H9 s ubtype avian influenza virus(AIV) and infectious bronchitis virus(IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg producti...H9 s ubtype avian influenza virus(AIV) and infectious bronchitis virus(IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg production. As similar symptoms are elicited by the two pathogens, it is difficult for their differential diagnosis. So far, no reverse transcription-polymerase chain reaction(RT-PCR) assay has been found to differentiate between H9 AIV and IBV in one reaction. Therefore, developing a sensitive and specific method is of importance to simultaneously detect and differentiate H9 AIV and IBV. In this study, a duplex RT-PCR(d RT-PCR) was established. Two primer sets target the hemagglutinin(HA) gene of H9 AIV and the nucleocapsid(N) gene of IBV, respectively. Spec ific PCR products were obtained from all tested H9 AIVs and IBVs belonging to the major clades circulating in China, but not from AIVs of other subtypes or other infectious avian viruses. The sensitivity of the d RT-PCR assay corresponding to H9 AIV, IBV and mixture of H9 AIV and IBV were at a concentration of 1×10^1, 1.5×10^1 and 1.5×10^1 50% egg infective doses(EID_(50)) m L^–1, respectively. The concordance rates between the d RT-PCR and virus isolation were 99.1 and 98.2%, respectively, for detection of samples from H9N2 AIV or IBV infected chickens, while the concordance rate was 99.1% for detection of samples from H9N2 AIV and IBV co-infected chickens. Thus, the d RT-PCR assay reported herein is specific and sensitive, and suitable for the differential diagnosis of clinical infections and survei llance of H9 AIVs and IBVs.展开更多
Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + )...Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + ) carrying hemagglutinin (HA) gene of AIV H9 subtype. After cell fusion, one positive hybridoma cell strain was screened out by hemagglutination inhibition assay ( HI ), and another positive hybddoma call strain was screened out by ELISA. After subcloning 3 times, the two cell strains could still secret antibodies against the HA of AIV H9 subtype. The mono- clonal antibodies did not react with Newcastle disease virus, AIV H5 subtype and duck adenovirus A. Their subtypes were IgG2b with kappa light chain. These two hybridoma cell strains may play an important role in rapid diagnosis and early-warning surveillance of AIV H9 subtype.展开更多
[Objective] To screen the best culture media for the proliferation of avian influenza virus (AIV) H9 subtypes in MDCK cells. [Method] The DMEM containing 10% (V/V) newborn calf serum, low-serum containing medium ...[Objective] To screen the best culture media for the proliferation of avian influenza virus (AIV) H9 subtypes in MDCK cells. [Method] The DMEM containing 10% (V/V) newborn calf serum, low-serum containing medium ( MEM-MD-611 ) and serum-free medium (SFE4Mega) were used to culture the MDCK monolayer ceils, which were then inoculated with different dilutions of AIV H9 subtypes, and the 3 kinds of media were al- so used as the maintenance solution to culture the virus. The cytopathic changes were observed at every 24 h, and the HA titers of the culture su- pernatants were also determined. [ Result] After culturing for 72 -96 h, the HA titers of the serum-free media were higher than that of low-serum culture media, while the HA titers were higher in the low-serum media than in the serum containing media. [ Conclusion] The 3 kinds of media can all used for the proliferation of AIV_ but the low-serum culture medium (MEM-MD-611 ) and serum-free medium (SFE4Meaa3 are preferred.展开更多
Objective:This paper focuses on the multiple detection RT-PCR technology of H5,H7,AND H9 subtype avian influenza viruses and Newcastle disease virus,and points out the specific detection methods and detection procedur...Objective:This paper focuses on the multiple detection RT-PCR technology of H5,H7,AND H9 subtype avian influenza viruses and Newcastle disease virus,and points out the specific detection methods and detection procedures of avian influenza and Newcastle disease virus.Methods:The genes of Newcastle disease virus carrying out the HA gene sequence of H5,H7 and H9 subtype AIV in GenBank were used to establish a strategy for simultaneous detection of three subtypes of avian influenza virus and Newcastle disease virus.Results:The results showed that the program can detect and distinguish H5,H7 and H9 subtype avian influenza viruses and Newcastle disease virus at one time.Conclusion:Multiple RT-PCR detection method has high detection sensitivity and can detect and determine different subtypes of avian influenza virus and Newcastle disease virus quickly and accurately,therefore,it has a crucial role in the detection and control of avian influenza H5,H7 and H9 subtypes and Newcastle disease.展开更多
[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be m...[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be monolayer on the silver-coated electrode of quartz crystal and coupling the monoclonal antibody to H9 subtype AIV with N-ethy-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride(EDC) and N-hydroxysuccinimide(NHS).The immunosensor to detect H9 subtype AIV was established.[Result] The results showed that the immunosensor displayed better specificity to H9 AIV and had no response to H5AIV and NDV when it was used for detection.The sensitivity test indicated the detection sensitivity for the H9 subtype AIV could reach 20-100 EID50.[Conclusion] The research provided a foundation for further research on the immunosensor for detecting AIV and it could be a new approach to detect other related viruses.展开更多
[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 gen...[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 genes were obtained by using RT-PCR,and these sequences were analyzed with that of six H9N2 subtype avian influenza isolates in homology comparison and genetic evolution relation.[Result] The results showed that the nucleotide sequence of entire gene of the strain shared 91.1%-95.4% homology with other seven reference strains,and PG08 shared the highest homology 91.3% with C/BJ/1/94;ZD06 shared the highest homology 92.3% with D/HK/Y280/97.HA cleavage sites of two H9N2 subtype avian influenza virus isolated strains were PARSSR/GLF,typical of mildly pathogenic avian influenza virus.[Conclusion] Phylogenetic tree for entire gene of eight strains showed that the genetic relationship was the closest between ZD06 and C/Pak/2/99 strains,which belonged to the Eurasian lineage;PG08 shared the highest homology 91.3% with ZD06,it may be the product of gene rearrangements of other sub-lines.展开更多
[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the s...[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the specific RT-PCR method, some strains of H9 subtype waterfowl influenza virus were isolated from the 12 to 20 day-old muscovy duck flocks without any clinical symptoms in different areas of Guangdong Province. Four of these strains, including A/duck/ZQ/303/2007(H9N2) (A3 for short), A/Duck/FJ/301/2007 (H9N2) (C1 for short), A/Duck/NH/306/2007(H9N2) ( D6 for short), A/duck/SS/402/2007(H9N2) ( E2 for short), and a strain named A/duck/ZC/2007(H9N2) (L1 for short) from a muscovy duck died of avian influenza virus (AIV), were used for NSl gene cloning and sequencing. Subsequently, the obtained NSl gene sequences were compared with other NS1 sequences registered in GenBank, and the phylogenetic analysis was also conducted. [Result] When compared with the H9N2 AIV NS1 sequences in GenBank, the NSl genes of the four AIV strains A3, C1, 136 and E2 displayed homologies ranging from 99% to 100% at nucleotide level, and 95% to 100% at amino acid level; while the NSl gene of L1 strain displayed homology ranging from 94% to 97% at nucleotide level, and 93% to 98% at amino acid level. The phylogenetic tree demonstrated that A3, C1, D6 and E2 were highly resemblant, and L1 was closest to AY66473 (chicken, 2003). By comparison with the NS1 gene sequences of L1, AF523514 (duck), AY664743 (chicken) and EF155262.1 (quail) using DNAstar, A3, C1, D6 and E.2 presented nucleotide variations at site 21 ( R→Q), 70, 71 ( KE→EG), 86 ( A→S), 124 (V→M) and 225 ( S→N), and amino acid variations at site 21,70, 71 and 86 in dsRNA- dependent protein kinase (PKR) binding domain of NSl gene, which induced the evident variations of antigenic determinant and surface proba- bility plot of NS1 protein. [ Conclusion] This study suggested that the amino acid sequence variation in PKR binding domain of NS1 protein had something to do with the virus pathogenicity.展开更多
A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I...A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I-Method3 Eight complete genes were amplified by RT-PCR and sequenced. The homology and genetic evolution relationship were analyzed between these sequences and that of the seven reference strains. [Result] The whole genomic sequence of WD98 strain was 91.1% -95.8% homologous to that of seven reference strains tested. This isolate shared the highest homology (95.8%) to D/HK/Y280/97 and the lowest homology (91.1% ) to C/Pak/2/99. The HA cleavage site of the WD98 strain was R-S-S-R G, and the 226th amino acid at receptor-binding site was Gin. [ Condmion] WD98 strain belongs to mildly pathogenic avian in- fluenza virus and may not infect human. The genetic relationship is the closest between A/Chicken/Hebei/wD/98 and A/duck/HongKong/Y280/ 97, both of which belong to the sub-line of A/Chicken/Beijing/1/94 in Eurasian line. And A/Chicken/Hebei/WD/98 and A/Chicken/Beijing/1/94 are genetically distant within the same sub-line.展开更多
NAS preparation, a kind of Chinese herbal medicine found by the Yunnan Eco-agricultural Research Institute, has potential antiviral activity. In this paper, the inhibiting effect of NAS preparation on H9N2 subtype Avi...NAS preparation, a kind of Chinese herbal medicine found by the Yunnan Eco-agricultural Research Institute, has potential antiviral activity. In this paper, the inhibiting effect of NAS preparation on H9N2 subtype Avian influenza virus (AIV) was investigated in vivo. Chickens infected with H9N2 virus were treated with NAS preparation for 4 days. The virus was then detected by hemoagglutination (HA) test and reverse transcription polymerase chain reaction (RT-PCR). The results showed that no H9N2 virus could be detected at the 7th day when the chickens were treated with 0.2g/kg/d or 0.1g/kg/d of NAS preparation. However the virus could be detected in other chickens without NAS preparation treatment. This result suggested that NAS preparation may be a potential drug candidate to control infection of H9N2 subtype AIV in chickens.展开更多
To investigate the susceptibility of Chukars to duck avian influenza virus H9N2 and explore their role in interspecies transmission of influenza viruses.Chukars were inoculated with duck avian influenza viruses H9N2.
Three isolates of H9N2 Avian Influenza viruses (AIV) were isolated from chickens in Guangxi province. Eight pairs of specific primers were designed and synthesized according to the sequences of H9N2 at GenBank. phylog...Three isolates of H9N2 Avian Influenza viruses (AIV) were isolated from chickens in Guangxi province. Eight pairs of specific primers were designed and synthesized according to the sequences of H9N2 at GenBank. phylogenetic analysis showed a high degree of homology between the Guangxi isolates and isolates from Guangdong and Jiangsu provinces, suggesting that the Guangxi isolates originated from the same source. However, the eight genes of the three isolates from Guangxi were not in the same sublineages in their respective phylogenetic trees, which suggests that they were products of natural reassortment between H9N2 avian influenza viruses from different sublineages. The 9 nucleotides ACAGAGATA which encode amino acids T, G, I were absent between nucleotide 205 and 214 in the open reading frame of the NA gene in the Guangxi isolates. AIV strains that infect human have, in their HA proteins, leucine at position 226. The analysis of deduced amino acid sequence of HA proteins showed that position 226 of these isolates contained glycine instead of leucine, suggesting that these three isolates differ from H9N2 AIV strains isolated from human infections.展开更多
[Objective] The study aims to determine the optimal concentration of trypsin for the proliferation of avian influenza virus (AIV) H9N2 subtype in Madin- Darby canine kidney (MDCK) cells. [Method] Three AIV H9 subt...[Objective] The study aims to determine the optimal concentration of trypsin for the proliferation of avian influenza virus (AIV) H9N2 subtype in Madin- Darby canine kidney (MDCK) cells. [Method] Three AIV H9 subtype isolates were inoculated on MDCK cells respectively. Then, DMEM containing different concentrations of trypsin as maintenance media were added to MDCK monolayer cells. The cytopathic effect (CPE) was observed once every 24 h, and the HA titer of the supematant was measured by HA assay. [Result] When the trypsin concentration was 10 -20 μg/ml in DMEM, the HA titer of virus culture reached 7 log2 (1:128). Almost all cells were cytopathic after 96 h post inoculation with 1:1 000 or 1:10 000 dilution of AIV culture, and the virus titer reached a peak after 72 -96 h. [ Conclusion] The optimal concentration of trypsin is 10 -20 pg/ml for proliferation of AIV H9N2 subtype in MDCK cells.展开更多
H9N2 avian influenza virus(AIV) infection is a major problem in poultry industry worldwide. In this study, molecular characterizations and phylogenetic relationships of hemagglutinin(HA) gene sequences of H9N2 AIV...H9N2 avian influenza virus(AIV) infection is a major problem in poultry industry worldwide. In this study, molecular characterizations and phylogenetic relationships of hemagglutinin(HA) gene sequences of H9N2 AIV of 5 Chinese isolates in 2014 recently available in Gen Bank, 3 widely used vaccine strains, and 52 novel isolates in China from 2013 to 2015 were analyzed. The homology analysis showed that the nucleotide sequences of HA gene of these recent Chinese H9N2 AIV isolates shared homologies from 94.1 to 99.9%. Phylogenetic analysis showed that all isolates belonged to AIV lineage h9.4.2.5. Fifty-six out of the 57 recent Chinese H9N2 AIV isolates had the motifs PSRSSR↓GLF at the cleavage sites within the HA protein, while one isolate PWH01 harbored LSRSSR↓GLF. Remarkably, all of the recent Chinese H9N2 AIV strains had the Q216 L substitution in the receptor binding site, which indicated that they had potential to infect humans. Most of recent Chinese H9N2 AIV isolates lost the potential N-linked glycosylation site at residues 200–202 compared with vaccine strains. This present study demonstrated that AIV lineage h9.4.2.5 was more predominant in China than other lineages as it harbored all the H9N2 AIV isolated between 2013 and 2015. Also we showed the importance of continuous surveillance of emerging H9N2 AIV in China and update of vaccine formulation accordingly in order to prevent and control H9N2 AIV.展开更多
OBJECTIVE: To determine the origin of human influenza A (H9N2) virus and the relationship among H9N2 strains isolated from different hosts, on the basis of molecular biology. METHODS: Viruses were passed in embryonate...OBJECTIVE: To determine the origin of human influenza A (H9N2) virus and the relationship among H9N2 strains isolated from different hosts, on the basis of molecular biology. METHODS: Viruses were passed in embryonated hen eggs, and virion RNA was extracted from allantoic fluid and reverse transcribed to synthesize cDNA. cDNA was amplified by PCR and the PCR product was purified with a purification kit. Afterwards RNA sequence analysis was performed by dideoxynucleotide chain termination and a cloning method. Finally, phylogenetic analysis of the sequencing data was performed with MegAlign (version 1.03) and Editseg (version 3.69) softwares. RESULTS: The amino acid sequences at the cleavage site between HA1 and HA2 domains of H9N2 viruses isolated in China are R-S-S-R. One pigeon strain contains seven potential glycosylation sites on the HA protein molecule, while all others have eight. There are 2 to 15 differences of amino acid sequences distributed at 24 different positions on the HA protein molecules among six H9N2 viruses. The H9N2 viruses with multiple lineages of HA genes were co-circulating in China recently. CONCLUSION: The highest possibility is that human influenza A (H9N2) virus was derived from Chicken H9N2 virus, and not derived from pigeon H9N2 virus. However, it is still unknown whether the H9N2 virus could transmit from person to person. The H9N2 viruses with multiple lineages of HA genes are co-circulating in China.展开更多
H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are prote...H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.展开更多
Background Southeast China is one of the sites of influenza origin. During 2003-2004, nine avian influenza outbreaks took place in Guangdong Province. But no human case was reported. To examine the status of potential...Background Southeast China is one of the sites of influenza origin. During 2003-2004, nine avian influenza outbreaks took place in Guangdong Province. But no human case was reported. To examine the status of potential human infection by human influenza (H1N1, H3N2) and avian influenza (H5N1, H7N7, H9N2) in the avian influenza epidemic area of Guangdong Province, China, we conducted a seroepidemiologic survey in the people of this area from April to June of 2004.Methods Three out of 9 H5N1 avian influenza affected poultry areas in Guangdong were randomly selected, and the population living within 3 kilometers of the affected poultries were chosen as the survey subjects. One thousand two hundred and fourteen people were selected from 3 villages at random. Human and avian influenza antibody titers were determined by hemagglutination-inhibition (HI) test and microneutralization test (MNT). Results The positive rate of antibody to H5N1 was 3.03% in the occupational exposure group and 2.34% in general citizens group; that of H9N2 was 9.52% in the occupational exposure group and 3.76% in the general citizens group. Moreover one case in the occupational exposure group was positive for H7N7. One year later, all previously positive cases had become negative except for one H5N1-positive case. Conclusion The observations imply that H5N1 and H9N2 avian influenza silent infections exist in Guangdong populations.展开更多
Background:Since the first human infection with H9N2 virus was reported in 1998,the number of cases of H9N2 infection has exceeded one hundred by 2021.However,there is no systematic description of the biological chara...Background:Since the first human infection with H9N2 virus was reported in 1998,the number of cases of H9N2 infection has exceeded one hundred by 2021.However,there is no systematic description of the biological characteristics of H9N2 viruses isolated from humans.Methods:Therefore,this study analyzed the pathogenicity in mice of all available H9N2 viruses isolated from human cases in China from 2013 to 2021.Results:Although most of the H9N2 viruses analyzed showed low or no pathogenicity in mice,the leucine to glutamine substitution at residue 226(L226Q)in the hemagglutinin(HA)protein rapidly emerged during the adaptation of H9N2 viruses,and was responsible for severe infections and even fatalities.HA amino acid 226Q conferred a remarkable competitive advantage on H9N2 viruses in mice relative to viruses containing 226L,increasing their virulence,infectivity,and replication.Conclusion:Thus,our study demonstrates that the adaptive substitution HA L226Q rapidly acquired by H9N2 viruses during the course of infection in mice contributed to their high pathogenicity.展开更多
Background Influenza A (H7Ng) virus infections were first observed in China in March 2013.This type virus can cause severe illness and deaths,the situation raises many urgent questions and global public health conce...Background Influenza A (H7Ng) virus infections were first observed in China in March 2013.This type virus can cause severe illness and deaths,the situation raises many urgent questions and global public health concerns.Our purpose was to investigate bedside chest radiography findings for patients with novel influenza A (H7Ng) virus infections and the followup appearances after short-time treatment.Methods Eight hospitalized patients infected with the novel influenza A (H7Ng) virus were included in our study.All of the patients underwent bedside chest radiography after admission,and all had follow-up bedside chest radiography during their first ten days,using AXIOM Aristos MX and/or AMX-Ⅳ portable X-ray units.The exposure dose was generally 90 kV and 5 mAs,and was slightly adjusted according to the weight of the patients.The initial radiography data were evaluated for radiological patterns (ground glass opacity,consolidation,and reticulation),distribution type (focal,multifocal,and diffuse),lung zones involved,and appearance at follow-up while the patients underwent therapy.Results All patients presented with bilateral multiple lung involvement.Two patients had bilateral diffuse lesions,three patients had unilateral diffuse lesions of the right lobe with multifocal lesions of the left lobe,and the remaining three had bilateral multifocal lung lesions.The lesions were present throughout bilateral lung zones in three patients,the whole right lung zone in three patients with additional involvement in the left middle and/or lower lung zone(s),both lower and middle lung zones in one patient,and the right middle and lower in combination with the left lower lung zones in one patient.The most common abnormal radiographic patterns were ground glass opacity (8/8),and consolidation (8/8).In three cases examined by CT we also found the pattern of reticulation in combination with CT images.Four patients had bilateral and four had unilateral pleural effusion.After a short period of treatment the pneumonia in one patient had significantly improved and three cases demonstrated disease progression.In four cases the severity of the pneumonia fluctuated.Conclusions In patients with influenza A (H7N9) virus infection,the distribution of the lung lesions are extensive,and the disease usually involves both lung zones.The most common imaging findings are a mixture of ground glass opacity and consolidation.Pleural effusion is common.Most cases have a poor short-time treatment response,and seem to have either rapid progressive radiographic deterioration or fluctuating radiographic changes.Chest radiography is helpful for evaluating patients with severe clinical symptoms and for follow-up evaluation.展开更多
基金supported by the National High-Tech R&D Program of China(2012AA101303)
文摘H9 s ubtype avian influenza virus(AIV) and infectious bronchitis virus(IBV) are major pathogens circulating in poultry and have resulted in great economic losses due to respiratory disease and reduced egg production. As similar symptoms are elicited by the two pathogens, it is difficult for their differential diagnosis. So far, no reverse transcription-polymerase chain reaction(RT-PCR) assay has been found to differentiate between H9 AIV and IBV in one reaction. Therefore, developing a sensitive and specific method is of importance to simultaneously detect and differentiate H9 AIV and IBV. In this study, a duplex RT-PCR(d RT-PCR) was established. Two primer sets target the hemagglutinin(HA) gene of H9 AIV and the nucleocapsid(N) gene of IBV, respectively. Spec ific PCR products were obtained from all tested H9 AIVs and IBVs belonging to the major clades circulating in China, but not from AIVs of other subtypes or other infectious avian viruses. The sensitivity of the d RT-PCR assay corresponding to H9 AIV, IBV and mixture of H9 AIV and IBV were at a concentration of 1×10^1, 1.5×10^1 and 1.5×10^1 50% egg infective doses(EID_(50)) m L^–1, respectively. The concordance rates between the d RT-PCR and virus isolation were 99.1 and 98.2%, respectively, for detection of samples from H9N2 AIV or IBV infected chickens, while the concordance rate was 99.1% for detection of samples from H9N2 AIV and IBV co-infected chickens. Thus, the d RT-PCR assay reported herein is specific and sensitive, and suitable for the differential diagnosis of clinical infections and survei llance of H9 AIVs and IBVs.
基金funded by the National Key Technology R&D Program(2006BAK20A29)the Shenzhen Entry-Exit Inspection and Quarantine Project(sz2008102)
文摘Avian influenza has caused enormous economic losses to poultry industry. To develop kits for rapid diagnosis of avian influenza virus (AIV) H9 subtype, 8-week-old Balb/c mice were administered with pcDNA3.1 ( + ) carrying hemagglutinin (HA) gene of AIV H9 subtype. After cell fusion, one positive hybridoma cell strain was screened out by hemagglutination inhibition assay ( HI ), and another positive hybddoma call strain was screened out by ELISA. After subcloning 3 times, the two cell strains could still secret antibodies against the HA of AIV H9 subtype. The mono- clonal antibodies did not react with Newcastle disease virus, AIV H5 subtype and duck adenovirus A. Their subtypes were IgG2b with kappa light chain. These two hybridoma cell strains may play an important role in rapid diagnosis and early-warning surveillance of AIV H9 subtype.
基金funded by the General Project of Beijing Academy of Agricultural and Forestry Sciences ( 2010A007)
文摘[Objective] To screen the best culture media for the proliferation of avian influenza virus (AIV) H9 subtypes in MDCK cells. [Method] The DMEM containing 10% (V/V) newborn calf serum, low-serum containing medium ( MEM-MD-611 ) and serum-free medium (SFE4Mega) were used to culture the MDCK monolayer ceils, which were then inoculated with different dilutions of AIV H9 subtypes, and the 3 kinds of media were al- so used as the maintenance solution to culture the virus. The cytopathic changes were observed at every 24 h, and the HA titers of the culture su- pernatants were also determined. [ Result] After culturing for 72 -96 h, the HA titers of the serum-free media were higher than that of low-serum culture media, while the HA titers were higher in the low-serum media than in the serum containing media. [ Conclusion] The 3 kinds of media can all used for the proliferation of AIV_ but the low-serum culture medium (MEM-MD-611 ) and serum-free medium (SFE4Meaa3 are preferred.
文摘Objective:This paper focuses on the multiple detection RT-PCR technology of H5,H7,AND H9 subtype avian influenza viruses and Newcastle disease virus,and points out the specific detection methods and detection procedures of avian influenza and Newcastle disease virus.Methods:The genes of Newcastle disease virus carrying out the HA gene sequence of H5,H7 and H9 subtype AIV in GenBank were used to establish a strategy for simultaneous detection of three subtypes of avian influenza virus and Newcastle disease virus.Results:The results showed that the program can detect and distinguish H5,H7 and H9 subtype avian influenza viruses and Newcastle disease virus at one time.Conclusion:Multiple RT-PCR detection method has high detection sensitivity and can detect and determine different subtypes of avian influenza virus and Newcastle disease virus quickly and accurately,therefore,it has a crucial role in the detection and control of avian influenza H5,H7 and H9 subtypes and Newcastle disease.
基金Supported by the Supporting Program of the"Eleventh Five-year Plan"for Sci&Tech Research of China(2006BAK20A29)Strategical Project for Science and Technology of Guangdong Province(2004A2090102)~~
文摘[Objective] The aim is to develop the piezoelectric immunosensor to detect H9-subtype avian influenza virus(AIV).[Method] The immunosensor chip was constructed by self-assembling mercaptopmpionic acid(MPA) to be monolayer on the silver-coated electrode of quartz crystal and coupling the monoclonal antibody to H9 subtype AIV with N-ethy-N'-(3-dimethyl aminopropyl)carbodiimide hydrochloride(EDC) and N-hydroxysuccinimide(NHS).The immunosensor to detect H9 subtype AIV was established.[Result] The results showed that the immunosensor displayed better specificity to H9 AIV and had no response to H5AIV and NDV when it was used for detection.The sensitivity test indicated the detection sensitivity for the H9 subtype AIV could reach 20-100 EID50.[Conclusion] The research provided a foundation for further research on the immunosensor for detecting AIV and it could be a new approach to detect other related viruses.
基金Supported by a Sub-project of 973 Program of China(2005CB523001)~~
文摘[Objective] The study aimed to investigate the genetic variation characters of entire sequences between two H9N2 subtype avian influenza virus strains and other reference strains.[Method] The entire sequences of 8 genes were obtained by using RT-PCR,and these sequences were analyzed with that of six H9N2 subtype avian influenza isolates in homology comparison and genetic evolution relation.[Result] The results showed that the nucleotide sequence of entire gene of the strain shared 91.1%-95.4% homology with other seven reference strains,and PG08 shared the highest homology 91.3% with C/BJ/1/94;ZD06 shared the highest homology 92.3% with D/HK/Y280/97.HA cleavage sites of two H9N2 subtype avian influenza virus isolated strains were PARSSR/GLF,typical of mildly pathogenic avian influenza virus.[Conclusion] Phylogenetic tree for entire gene of eight strains showed that the genetic relationship was the closest between ZD06 and C/Pak/2/99 strains,which belonged to the Eurasian lineage;PG08 shared the highest homology 91.3% with ZD06,it may be the product of gene rearrangements of other sub-lines.
基金Supported by Key Specific Program for Science and Technology of Guangdong Province (2008B020700003 A2007A020400006)~~
文摘[ Objective] The study aimed to lay a foundation for the further studies on function mechanism of NS1 protein in the interspecies transmission of waterfowl influenza virus. [Method] Using the serologic assay and the specific RT-PCR method, some strains of H9 subtype waterfowl influenza virus were isolated from the 12 to 20 day-old muscovy duck flocks without any clinical symptoms in different areas of Guangdong Province. Four of these strains, including A/duck/ZQ/303/2007(H9N2) (A3 for short), A/Duck/FJ/301/2007 (H9N2) (C1 for short), A/Duck/NH/306/2007(H9N2) ( D6 for short), A/duck/SS/402/2007(H9N2) ( E2 for short), and a strain named A/duck/ZC/2007(H9N2) (L1 for short) from a muscovy duck died of avian influenza virus (AIV), were used for NSl gene cloning and sequencing. Subsequently, the obtained NSl gene sequences were compared with other NS1 sequences registered in GenBank, and the phylogenetic analysis was also conducted. [Result] When compared with the H9N2 AIV NS1 sequences in GenBank, the NSl genes of the four AIV strains A3, C1, 136 and E2 displayed homologies ranging from 99% to 100% at nucleotide level, and 95% to 100% at amino acid level; while the NSl gene of L1 strain displayed homology ranging from 94% to 97% at nucleotide level, and 93% to 98% at amino acid level. The phylogenetic tree demonstrated that A3, C1, D6 and E2 were highly resemblant, and L1 was closest to AY66473 (chicken, 2003). By comparison with the NS1 gene sequences of L1, AF523514 (duck), AY664743 (chicken) and EF155262.1 (quail) using DNAstar, A3, C1, D6 and E.2 presented nucleotide variations at site 21 ( R→Q), 70, 71 ( KE→EG), 86 ( A→S), 124 (V→M) and 225 ( S→N), and amino acid variations at site 21,70, 71 and 86 in dsRNA- dependent protein kinase (PKR) binding domain of NSl gene, which induced the evident variations of antigenic determinant and surface proba- bility plot of NS1 protein. [ Conclusion] This study suggested that the amino acid sequence variation in PKR binding domain of NS1 protein had something to do with the virus pathogenicity.
基金supported by subproject of National Program on Key Basic Research Project (973 Program )(2005CB523001)
文摘A Objective3 This study was to understand the genetic variation characters of the H9N2 subtype avian influenza virus isolate (A/Chicken/ Hebei/WD/98, abbreviated as WD98) by comparing with other reference strains. I-Method3 Eight complete genes were amplified by RT-PCR and sequenced. The homology and genetic evolution relationship were analyzed between these sequences and that of the seven reference strains. [Result] The whole genomic sequence of WD98 strain was 91.1% -95.8% homologous to that of seven reference strains tested. This isolate shared the highest homology (95.8%) to D/HK/Y280/97 and the lowest homology (91.1% ) to C/Pak/2/99. The HA cleavage site of the WD98 strain was R-S-S-R G, and the 226th amino acid at receptor-binding site was Gin. [ Condmion] WD98 strain belongs to mildly pathogenic avian in- fluenza virus and may not infect human. The genetic relationship is the closest between A/Chicken/Hebei/wD/98 and A/duck/HongKong/Y280/ 97, both of which belong to the sub-line of A/Chicken/Beijing/1/94 in Eurasian line. And A/Chicken/Hebei/WD/98 and A/Chicken/Beijing/1/94 are genetically distant within the same sub-line.
基金Key Technologies Research and Development Program (2004BA519A26)
文摘NAS preparation, a kind of Chinese herbal medicine found by the Yunnan Eco-agricultural Research Institute, has potential antiviral activity. In this paper, the inhibiting effect of NAS preparation on H9N2 subtype Avian influenza virus (AIV) was investigated in vivo. Chickens infected with H9N2 virus were treated with NAS preparation for 4 days. The virus was then detected by hemoagglutination (HA) test and reverse transcription polymerase chain reaction (RT-PCR). The results showed that no H9N2 virus could be detected at the 7th day when the chickens were treated with 0.2g/kg/d or 0.1g/kg/d of NAS preparation. However the virus could be detected in other chickens without NAS preparation treatment. This result suggested that NAS preparation may be a potential drug candidate to control infection of H9N2 subtype AIV in chickens.
基金the National Natural Science Foundation of China[31260033,31660041]
文摘To investigate the susceptibility of Chukars to duck avian influenza virus H9N2 and explore their role in interspecies transmission of influenza viruses.Chukars were inoculated with duck avian influenza viruses H9N2.
基金supported by National Bai Qian Wan Talents Engineering Foudation (Grant No. 9452006-03 )Guangxi Science Technology Bureau (GKG- 0719004-3A)Guangxi Husbandry and Fisheries Bureau.
文摘Three isolates of H9N2 Avian Influenza viruses (AIV) were isolated from chickens in Guangxi province. Eight pairs of specific primers were designed and synthesized according to the sequences of H9N2 at GenBank. phylogenetic analysis showed a high degree of homology between the Guangxi isolates and isolates from Guangdong and Jiangsu provinces, suggesting that the Guangxi isolates originated from the same source. However, the eight genes of the three isolates from Guangxi were not in the same sublineages in their respective phylogenetic trees, which suggests that they were products of natural reassortment between H9N2 avian influenza viruses from different sublineages. The 9 nucleotides ACAGAGATA which encode amino acids T, G, I were absent between nucleotide 205 and 214 in the open reading frame of the NA gene in the Guangxi isolates. AIV strains that infect human have, in their HA proteins, leucine at position 226. The analysis of deduced amino acid sequence of HA proteins showed that position 226 of these isolates contained glycine instead of leucine, suggesting that these three isolates differ from H9N2 AIV strains isolated from human infections.
基金funded by the Beijing Academy of Agriculture and Forestry Sciences (2010A007)
文摘[Objective] The study aims to determine the optimal concentration of trypsin for the proliferation of avian influenza virus (AIV) H9N2 subtype in Madin- Darby canine kidney (MDCK) cells. [Method] Three AIV H9 subtype isolates were inoculated on MDCK cells respectively. Then, DMEM containing different concentrations of trypsin as maintenance media were added to MDCK monolayer cells. The cytopathic effect (CPE) was observed once every 24 h, and the HA titer of the supematant was measured by HA assay. [Result] When the trypsin concentration was 10 -20 μg/ml in DMEM, the HA titer of virus culture reached 7 log2 (1:128). Almost all cells were cytopathic after 96 h post inoculation with 1:1 000 or 1:10 000 dilution of AIV culture, and the virus titer reached a peak after 72 -96 h. [ Conclusion] The optimal concentration of trypsin is 10 -20 pg/ml for proliferation of AIV H9N2 subtype in MDCK cells.
基金supported by the National Modern Agricultural Industry Technology System Project of China(CARS-41)the Science and Technology Plan Project of Guangdong Province,China(2012B020306002 and 2012B091100078)
文摘H9N2 avian influenza virus(AIV) infection is a major problem in poultry industry worldwide. In this study, molecular characterizations and phylogenetic relationships of hemagglutinin(HA) gene sequences of H9N2 AIV of 5 Chinese isolates in 2014 recently available in Gen Bank, 3 widely used vaccine strains, and 52 novel isolates in China from 2013 to 2015 were analyzed. The homology analysis showed that the nucleotide sequences of HA gene of these recent Chinese H9N2 AIV isolates shared homologies from 94.1 to 99.9%. Phylogenetic analysis showed that all isolates belonged to AIV lineage h9.4.2.5. Fifty-six out of the 57 recent Chinese H9N2 AIV isolates had the motifs PSRSSR↓GLF at the cleavage sites within the HA protein, while one isolate PWH01 harbored LSRSSR↓GLF. Remarkably, all of the recent Chinese H9N2 AIV strains had the Q216 L substitution in the receptor binding site, which indicated that they had potential to infect humans. Most of recent Chinese H9N2 AIV isolates lost the potential N-linked glycosylation site at residues 200–202 compared with vaccine strains. This present study demonstrated that AIV lineage h9.4.2.5 was more predominant in China than other lineages as it harbored all the H9N2 AIV isolated between 2013 and 2015. Also we showed the importance of continuous surveillance of emerging H9N2 AIV in China and update of vaccine formulation accordingly in order to prevent and control H9N2 AIV.
文摘OBJECTIVE: To determine the origin of human influenza A (H9N2) virus and the relationship among H9N2 strains isolated from different hosts, on the basis of molecular biology. METHODS: Viruses were passed in embryonated hen eggs, and virion RNA was extracted from allantoic fluid and reverse transcribed to synthesize cDNA. cDNA was amplified by PCR and the PCR product was purified with a purification kit. Afterwards RNA sequence analysis was performed by dideoxynucleotide chain termination and a cloning method. Finally, phylogenetic analysis of the sequencing data was performed with MegAlign (version 1.03) and Editseg (version 3.69) softwares. RESULTS: The amino acid sequences at the cleavage site between HA1 and HA2 domains of H9N2 viruses isolated in China are R-S-S-R. One pigeon strain contains seven potential glycosylation sites on the HA protein molecule, while all others have eight. There are 2 to 15 differences of amino acid sequences distributed at 24 different positions on the HA protein molecules among six H9N2 viruses. The H9N2 viruses with multiple lineages of HA genes were co-circulating in China recently. CONCLUSION: The highest possibility is that human influenza A (H9N2) virus was derived from Chicken H9N2 virus, and not derived from pigeon H9N2 virus. However, it is still unknown whether the H9N2 virus could transmit from person to person. The H9N2 viruses with multiple lineages of HA genes are co-circulating in China.
基金supported by the earmarked fund for China Agriculture Research System(CARS-40)the Key Research and Development Project of Yangzhou(Modern Agriculture),China(YZ2022052)the‘‘High-end Talent Support Program’’of Yangzhou University,China。
文摘H7N9 subtype avian influenza virus poses a great challenge for poultry industry.Newcastle disease virus(NDV)-vectored H7N9 avian influenza vaccines(NDV_(vec)H7N9)are effective in disease control because they are protective and allow mass administration.Of note,these vaccines elicit undetectable H7N9-specific hemagglutination-inhibition(HI)but high IgG antibodies in chickens.However,the molecular basis and protective mechanism underlying this particular antibody immunity remain unclear.Herein,immunization with an NDV_(vec)H7N9 induced low anti-H7N9 HI and virus neutralization titers but high levels of hemagglutinin(HA)-binding IgG antibodies in chickens.Three residues(S150,G151 and S152)in HA of H7N9 virus were identified as the dominant epitopes recognized by the NDV_(vec)H7N9 immune serum.Passively transferred NDV_(vec)H7N9 immune serum conferred complete protection against H7N9 virus infection in chickens.The NDV_(vec)H7N9 immune serum can mediate a potent lysis of HA-expressing and H7N9 virus-infected cells and significantly suppress H7N9 virus infectivity.These activities of the serum were significantly impaired after heat-inactivation or treatment with complement inhibitor,suggesting the engagement of the complement system.Moreover,mutations in the 150-SGS-152 sites in HA resulted in significant reductions in cell lysis and virus neutralization mediated by the NDV_(vec)H7N9 immune serum,indicating the requirement of antibody-antigen binding for complement activity.Therefore,antibodies induced by the NDV_(vec)H7N9 can activate antibody-dependent complement-mediated lysis of H7N9 virus-infected cells and complement-mediated neutralization of H7N9 virus.Our findings unveiled a novel role of the complement in protection conferred by the NDV_(vec)H7N9,highlighting a potential benefit of engaging the complement system in H7N9 vaccine design.
文摘Background Southeast China is one of the sites of influenza origin. During 2003-2004, nine avian influenza outbreaks took place in Guangdong Province. But no human case was reported. To examine the status of potential human infection by human influenza (H1N1, H3N2) and avian influenza (H5N1, H7N7, H9N2) in the avian influenza epidemic area of Guangdong Province, China, we conducted a seroepidemiologic survey in the people of this area from April to June of 2004.Methods Three out of 9 H5N1 avian influenza affected poultry areas in Guangdong were randomly selected, and the population living within 3 kilometers of the affected poultries were chosen as the survey subjects. One thousand two hundred and fourteen people were selected from 3 villages at random. Human and avian influenza antibody titers were determined by hemagglutination-inhibition (HI) test and microneutralization test (MNT). Results The positive rate of antibody to H5N1 was 3.03% in the occupational exposure group and 2.34% in general citizens group; that of H9N2 was 9.52% in the occupational exposure group and 3.76% in the general citizens group. Moreover one case in the occupational exposure group was positive for H7N7. One year later, all previously positive cases had become negative except for one H5N1-positive case. Conclusion The observations imply that H5N1 and H9N2 avian influenza silent infections exist in Guangdong populations.
基金supported by the National Key Research and Development Program of China(grant number 2021YFC2300100)the National Nature Science Foundation of China(grant number 81971941).
文摘Background:Since the first human infection with H9N2 virus was reported in 1998,the number of cases of H9N2 infection has exceeded one hundred by 2021.However,there is no systematic description of the biological characteristics of H9N2 viruses isolated from humans.Methods:Therefore,this study analyzed the pathogenicity in mice of all available H9N2 viruses isolated from human cases in China from 2013 to 2021.Results:Although most of the H9N2 viruses analyzed showed low or no pathogenicity in mice,the leucine to glutamine substitution at residue 226(L226Q)in the hemagglutinin(HA)protein rapidly emerged during the adaptation of H9N2 viruses,and was responsible for severe infections and even fatalities.HA amino acid 226Q conferred a remarkable competitive advantage on H9N2 viruses in mice relative to viruses containing 226L,increasing their virulence,infectivity,and replication.Conclusion:Thus,our study demonstrates that the adaptive substitution HA L226Q rapidly acquired by H9N2 viruses during the course of infection in mice contributed to their high pathogenicity.
文摘Background Influenza A (H7Ng) virus infections were first observed in China in March 2013.This type virus can cause severe illness and deaths,the situation raises many urgent questions and global public health concerns.Our purpose was to investigate bedside chest radiography findings for patients with novel influenza A (H7Ng) virus infections and the followup appearances after short-time treatment.Methods Eight hospitalized patients infected with the novel influenza A (H7Ng) virus were included in our study.All of the patients underwent bedside chest radiography after admission,and all had follow-up bedside chest radiography during their first ten days,using AXIOM Aristos MX and/or AMX-Ⅳ portable X-ray units.The exposure dose was generally 90 kV and 5 mAs,and was slightly adjusted according to the weight of the patients.The initial radiography data were evaluated for radiological patterns (ground glass opacity,consolidation,and reticulation),distribution type (focal,multifocal,and diffuse),lung zones involved,and appearance at follow-up while the patients underwent therapy.Results All patients presented with bilateral multiple lung involvement.Two patients had bilateral diffuse lesions,three patients had unilateral diffuse lesions of the right lobe with multifocal lesions of the left lobe,and the remaining three had bilateral multifocal lung lesions.The lesions were present throughout bilateral lung zones in three patients,the whole right lung zone in three patients with additional involvement in the left middle and/or lower lung zone(s),both lower and middle lung zones in one patient,and the right middle and lower in combination with the left lower lung zones in one patient.The most common abnormal radiographic patterns were ground glass opacity (8/8),and consolidation (8/8).In three cases examined by CT we also found the pattern of reticulation in combination with CT images.Four patients had bilateral and four had unilateral pleural effusion.After a short period of treatment the pneumonia in one patient had significantly improved and three cases demonstrated disease progression.In four cases the severity of the pneumonia fluctuated.Conclusions In patients with influenza A (H7N9) virus infection,the distribution of the lung lesions are extensive,and the disease usually involves both lung zones.The most common imaging findings are a mixture of ground glass opacity and consolidation.Pleural effusion is common.Most cases have a poor short-time treatment response,and seem to have either rapid progressive radiographic deterioration or fluctuating radiographic changes.Chest radiography is helpful for evaluating patients with severe clinical symptoms and for follow-up evaluation.