,with the advantage of the Li_(3)InCl_(6) protective layer,use of VGCF@Li_(3)InCl_(6) leads to enhanced interfacial stability and improved electrochemical properties,including stable cycle performance.These results indicate that the Li_(3)InCl_(6) protective layer suppresses the unwanted reaction between Li_(6)PS_(5)Cl(LPSCl)and VGCF.Second,VGCF@Li_(3)InCl_(6) effectively promotes polytetrafluoroethylene(PTFE)fibrillization,leading to a homogeneous electrode microstructure.The uniform distribution of the cathode active material(CAM)in the electrode results in reduced charge-transfer resistance(R_(ct))and enhanced Li-ion kinetics.As a result,a full cell with the LiNi_(x)Mn_(y)Co_(z)O_(2)(NCM)/VGCF@Li_(3)InCl_(6) electrode shows an areal capacity of 7.7mAhcm^(−2) at 0.05 C and long-term cycle stability of 77.9%over 400 cycles at 0.2 C.This study offers a strategy for utilizing stable carbon-based conductive agents in sulfide-based ASSBs to enhance their electrochemical performance.展开更多
Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are co...Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are confronted with intricate interfacial challenges in high-voltage regines(>4.5 V),resulting in inadequate cathode utilization and premature cell degradation.Moreover,contrary to previous studies,coupled with LiNi_(0.85)Co_(0.1)Mn_(0.05)O_(2)cathodes,typical halide(Li_(2)ZrCl_(6))-based cells at 4.5 V feature unlimited interfacial degradation and poor long cycle stability,while typical sulfide(Li_(6)PS_(5)Cl)-based cells feature self-limited interfacial degradation and poor initial cycle stability.Herein,this work addresses the high-voltage limitations of Li_(2)ZrCl_(6)and Li_(6)PS_(5)Cl catholyte-based cells by manipulating electrode mass fraction and tailoring interfacial composition,thereby effectively improving interfacial charge-transfer kinetics and(electro)chemical stability within cathodes.After appropriate interface design,both optimized cells at 4.5 V demonstrate remarkably increased initial discharge capacities(>195 mA h g^(-1)at0.1 C),improved cycle stabilities(>80%after 600 cycles at 0.5 C),and enhanced rate performances(>115 mA h g^(-1)at 1.0 C).This work deepens our understanding of high-voltage applications for halide/sulfide electrolytes and provides generalized interfacial design strategies for advancing high-voltage ASSLBs.展开更多
Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical dur...Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical durability and humidity stability,hindering their large-scale applications.Here,we introduce a dry-processing fibrillation strategy using hydrophobic polytetrafluoroethylene(PTFE)binder to encapsulate Li_(3)InCl_(6)(LIC)particles(the most representative HSSE).By manipulating the fibrillating process,only 0.5 wt%PTFE is sufficient to prepare free-standing LIC-PTFE(LIC-P)HSSEs.Additionally,LIC-P demonstrates excellent mechanical durability and humidity resistance.They can maintain their shapes after being exposed to humid atmosphere for 30 min,meanwhile still exhibit high ionic conductivity of>0.2m S/cm at 25℃.Consequently,the LIC-P-based ASSLBs deliver a high specific capacity of 126.6 m Ah/g at0.1 C and long cyclability of 200 cycles at 0.2 C.More importantly,the ASSLBs using moisture-exposed LIC-P can still operate properly by exhibiting a high capacity-retention of 87.7%after 100 cycles under0.2 C.Furthermore,for the first time,we unravel the LIC interfacial morphology evolution upon cycling because the good mechanical durability enables a facile separation of LIC-P from ASSLBs after testing.展开更多
Polar semiconductors,particularly the emerging polar two-dimensional(2D)halide perovskites,have motivated immense interest in diverse photoelectronic devices due to their distinguishing polarizationgenerated photoelec...Polar semiconductors,particularly the emerging polar two-dimensional(2D)halide perovskites,have motivated immense interest in diverse photoelectronic devices due to their distinguishing polarizationgenerated photoelectric effects.However,the constraints on the organic cation's choice are still subject to limitations of polar 2D halide perovskites due to the size of the inorganic pocket between adjacent corner-sharing octahedra.Herein,a mixed spacer cation ordering strategy is employed to assemble a polar 2D halide perovskite NMAMAPb Br_(4)(NMPB,NMA is N-methylbenzene ammonium,MA is methylammonium)with alternating cation in the interlayer space.Driven by the incorporation of a second MA cation,the perovskite layer transformed from a 2D Pb_(7)Br_(24)anionic network with corner-and face-sharing octahedra to a flat 2D PbBr_(4)perovskite networks only with corner-sharing octahedra.In the crystal structure of NMPB,the asymmetric hydrogen-bonding interactions between ordered mixed-spacer cations and 2D perovskite layers give rise to a second harmonic generation response and a large polarization of 1.3μC/cm^(2).More intriguingly,the ordered 2D perovskite networks endow NMPB with excellent self-powered polarization-sensitive detection performance,showing a considerable polarization-related dichroism ratio up to 1.87.The reconstruction of an inorganic framework within a crystal through mixed cation ordering offers a new synthetic tool for templating perovskite lattices with controlled properties,overcoming limitations of conventional cation choice.展开更多
Lead-free halide double perovskites have recently attracted significant attention due to their exceptional stability and favorable band gaps,making them promising candidates for solar cell applications.However,the rel...Lead-free halide double perovskites have recently attracted significant attention due to their exceptional stability and favorable band gaps,making them promising candidates for solar cell applications.However,the relationship between their structural characteristics and intrinsic band gap remains under-explored.This study presents a method to investigate the structure-band gap correlation in a typical halide double perovskite,MA_(2)Pt_(6)(MA^(+)=CH_(3)NH_(3)^(+)),using high pressure techniques.The band gap of MA_(2)PtI_(6)is effectively reduced at two different rates of 0.063 eV/GPa and 0.079 eV/GPa before and after 1.2 GPa,and progressively closes as pressure further increases.These optical changes are closely related to the pressure induced structural evolution of MA_(2)PtI_(6).Moreover,a phase transition from trigonal(R-3m)to monoclinic(P2/m)occurs at 1.2 GPa and completes by 2.0 GPa,driven by pressure-induced distortion of the[PtI_(6)]^(2-)octahedra,which is responsible for the variation of the band gap.These promising findings pave the way for potential applications in the structural and band gap tuning of halide double perovskites.展开更多
Solar energy-powered photocatalytic processes represent a promising avenue for sustainable energy and chemical production.Among these,lead-free halide perovskites(LFHPs)have garnered attention as a next-generation cla...Solar energy-powered photocatalytic processes represent a promising avenue for sustainable energy and chemical production.Among these,lead-free halide perovskites(LFHPs)have garnered attention as a next-generation class of photocatalysts for CO_(2) reduction,offering the advantages of high light absorption and low toxicity.However,the practical application of LFHPs remains constrained by limited catalytic activity and poor product selectivity.This review discusses the advancements in strategies to enhance the catalytic efficiency of LFHPs,such as compositional engineering,surface passivation,and heterostructure formation.These approaches aim to optimize charge carrier dynamics,reduce recombination rates,and improve stability under reaction conditions.Emphasis is also placed on methods to control product selectivity,including tailored reaction envi-ronments,co-catalyst integration,and fine-tuning electronic band structures.The discussion extends to key challenges such as material stability under photocatalytic conditions,scalability for industrial applications,and a deeper understanding of reaction mechanisms at the molecular level.Finally,future prospects highlight the critical role of LFHPs in achieving efficient,scalable,and eco-friendly solar-driven chemical synthesis,high-lighting their potential to reshape the landscape of sustainable photocatalysis.展开更多
基金financially supported by National Natural Science Foundation of China(No.22302155)the Fundamental Research Funds of the Center Universities(No.D5000240188)the research program of ZJUT(YJY-ZS-20240001)。
文摘Metal halide perovskites(MHPs)with striking electrical and optical properties have appeared at the forefront of semiconductor materials for photocatalytic redox reactions but still suffer from some intrinsic drawbacks such as inferior stability,severe charge-carrier recombination,and limited active sites.Heterojunctions have recently been widely constructed to improve light absorption,passivate surface for enhanced stability,and promote charge-carrier dynamics of MHPs.However,little attention has been paid to the review of MHPs-based heterojunctions for photocatalytic redox reactions.Here,recent advances of MHPs-based heterojunctions for photocatalytic redox reactions are highlighted.The structure,synthesis,and photophysical properties of MHPs-based heterojunctions are first introduced,including basic principles,categories(such as Schottky junction,type-I,type-II,Z-scheme,and S-scheme junction),and synthesis strategies.MHPs-based heterojunctions for photocatalytic redox reactions are then reviewed in four categories:H2evolution,CO_(2)reduction,pollutant degradation,and organic synthesis.The challenges and prospects in solar-light-driven redox reactions with MHPs-based heterojunctions in the future are finally discussed.
文摘Lithium halide solid-state electrolytes,with the general formula of Li_(3±m)M_(n)X_(6),are regarded as the promising families of electrolyte material for all solid-state lithium-ion batteries because of the relatively good ionic conductivity,high oxidative stability against high-voltage oxide cathodes,and broad electrochemical stability window[1].Here,M stands for one or multiple metal elements and X for one or multiple halogen elements.
基金supported by the National Natural Science Foundation of China(Nos.52172243,52371215)。
文摘All-solid-state Li batteries(ASSLBs)using solid electrolytes(SEs)have gained significant attention in recent years considering the safety issue and their high energy density.Despite these advantages,the commercialization of ASSLBs still faces challenges regarding the electrolyte/electrodes interfaces and growth of Li dendrites.Elemental doping is an effective and direct method to enhance the performance of SEs.Here,we report an Al-F co-doping strategy to improve the overall properties including ion conductivity,high voltage stability,and cathode and anode compatibility.Particularly,the Al-F co-doping enables the formation of a thin Li-Al alloy layer and fluoride interphases,thereby constructing a relatively stable interface and promoting uniform Li deposition.The similar merits of Al-F co-doping are also revealed in the Li-argyrodite series.ASSLBs assembled with these optimized electrolytes gain good electrochemical performance,demonstrating the universality of Al-F co-doping towards advanced SEs.
基金supported by the financial aid from the National Natural Science Foundation of China (No. 22271273)International Partnership Program of Chinese Academy of Sciences (No. 121522KYSB20190022)。
文摘Self-trapping excitons(STEs) emission in metal halides has been a matter of interest, correlating with the strength of electron-phonon coupling in the lattice, which are usually caused by ions with ns~2 electronic structure. In this work, Sb^(3+)/Te^(4+)ions doped Zn-based halide single crystals(SCs) with two STEs emissions have been synthesized and the possibility of its anti-counterfeiting application was explored.Further, the relationship between the strength of electron-phonon coupling and photoluminescence quantum yields(PLQYs) for STEs in a series of metal halides has been studied. And the semi-empirical range of the Huang-Rhys factors(S) for metal halides with excellent photoluminescence(PL) property has been summarized. This work provides ideas for further research into the relationship between luminescence performance and electron-phonon coupling of metal halides, and also provides a reference for designing the metal halides with high PLQYs.
基金supported by the National Natural Science Foundation of China(22278066,21776039)the National Key R&D Program of China(2023YFB4103001)The Fundamental Research Funds for the Central Universities(DUT2021TB03).
文摘Mercury removal from coal combustion flue gas remains a significant challenge for environmental protection due to the lack of cost-effective sorbents.In this study,a series of red mud(RM)-based sorbents impregnated with sodium halides(NaBr and NaI)are presented to capture elemental mercury(Hg^(0))from flue gas.The modified RM underwent comprehensive characterization,including analysis of its textural qualities,crystal structure,chemical composition,and thermal properties.The results indicate that the halide impregnation substantially impacts the surface area and pore size of the RM.Hg^(0) removal performance was evaluated on a fixed-bed reactor in simulated flue gas(consisting of N_(2),O_(2),CO_(2),NO and SO_(2),etc.)on a modified RM.At an optimal adsorption temperature of 160℃,NaI-modified sorbent(RMI5)offers a removal efficiency of 98%in a mixture of gas,including O_(2),NO and HCl.Furthermore,pseudo-second-order model fitting results demonstrate the chemisorption mechanism for the adsorption of Hg^(0) in kinetic investigations.
文摘Polyfluoroarenes represent an essential group of compounds in the fields of medical and material chemistry.It is still a challenge to synthesize alkylated polyfluoroarenes.Herein,a Ni-catalyzed reductive alkylation of polyfluoroarenes with alkyl halides under mild conditions is reported.Polyfluoroarenes(3~6 F)can reacted smoothly with a diverse range of alkyl halides,such as primary,secondary,and tertiary alkyl iodides.The efficient formation of C(sp2)—C(sp3)can be achieved through the combination of Ni catalysis and(Bpin)2/K2CO3 as terminal reductant.
基金support from the Focus Group‘Next Generation Organic Photovoltaics’participating with the Dutch Institute for Fundamental Energy Research(DIFFER)(FOM130)Advanced Materials research program of the Zernike National Research Centre under the Bonus Incentive Scheme(BIS)of the Dutch Ministry for Education,Culture and Science.
文摘Despite the rapid efficiency increase,tin halide perovskite solar cells are significantly behind their lead-based counterpart,with the highest reported efficiency of 15.38%.The main reason for this large difference is attributed to the instability of Sn^(2+),which easily oxidizes to Sn^(4+),creating Sn vacancies and increasing the open-circuit voltage loss.In this work,we implemented tin thiocyanate(Sn(SCN)_(2))as an additive for passivating the bulk defects of a germanium-doped tin halide perovskite film.Adding Sn^(2+)and SCN-ions reduces the Sn and iodine vacancies,limiting non-radiative recombination and favoring longer charge-carrier dynamics.Moreover,the addition of Sn(SCN)_(2) induces a higher film crystallinity and preferential orientation of the(l00)planes parallel to the substrate.The passivated devices showed improved photovoltaic parameters with the best open-circuit voltage of 0.716 V and the best efficiency of 12.22%,compared to 0.647 V and 10.2%for the reference device.In addition,the passivated solar cell retains 88.7%of its initial efficiency after 80 min of illumination under 100 mW cm^(-2) and is substantially better than the control device,which reaches 82.6%of its initial power conversion efficiency only after 30 min.This work demonstrates the passivation potential of tin-based additives,which combined with different counterions give a relatively large space of choices for passivation of Sn-based perovskites.
基金supported by the Technology Innovation (20010817,Technology for the ecofriendly rare earth refining from used motors and manufacture of permanent magnet materials) funded by the Ministry of Trade,Industry & Energy (MOTIE),Korea。
文摘The demand for neodymium(NdFeB) permanent magnets for electric vehicles and eco-friendly generators is increasing.However,NdFeB magnets contain rare earth elements(REEs),which are limited in supply.In this study,we performed an exchange reaction between magnesium halides(fluoride and chloride) and waste NdFeB scrap and then compared the characteristics of the extracted halides salts.The compositions of the ternary Mg fluoride(LiF:NaF:MgF_(2)=50:40:10 in mole ratio) and chloride(LiCl:NaCl:MgCl_(2)=10:50:40 in mole ratio) salts were thermodynamically determined for achieving low eutectic temperatures.The reactions between the NdFeB scrap powder(1-2 mm) and Mg halide salts were carried out at 1073 and 873 K for the fluoride and chloride systems,respectively,in an argon atmosphere.After the reaction,we separated Nd halide from the residual salt and evaluated the Ndextraction rate.The phase formation of the salt was analyzed using X-ray diffraction(XRD),and the extraction rate of Nd was analyzed using inductively coupled plasma optical emission spectroscopy(ICPOES).Nd was extracted in the form of Nd halide(NdF_(3) or NdCl_(3)),and the extraction rates in the fluoride and chloride systems are 98.64% and 84.59%,respectively.Thus,the fluoride system is more effective than the chloride system for Nd extraction.Our study provides a comprehensive comparative analysis of the effectiveness of fluo ride and chlo ride systems in extracting REEs from NdFeB magnet scrap.Our study findings can be used to develop an effective method for recycling magnet scraps.
基金supported by Natural Science Foundation of Jiangsu Province,Major Project(BK20222007).
文摘Two-dimensional(2D)chiral halide perovskites(CHPs)have attracted broad interest due to their distinct spin-dependent properties and promising applications in chiroptics and spintronics.Here,we report a new type of 2D CHP single crystals,namely R/S-3BrMBA_(2)PbBr_(4).The chirality of the as-prepared samples is confirmed by exploiting circular dichroism spectroscopy,indicating a successful chirality transfer from chiral organic cations to their inorganic perovskite sublattices.Furthermore,we observed bright photoluminescence spanning from 380 to 750 nm in R/S-3BrMBA_(2)PbBr_(4)crystals at room temperature.Such broad photoluminescence originates from free excitons and self-trapped excitons.In addition,efficient second-harmonic generation(SHG)performance was observed in chiral perovskite single crystals with high circular polarization ratios and non-linear optical circular dichroism.This demonstrates that R/S-3BrMBA_(2)PbBr_(4)crystals can be used to detect and generate left-and righthanded circularly polarized light.Our study provides a new platform to develop high-performance chiroptical and spintronic devices.
基金inancially supported by the National Science Foundation of China(52273217,52173209,51973201,52203051)the National Science Foundation for Young Scientists of Henan Province(232300421068,to Y.H.)+2 种基金the Key Scientific Research Projects of Col eges and Universities in Henan Province(Fundamental Research Project 2022,Grant 22ZX001,to X.P.)Postdoctoral Foundation of Henan Province(304348,G.S.)Postgraduate Education Reform and Quality Improvement Project of Henan Province(No.YJS2025GZZ03)。
文摘Recent advancements in lead halide perovskites opened up an avenue for vast optoelectronic applications.However,lead toxicity and the complicated synthesis process posed major obstacles to their further practical applications.To address these issues,a facile and robust mechanochemical synthesis of cesium manganese halide(Cs_(3)MnX_(5),X=halide element)was developed via a highly efficient solvent-free ball milling strategy.
基金supported by the National Key Research and Development Program of China(No.2021YFB3502200)the National Natural Science Foundation of China(Nos.52172216 and 92163212)+1 种基金support from the Shanghai Engi-neering Research Center for Integrated Circuits and Advanced Dis-play Materialssupported by Shanghai Techni-cal Service Center of Science and Engineering Computing,Shanghai University and Hefei Advanced Computing Center.
文摘In past decades,ABX_(3) halide perovskites have attracted great interest in solar cells due to excellent opto-electronic properties,such as high carrier mobility.However,instability and toxicity are obstacles on the commercial route for perovskites.Many studies have turned to exploring A_(2) BX_(6) and A_(3) B_(2) X_(9) for better stability.Unfortunately,the carrier mobilities of these two types are inferior to ABX_(3),lower by an order of magnitude.Furthermore,the mobility of ABX_(3) is distributed over a large range of 1.78-4500 cm^(2) V^(−1) s^(−1) in experiments,which contributes to another diversity of mobilities.In this paper,we aim at reveal-ing the physical origin of the above-mentioned diversities by theoretical studies on CsBX_(3),Cs_(2) BX_(6),and Cs_(3) B_(2) X_(9)(B=Sn,Pb,Sb,Bi,X=Br,Cl).The difference in group velocities is the major reason responsible for the variation in these types.The unique three-dimensional connected conductive network of CsBX_(3) determines its large group velocity.As for carrier scattering,ionized impurity scattering dominates at low carrier and high ionized impurity concentrations.Detailed analysis reveals that band degeneracy is strongly related to the impurity scattering rate,while dielectric constant is almost immune.Our study provides a better understanding of the relationship between electronic structures and mobilities for po-tential applications in photovoltaics.
基金financially supported by Hunan Provincial Science and Technology Department,China(No.2021JJ10058)Key Research and Development Program of Hunan Province,China(No.2023GK2016)。
文摘A dual-halide solid electrolyte,Li_(3)YCl_(3)Br_(3),was synthesized using a wet-chemistry route instead of the conventional mechanical ball-milling route.Li_(3)YCl_(3)Br_(3) exhibits an ion conductivity of 2.08 mS/cm and an electro-chemical stability window of 3.8 V.Additionally,an all-solid-state lithium-ion battery using Li_(3)YCl_(3)Br_(3) and LiNi_(0.83)Co_(0.11)Mn_(0.06)O_(2)(NCM811)as the cathode material achieves a capacity retention of 93%after 200 cycles at 0.3C and maintains a specific capacity of 115 mA·h/g during 2C cycling.This exceptional performance is attributed to the high oxidative stability of Li_(3)YCl_(3)Br_(3) and the in-situ formation of Y_(2)O_(3) inert protective layer on the NCM811 surface under high voltage.Consequently,the study demonstrates the feasibility of a simple,cost-effective wet-chemistry route for synthesizing multi-component halides,highlighting its potential for large-scale production of halide solid electrolytes for practical applications.
基金supported by the National Nature Science Foundation of China(NSFC)(U2241236,1220041913,52473253)the National Key Research and Development Program of China(2022ZDZX0007)+1 种基金Fundamental Research Open Subject Grant Program of Yantai Advanced Materials and Green Manufacturing Laboratory of Shandong Province(AMGM2024F15)Yunnan Major Scientific and Technological Projects(202402AB080011).
文摘The relentless pursuit of advanced X-ray detection technologies has been significantly bolstered by the emergence of metal halides perovskites(MHPs)and their derivatives,which possess remarkable light yield and X-ray sensitivity.This comprehensive review delves into cutting-edge approaches for optimizing MHP scintillators performances by enhancing intrinsic physical properties and employing engineering radioluminescent(RL)light strategies,underscoring their potential for developing materials with superior high-resolution X-ray detection and imaging capabilities.We initially explore into recent research focused on strategies to effectively engineer the intrinsic physical properties of MHP scintillators,including light yield and response times.Additionally,we explore innovative engineering strategies involving stacked structures,waveguide effects,chiral circularly polarized luminescence,increased transparency,and the fabrication of flexile MHP scintillators,all of which effectively manage the RL light to achieve high-resolution and high-contrast X-ray imaging.Finally,we provide a roadmap for advancing next-generation MHP scintillators,highlighting their transformative potential in high-performance X-ray detection systems.
基金supported by the National Natural Science Foundation of China(nos.22309027 and 52374301)the Shijiazhuang Basic Research Project(nos.241790667A and 241790907A)+3 种基金the Fundamental Research Funds for the Central Universities(no.N2523050)the Natural Science Foundation of Hebei Province(no.E2024501010)the Performance subsidy fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei Province(no.22567627H)the 2024 Hebei Provincial Postgraduate Student Innovation Ability Training Funding Project(no.CXZZSS2025162)。
文摘Halide solid-state electrolytes(SSEs)have become a new research focus for all-solid-state batteries because of their significant safety advantages,high ionic conductivity,high-voltage stability,and good ductility.Nonetheless,stability issues are a key barrier to their practical application.In past reports,the analysis of halide electrolyte stability and its enhancement methods lacked relevance,which limited the design and optimization of halide solid electrolytes.This review focus on stability issues from a chemical,electrochemical,and interfacial point of view,with particular emphasis on the interaction of halide SSEs with anode and cathode interfaces.By focusing on innovative strategies to address the stability issue,this paper aims to further deepen the understanding and development of halide all-solid-state batteries by proposing to focus research efforts on improving their stability in order to address their inherent challenges and match higher voltage cathodes,paving the way for their wider application in the next generation of energy storage technologies.
基金supported by the Korea Institute for Advancement of Technology(KIAT)grant funded by the Korean Government(MOTIE)(RS-2024-00417730,HRD Program for Industrial Innovation)supported by the Technology Innovation Program(or Industrial Strategic Technology Development Program-Materials&Components Technology Development Program)(20024261),Development of thick film electrodes and cell manufacturing technology for a high-performance lithium iron phosphate battery with energy density of over 200 Wh/kg was funded by the Ministry of Trade,Industry&Energy(MOTIE,Korea).
文摘All-solid-state batteries(ASSBs)have garnered significant interest as the next-generation in battery technology,praised for their superior safety and high energy density.However,a conductive agent accelerates the undesirable side reactions of sulfide-based solid electrolytes(SEs),resulting in poor electrochemical properties with increased interfacial resistance.Here,we propose a wet chemical method rationally designed to achieve a conformal coating of lithium-indium chloride(Li_(3)InCl_(6))onto vapor-grown carbon fibers(VGCFs)as conductive agents.First,with the advantage of the Li_(3)InCl_(6) protective layer,use of VGCF@Li_(3)InCl_(6) leads to enhanced interfacial stability and improved electrochemical properties,including stable cycle performance.These results indicate that the Li_(3)InCl_(6) protective layer suppresses the unwanted reaction between Li_(6)PS_(5)Cl(LPSCl)and VGCF.Second,VGCF@Li_(3)InCl_(6) effectively promotes polytetrafluoroethylene(PTFE)fibrillization,leading to a homogeneous electrode microstructure.The uniform distribution of the cathode active material(CAM)in the electrode results in reduced charge-transfer resistance(R_(ct))and enhanced Li-ion kinetics.As a result,a full cell with the LiNi_(x)Mn_(y)Co_(z)O_(2)(NCM)/VGCF@Li_(3)InCl_(6) electrode shows an areal capacity of 7.7mAhcm^(−2) at 0.05 C and long-term cycle stability of 77.9%over 400 cycles at 0.2 C.This study offers a strategy for utilizing stable carbon-based conductive agents in sulfide-based ASSBs to enhance their electrochemical performance.
基金supported by the National Key R&D Program of China(2022YFB3803505)National Natural Scientific Foundation of China(U21A2080&22479009)National Related Project and the Fundamental Research Funds for the Central Universities(FRF-TP-22-01C2)。
文摘Adopting high-voltage Ni-rich cathodes in halide and sulfide-based all-solid-state lithium batteries(ASSLBs)holds great promise for breaking through the 400 Wh kg^(-1)bottleneck.However,both cell configurations are confronted with intricate interfacial challenges in high-voltage regines(>4.5 V),resulting in inadequate cathode utilization and premature cell degradation.Moreover,contrary to previous studies,coupled with LiNi_(0.85)Co_(0.1)Mn_(0.05)O_(2)cathodes,typical halide(Li_(2)ZrCl_(6))-based cells at 4.5 V feature unlimited interfacial degradation and poor long cycle stability,while typical sulfide(Li_(6)PS_(5)Cl)-based cells feature self-limited interfacial degradation and poor initial cycle stability.Herein,this work addresses the high-voltage limitations of Li_(2)ZrCl_(6)and Li_(6)PS_(5)Cl catholyte-based cells by manipulating electrode mass fraction and tailoring interfacial composition,thereby effectively improving interfacial charge-transfer kinetics and(electro)chemical stability within cathodes.After appropriate interface design,both optimized cells at 4.5 V demonstrate remarkably increased initial discharge capacities(>195 mA h g^(-1)at0.1 C),improved cycle stabilities(>80%after 600 cycles at 0.5 C),and enhanced rate performances(>115 mA h g^(-1)at 1.0 C).This work deepens our understanding of high-voltage applications for halide/sulfide electrolytes and provides generalized interfacial design strategies for advancing high-voltage ASSLBs.
基金supported by the 261 Project of MIITthe National Natural Science Foundation of China(Nos.52250010,52201242,U23A20574)the Young Elite Scientists Sponsorship Program by CAST(No.2021QNRC001)。
文摘Halide solid-state electrolytes(HSSEs)with excellent ionic conductivity and high voltage stability are promising for all-solid-state Li-ion batteries(ASSLBs).However,they suffer from poor processability,mechanical durability and humidity stability,hindering their large-scale applications.Here,we introduce a dry-processing fibrillation strategy using hydrophobic polytetrafluoroethylene(PTFE)binder to encapsulate Li_(3)InCl_(6)(LIC)particles(the most representative HSSE).By manipulating the fibrillating process,only 0.5 wt%PTFE is sufficient to prepare free-standing LIC-PTFE(LIC-P)HSSEs.Additionally,LIC-P demonstrates excellent mechanical durability and humidity resistance.They can maintain their shapes after being exposed to humid atmosphere for 30 min,meanwhile still exhibit high ionic conductivity of>0.2m S/cm at 25℃.Consequently,the LIC-P-based ASSLBs deliver a high specific capacity of 126.6 m Ah/g at0.1 C and long cyclability of 200 cycles at 0.2 C.More importantly,the ASSLBs using moisture-exposed LIC-P can still operate properly by exhibiting a high capacity-retention of 87.7%after 100 cycles under0.2 C.Furthermore,for the first time,we unravel the LIC interfacial morphology evolution upon cycling because the good mechanical durability enables a facile separation of LIC-P from ASSLBs after testing.
基金supported by the National Natural Science Foundation of China(Nos.22193042,22125110,22075285,52473283,21921001,U21A2069)the Key Research Program of Frontier Sciences of the Chinese Academy of Sciences(No.ZDBS-LY-SLH024)the Youth Innovation Promotion of Chinese Academy of Sciences(No.2020307)。
文摘Polar semiconductors,particularly the emerging polar two-dimensional(2D)halide perovskites,have motivated immense interest in diverse photoelectronic devices due to their distinguishing polarizationgenerated photoelectric effects.However,the constraints on the organic cation's choice are still subject to limitations of polar 2D halide perovskites due to the size of the inorganic pocket between adjacent corner-sharing octahedra.Herein,a mixed spacer cation ordering strategy is employed to assemble a polar 2D halide perovskite NMAMAPb Br_(4)(NMPB,NMA is N-methylbenzene ammonium,MA is methylammonium)with alternating cation in the interlayer space.Driven by the incorporation of a second MA cation,the perovskite layer transformed from a 2D Pb_(7)Br_(24)anionic network with corner-and face-sharing octahedra to a flat 2D PbBr_(4)perovskite networks only with corner-sharing octahedra.In the crystal structure of NMPB,the asymmetric hydrogen-bonding interactions between ordered mixed-spacer cations and 2D perovskite layers give rise to a second harmonic generation response and a large polarization of 1.3μC/cm^(2).More intriguingly,the ordered 2D perovskite networks endow NMPB with excellent self-powered polarization-sensitive detection performance,showing a considerable polarization-related dichroism ratio up to 1.87.The reconstruction of an inorganic framework within a crystal through mixed cation ordering offers a new synthetic tool for templating perovskite lattices with controlled properties,overcoming limitations of conventional cation choice.
基金supported by the National Natural Science Foundation of China(Grant No.12474414)the Natural Science Foundation of Henan(Grant No.242300421157)the ADXRD measurement was performed at the 4W2 beamline,the Beijing Synchrotron Radiation Facility(BSRF).
文摘Lead-free halide double perovskites have recently attracted significant attention due to their exceptional stability and favorable band gaps,making them promising candidates for solar cell applications.However,the relationship between their structural characteristics and intrinsic band gap remains under-explored.This study presents a method to investigate the structure-band gap correlation in a typical halide double perovskite,MA_(2)Pt_(6)(MA^(+)=CH_(3)NH_(3)^(+)),using high pressure techniques.The band gap of MA_(2)PtI_(6)is effectively reduced at two different rates of 0.063 eV/GPa and 0.079 eV/GPa before and after 1.2 GPa,and progressively closes as pressure further increases.These optical changes are closely related to the pressure induced structural evolution of MA_(2)PtI_(6).Moreover,a phase transition from trigonal(R-3m)to monoclinic(P2/m)occurs at 1.2 GPa and completes by 2.0 GPa,driven by pressure-induced distortion of the[PtI_(6)]^(2-)octahedra,which is responsible for the variation of the band gap.These promising findings pave the way for potential applications in the structural and band gap tuning of halide double perovskites.
基金Prof.X.S.Tang acknowledges the financial support of the National Natural Science Foundation of China(62375032)the Natural Science Foundation of Chongqing(No.CSTB2023TIAD-KPX0017)+3 种基金the Open Fund of the State Key Laboratory of High Field Laser Physics(Shanghai Institute of Optics and Fine Mechanics)Dr.D.F.Wu acknowledges the financial support of the National Natural Science Foundation of China(22408362)the China National Postdoctoral Program for Innovative Talents(Certificate Number:BX20230355)the China Postdoctoral Science Foundation(Certificate Number:2024M753165).
文摘Solar energy-powered photocatalytic processes represent a promising avenue for sustainable energy and chemical production.Among these,lead-free halide perovskites(LFHPs)have garnered attention as a next-generation class of photocatalysts for CO_(2) reduction,offering the advantages of high light absorption and low toxicity.However,the practical application of LFHPs remains constrained by limited catalytic activity and poor product selectivity.This review discusses the advancements in strategies to enhance the catalytic efficiency of LFHPs,such as compositional engineering,surface passivation,and heterostructure formation.These approaches aim to optimize charge carrier dynamics,reduce recombination rates,and improve stability under reaction conditions.Emphasis is also placed on methods to control product selectivity,including tailored reaction envi-ronments,co-catalyst integration,and fine-tuning electronic band structures.The discussion extends to key challenges such as material stability under photocatalytic conditions,scalability for industrial applications,and a deeper understanding of reaction mechanisms at the molecular level.Finally,future prospects highlight the critical role of LFHPs in achieving efficient,scalable,and eco-friendly solar-driven chemical synthesis,high-lighting their potential to reshape the landscape of sustainable photocatalysis.