This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is fou...This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is found that the toluene complete conversion over Pd/7.5Ce-beta zeolite occurs at 190℃,with a minimal increase of 20℃even after sulfur poisoning.It is shown that Ce-doping markedly enhances sulfur tolerance besides catalytic activity.The underlying mechanism involves CeO_(2)sites capturing sulfur species,thus safeguarding active Pd species from sulfur poisoning.It can be observed that Pd0active sites,which are crucial in the catalytic high activity,are still present in the most severely poisoned catalyst.Furthermore,Ce-modified catalyst exhibits a more stable pore structure and increased acid strength after sulfur poisoning,all of which are beneficial to improving the sulfur tolerance.Consequently,Pd/Ce-beta zeolite is a promising solution for processing sulfur-containing volatile organic compounds,offering valuable insights for developing effective and sustainable catalysts for environmental remediation.展开更多
Highly dispersed noble metals are acknowledged for its pivotal role in influencing the efficiency of catalysts during the HCHO oxidation process.Interestingly,in this work,an innovative approach was employed to augmen...Highly dispersed noble metals are acknowledged for its pivotal role in influencing the efficiency of catalysts during the HCHO oxidation process.Interestingly,in this work,an innovative approach was employed to augmenting the stabilization of noble metals on irreducible carriers supported noble metal catalyst(Pd/SiO_(2))by adding alkali metal potassium(K).A formidable promotion effect was observed when the K doping to Pd/SiO_(2) catalysts.It achieves a conversion rate of 93%for 270 ppmV of HCHO to harmless CO_(2) and H_(2)O at a weight hourly space velocity(WHSV)of 300,000 mL/(g·hr)at 25℃.Multiple characterization results illustrated that a strong interaction between added K and Pd species was formed after K addition,which not only stabilized Pd species on the carrier surface but alsomarkedly enhanced its dispersal on the SiO_(2) carrier.The increasing Pd dispersion induced more oxygen vacancies on the surfaces of the Pd/SiO_(2) catalysts.The formation of these oxygen vacancies can be attributed to the phenomenon of hydrogen spillover,which also contributed to elevating the electron density on the Pd sites.Meanwhile,the oxygen vacancies favored the O_(2) activation to formmore reactive oxygen species participating in the HCHO oxidation reaction,thus improving the performance of Pd/SiO_(2) catalysts displayed for HCHO oxidation.This study provides a simple strategy to design high-performance irreducible carriers supported noble metal catalysts for HCHO catalytic oxidation.展开更多
Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocat...Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocatalysts,while concurrently preventing side reactions and photocorrosion on the semiconductor surface.Herein,Ni-Co bimetallic hydroxides with varying Ni/Co molar ratios(Ni_(x)Co_(1-x)(OH)_(2),x=1,0.75,0.5,0.25,and 0)were grown in situ on a model 2D/2D S-scheme heterojunction composed of Cu_(2)O nanosheets and Fe_(2)O_(3)nanoplates to form a series of Cu_(2)O/Fe_(2)O_(3)@Ni_(x)Co_(1-x)(OH)_(2)(CF@NiCo)photocatalysts.The combined experimental and theoretical investigation demonstrates that incorporating an appropriate amount of Co into Ni(OH)_(2)not only modulates the energy band structure of Ni_(x)Co_(1-x)(OH)_(2),balances the electron-and hole-trapping abilities of the bifunctional cocatalyst and maximizes the charge separation efficiency of the heterojunction,but also regulates the d-band center of Ni_(x)Co_(1-x)(OH)_(2),reinforcing the adsorption and activation of CO_(2)and H_(2)O on the cocatalyst surface and lowering the rate-limiting barriers in the CO_(2)-to-CO and H_(2)O-to-O_(2)conversion.Benefiting from the Ni-Co synergy,the redox reactions proceed stoichiometrically.The optimized CF@Ni_(0.75)Co_(0.25)achieves CO and O_(2)yields of 552.7 and 313.0μmol gcat^(-1)h^(-1),respectively,11.3/9.9,1.6/1.7,and 4.5/5.9-fold higher than those of CF,CF@Ni,and CF@Co.This study offers valuable insights into the design of bifunctional noble-metal-free cocatalysts for high-performance artificial photosynthesis.展开更多
The expandable graphite(EG)modified TiO_(2) nanocomposites were prepared by the high shearmethod using the TiO_(2) nanoparticles(NPs)and EG as precursors,in which the amount of EG doped in TiO_(2) was 10 wt.%.Followed...The expandable graphite(EG)modified TiO_(2) nanocomposites were prepared by the high shearmethod using the TiO_(2) nanoparticles(NPs)and EG as precursors,in which the amount of EG doped in TiO_(2) was 10 wt.%.Followed by the impregnation method,adjusting the pH of the solution to 10,and using the electrostatic adsorption to achieve spatial confinement,the Pt elementswere mainly distributed on the exposed TiO_(2),thus generating the Pt/10EG-TiO_(2)-10 catalyst.The best CO oxidation activity with the excellent resistance to H_(2)O and SO_(2) was obtained over the Pt/10EG-TiO_(2)-10 catalyst:CO conversion after 36 hr of the reaction was ca.85%under the harsh condition of 10 vol.%H_(2)O and 100 ppm SO_(2) at a high gaseous hourly space velocity(GHSV)of 400,000 hr−1.Physicochemical properties of the catalystswere characterized by various techniques.The results showed that the electrostatic adsorption,which riveted the Pt elements mainly on the exposed TiO_(2) of the support surface,reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs,hence significantly improving CO oxidation activity over the Pt/10EG-TiO_(2)-10 catalyst.The 10 wt.%EG doped in TiO_(2) caused the TiO_(2) support to form a more hydrophobic surface,which reduced the adsorption of H_(2)O and SO_(2) on the catalyst,greatly inhibited deposition of the TiOSO_(4) and formation of the PtSO4 species as well as suppressed the oxidation of SO_(2),thus resulting in an improvement in the resistance to H_(2)O and SO_(2) of the Pt/10EG-TiO_(2)-10 catalyst.展开更多
The integration of selective oxidation of renewable biomass and its derivatives with hydrogen(H_(2))pro-duction holds significant potential for simultaneously yielding value-added chemicals and“green H_(2)”,contribu...The integration of selective oxidation of renewable biomass and its derivatives with hydrogen(H_(2))pro-duction holds significant potential for simultaneously yielding value-added chemicals and“green H_(2)”,contributing to addressing sustainability challenges.The S-scheme charge transfer mechanism enhances charge separation by maintaining strong redox potentials at both ends,facilitating both oxidation and reduction reactions.Herein,we synthesize a visible-light-responsive oxygen vacancy-rich In_(2)O_(3-x)/tubular carbon nitride(IO_(OV)/TCN)S-scheme heterojunction photocatalyst via electrostatic adherence for selec-tive 5-hydroxymethylfurfural(HMF)oxidation to 2,5-diformylfuran(DFF)and 2,5-furandicarboxylic acid(FDCA),alongside H_(2)production.Under anaerobic conditions and visible-light irradiation,the optimal IOOV/TCN-10 catalyst achieves an HMF conversion of 94.8%with a selectivity of 53.6%for DFF and FDCA,and a H_(2)yield of 754.05μmol g^(−1)in 3 h.The significantly improved photocatalytic activity results from enhanced visible-light absorption,reduced carrier recombination,and abundant catalytic active sites due to the synergistic effect of surface oxygen vacancies,the hollow nanotube-based architecture,and the S-scheme charge transfer mechanism.This work highlights the great potentials of S-scheme heterojunctions in biomass conversion for sustainable energy use and chemical production.展开更多
Three Pd/CeO2 catalysts were,respectively,prepared by reduction-deposition and impregnation method(IMP)to investigate the effect of chemical state of Pd on CO oxidation.Two kinds of surface Pd species,namely PdO and P...Three Pd/CeO2 catalysts were,respectively,prepared by reduction-deposition and impregnation method(IMP)to investigate the effect of chemical state of Pd on CO oxidation.Two kinds of surface Pd species,namely PdO and Pdδ+(2<δ≤4)in PdxCe1-xO2,were identified in all Pd/CeO2 samples although their relative ratios in each sample were different.Surface PdxCe1-xO2 species were found to be very active for CO oxidation,and it could act as a channel by which active oxygen species can be transferred from CeO2 to Pd species for CO oxidation.Our results reveal that the preparation method can severely influence the chemical state of Pd which can further determine the activity for CO oxidation.展开更多
To simultaneously reduce noble metal Pd usage and enhance electrocatalytic performance for methanol oxidation,Pd/Co2O3 composites with ultrafine three-dimensional(3D)nanoporous structures were designed and synthesized...To simultaneously reduce noble metal Pd usage and enhance electrocatalytic performance for methanol oxidation,Pd/Co2O3 composites with ultrafine three-dimensional(3D)nanoporous structures were designed and synthesized by simple one-step dealloying of a melt-spun Al-Pd-Co alloy with an alkaline solution.Their electrocatalytic activity in alkaline media was determined by a Versa-STAT MC workstation.The results indicate that the typical sizes of the ligaments and pores of the composites were approximately 8-9 nm.The Co2O3 was uniformly distributed on the Pd ligament surface.Among the as-prepared samples,the nanoporous Pd/Co2O3 composite generated from dealloying of the Al84.5Pd15Co0.5 alloy had the best electrocatalytic activity,and its activity was enhanced by approximately 230%compared with the nanoporous Pd from dealloying of Al85Pd15.The improvement of the electrocatalytic performance was mainly attributed to the electronic modification effect between Pd and Co as well as the bifunctional mechanism between Pd and Co2O3.展开更多
Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and coppe...Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.展开更多
A series of Na-doped 1 wt% Pd/Al2O3 catalysts with different Na loadings were prepared by wet impregnation and tested for the catalytic oxidation of benzene. Suitable addition of Na had a remarkable promotion effect o...A series of Na-doped 1 wt% Pd/Al2O3 catalysts with different Na loadings were prepared by wet impregnation and tested for the catalytic oxidation of benzene. Suitable addition of Na had a remarkable promotion effect on water resistance and enhancement of low temperature activity of Pd/Al2O3 catalysts. The optimal mole ratio between Na and Pd was 1:1. The properties of the prepared catalysts were characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (O2-TPD), and in situ DRIFTS. Results indicated that the addition of Na not only decreased the content of adsorbed water species but also increased the amount of liable surface oxygen species, which are likely the key factors for the excellent water resistance of the catalyst. Na addition also improved the mobility of the lattice oxygen species, which was favorable for catalytic activity. Moreover, the well-dispersed negatively charged Pd particles and suitable redox properties derived from Na addition also contributed to the improved performance and water resistance of the Na1Pd1/Al2O3 catalyst. In situ DRIFTS results revealed that benzene was oxidized to maleate and acetate species via intermediate o-benzoquinone species, which finally turned into harmless CO2 and H2O.展开更多
Ti O2-supported Pd Au bimetallic nanoparticles(NPs) with small size and good dispersity were prepared by the room-temperature ionic liquid-assisted bimetal sputtering, which is simple, environmentally friendly, and fr...Ti O2-supported Pd Au bimetallic nanoparticles(NPs) with small size and good dispersity were prepared by the room-temperature ionic liquid-assisted bimetal sputtering, which is simple, environmentally friendly, and free of additives and byproducts. Pd/Au atomic ratio can be tuned by controlling the sputtering conditions simply. High catalytic activity was found in Pd Au–NPs–Ti O2 hybrids for solvent-free selective oxidation of 1-phenylethanol using O2 as the oxidant at the low temperature of 50 °C and low pressure of 1 atm. It was found that Pd/Au ratio strongly affected the catalytical activity, and the highest conversion of about 35 % and turnover frequency of about 421 h-1were achieved at 1:1 of Pd/Au atomic ratio. The synergistic effect in Pd Au NPs was also discussed based on the comprehensive characterization results.The present approach may offer an alternative platform for future development of green-chemistry compatible bimetallic nanocatalysts.展开更多
α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 ...α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.展开更多
A series of Pd/La-Al2O3(PLA) catalysts with La-Al2O3(LA) support calcined at different temperatures(500, 700, 900 and 1050 oC) were prepared using an incipient wetness impregnation method. The activity of the fr...A series of Pd/La-Al2O3(PLA) catalysts with La-Al2O3(LA) support calcined at different temperatures(500, 700, 900 and 1050 oC) were prepared using an incipient wetness impregnation method. The activity of the fresh and hydrothermally aged PLA catalysts were tested for total oxidation of CO and C3H8. The activity of the fresh PLA catalysts for CO and C3H8 oxidation increased with increasing calcination temperature of the support, while the activities of the aged catalysts declined and became essentially the same. CO chemisorption results revealed that the suppressed activities of the aged catalysts were mainly due to the decline of palladium dispersion. The turnover frequency(TOF) of CO oxidation increased with increasing reduction ability of the catalysts, with a fresh catalyst calcined at 1050 oC having the highest value(0.048 s–1). However, the TOF of C3H8 total oxidation was affected by not only the redox properties of catalysts but also the size of Pd particle, and large Pd particles possessed higher TOF value of C3H8 oxidation, with the highest value(0.125 s–1) being obtained on an aged catalyst calcined at 500 oC.展开更多
Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the...Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.展开更多
3Gd2O3-3Yb2O3-4Y2O3 (mole fraction, %) co-doped ZrO2 (GY-YSZ) thermal barrier coatings (TBCs) were produced by electron beam physical vapor deposition (EB-PVD). The oxidation behavior of GY-YSZ at 1 050 ℃ was...3Gd2O3-3Yb2O3-4Y2O3 (mole fraction, %) co-doped ZrO2 (GY-YSZ) thermal barrier coatings (TBCs) were produced by electron beam physical vapor deposition (EB-PVD). The oxidation behavior of GY-YSZ at 1 050 ℃ was investigated using impedance spectroscopy (IS) combined with scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffractometry (XRD). Various electrical responses observed in the impedance spectra corresponding to GY-YSZ grains and grain boundaries were explained using circuit modeling. The change in the conduction mechanism of GY-YSZ was found to be related to the O^2- vacancy and lattice distortion due to the stabilizer diffusion during the oxidation. The results also suggested that the specific oxidation information about the GY-YSZ grains and grain boundaries should be acquired at a moderate measurement temperature, which was related to the resistance value in the impedance spectra. The resistance values of the GY-YSZ grains and grain boundaries should be measured at 200 ℃ and 300 ℃, respectively.展开更多
Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employ...Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.展开更多
Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+d...Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.展开更多
基金Project supported by Zhejiang Public Welfare Technology Research Project(LGG19B070003)the National Natural Science Foundation of China(21902069)。
文摘This study examined the impact of CeO_(2)addition on the sulfur tolerance of Pd/beta zeolite catalyst in toluene catalytic oxidation.By preparing and assessing Ce-modified beta zeolite-supported Pd catalysts,it is found that the toluene complete conversion over Pd/7.5Ce-beta zeolite occurs at 190℃,with a minimal increase of 20℃even after sulfur poisoning.It is shown that Ce-doping markedly enhances sulfur tolerance besides catalytic activity.The underlying mechanism involves CeO_(2)sites capturing sulfur species,thus safeguarding active Pd species from sulfur poisoning.It can be observed that Pd0active sites,which are crucial in the catalytic high activity,are still present in the most severely poisoned catalyst.Furthermore,Ce-modified catalyst exhibits a more stable pore structure and increased acid strength after sulfur poisoning,all of which are beneficial to improving the sulfur tolerance.Consequently,Pd/Ce-beta zeolite is a promising solution for processing sulfur-containing volatile organic compounds,offering valuable insights for developing effective and sustainable catalysts for environmental remediation.
基金supported by the Youth Innovation Promotion Association,CAS(No.2020310)Sanming University(No.23YG05).
文摘Highly dispersed noble metals are acknowledged for its pivotal role in influencing the efficiency of catalysts during the HCHO oxidation process.Interestingly,in this work,an innovative approach was employed to augmenting the stabilization of noble metals on irreducible carriers supported noble metal catalyst(Pd/SiO_(2))by adding alkali metal potassium(K).A formidable promotion effect was observed when the K doping to Pd/SiO_(2) catalysts.It achieves a conversion rate of 93%for 270 ppmV of HCHO to harmless CO_(2) and H_(2)O at a weight hourly space velocity(WHSV)of 300,000 mL/(g·hr)at 25℃.Multiple characterization results illustrated that a strong interaction between added K and Pd species was formed after K addition,which not only stabilized Pd species on the carrier surface but alsomarkedly enhanced its dispersal on the SiO_(2) carrier.The increasing Pd dispersion induced more oxygen vacancies on the surfaces of the Pd/SiO_(2) catalysts.The formation of these oxygen vacancies can be attributed to the phenomenon of hydrogen spillover,which also contributed to elevating the electron density on the Pd sites.Meanwhile,the oxygen vacancies favored the O_(2) activation to formmore reactive oxygen species participating in the HCHO oxidation reaction,thus improving the performance of Pd/SiO_(2) catalysts displayed for HCHO oxidation.This study provides a simple strategy to design high-performance irreducible carriers supported noble metal catalysts for HCHO catalytic oxidation.
文摘Layered transition metal hydroxides show distinct advantages in separately co-catalyzing CO_(2)reduction and H_(2)O oxidation at the electron-accumulating and hole-accumulating sites of wrapped heterojunction photocatalysts,while concurrently preventing side reactions and photocorrosion on the semiconductor surface.Herein,Ni-Co bimetallic hydroxides with varying Ni/Co molar ratios(Ni_(x)Co_(1-x)(OH)_(2),x=1,0.75,0.5,0.25,and 0)were grown in situ on a model 2D/2D S-scheme heterojunction composed of Cu_(2)O nanosheets and Fe_(2)O_(3)nanoplates to form a series of Cu_(2)O/Fe_(2)O_(3)@Ni_(x)Co_(1-x)(OH)_(2)(CF@NiCo)photocatalysts.The combined experimental and theoretical investigation demonstrates that incorporating an appropriate amount of Co into Ni(OH)_(2)not only modulates the energy band structure of Ni_(x)Co_(1-x)(OH)_(2),balances the electron-and hole-trapping abilities of the bifunctional cocatalyst and maximizes the charge separation efficiency of the heterojunction,but also regulates the d-band center of Ni_(x)Co_(1-x)(OH)_(2),reinforcing the adsorption and activation of CO_(2)and H_(2)O on the cocatalyst surface and lowering the rate-limiting barriers in the CO_(2)-to-CO and H_(2)O-to-O_(2)conversion.Benefiting from the Ni-Co synergy,the redox reactions proceed stoichiometrically.The optimized CF@Ni_(0.75)Co_(0.25)achieves CO and O_(2)yields of 552.7 and 313.0μmol gcat^(-1)h^(-1),respectively,11.3/9.9,1.6/1.7,and 4.5/5.9-fold higher than those of CF,CF@Ni,and CF@Co.This study offers valuable insights into the design of bifunctional noble-metal-free cocatalysts for high-performance artificial photosynthesis.
基金supported by the National Key R&D Program of China (No.2017YFC0210303).
文摘The expandable graphite(EG)modified TiO_(2) nanocomposites were prepared by the high shearmethod using the TiO_(2) nanoparticles(NPs)and EG as precursors,in which the amount of EG doped in TiO_(2) was 10 wt.%.Followed by the impregnation method,adjusting the pH of the solution to 10,and using the electrostatic adsorption to achieve spatial confinement,the Pt elementswere mainly distributed on the exposed TiO_(2),thus generating the Pt/10EG-TiO_(2)-10 catalyst.The best CO oxidation activity with the excellent resistance to H_(2)O and SO_(2) was obtained over the Pt/10EG-TiO_(2)-10 catalyst:CO conversion after 36 hr of the reaction was ca.85%under the harsh condition of 10 vol.%H_(2)O and 100 ppm SO_(2) at a high gaseous hourly space velocity(GHSV)of 400,000 hr−1.Physicochemical properties of the catalystswere characterized by various techniques.The results showed that the electrostatic adsorption,which riveted the Pt elements mainly on the exposed TiO_(2) of the support surface,reduced the dispersion of Pt NPs on EG and achieved the effective dispersion of Pt NPs,hence significantly improving CO oxidation activity over the Pt/10EG-TiO_(2)-10 catalyst.The 10 wt.%EG doped in TiO_(2) caused the TiO_(2) support to form a more hydrophobic surface,which reduced the adsorption of H_(2)O and SO_(2) on the catalyst,greatly inhibited deposition of the TiOSO_(4) and formation of the PtSO4 species as well as suppressed the oxidation of SO_(2),thus resulting in an improvement in the resistance to H_(2)O and SO_(2) of the Pt/10EG-TiO_(2)-10 catalyst.
基金financially supported by the Natural Science Foundation of China(Nos.21972058,22102064,and 22302080)Anhui Key Laboratory of Nanomaterials and Nanotechnology,the Major Science and Technology Projects in Anhui Province(No.202305a12020006).
文摘The integration of selective oxidation of renewable biomass and its derivatives with hydrogen(H_(2))pro-duction holds significant potential for simultaneously yielding value-added chemicals and“green H_(2)”,contributing to addressing sustainability challenges.The S-scheme charge transfer mechanism enhances charge separation by maintaining strong redox potentials at both ends,facilitating both oxidation and reduction reactions.Herein,we synthesize a visible-light-responsive oxygen vacancy-rich In_(2)O_(3-x)/tubular carbon nitride(IO_(OV)/TCN)S-scheme heterojunction photocatalyst via electrostatic adherence for selec-tive 5-hydroxymethylfurfural(HMF)oxidation to 2,5-diformylfuran(DFF)and 2,5-furandicarboxylic acid(FDCA),alongside H_(2)production.Under anaerobic conditions and visible-light irradiation,the optimal IOOV/TCN-10 catalyst achieves an HMF conversion of 94.8%with a selectivity of 53.6%for DFF and FDCA,and a H_(2)yield of 754.05μmol g^(−1)in 3 h.The significantly improved photocatalytic activity results from enhanced visible-light absorption,reduced carrier recombination,and abundant catalytic active sites due to the synergistic effect of surface oxygen vacancies,the hollow nanotube-based architecture,and the S-scheme charge transfer mechanism.This work highlights the great potentials of S-scheme heterojunctions in biomass conversion for sustainable energy use and chemical production.
基金financially supported by the National Key Research and Development Program of China(No.2016YFC0204300)the National Natural Science Foundation of China(Nos.21171055 and 21571061)。
文摘Three Pd/CeO2 catalysts were,respectively,prepared by reduction-deposition and impregnation method(IMP)to investigate the effect of chemical state of Pd on CO oxidation.Two kinds of surface Pd species,namely PdO and Pdδ+(2<δ≤4)in PdxCe1-xO2,were identified in all Pd/CeO2 samples although their relative ratios in each sample were different.Surface PdxCe1-xO2 species were found to be very active for CO oxidation,and it could act as a channel by which active oxygen species can be transferred from CeO2 to Pd species for CO oxidation.Our results reveal that the preparation method can severely influence the chemical state of Pd which can further determine the activity for CO oxidation.
基金Project(51371135)supported by the National Natural Science Foundation of China
文摘To simultaneously reduce noble metal Pd usage and enhance electrocatalytic performance for methanol oxidation,Pd/Co2O3 composites with ultrafine three-dimensional(3D)nanoporous structures were designed and synthesized by simple one-step dealloying of a melt-spun Al-Pd-Co alloy with an alkaline solution.Their electrocatalytic activity in alkaline media was determined by a Versa-STAT MC workstation.The results indicate that the typical sizes of the ligaments and pores of the composites were approximately 8-9 nm.The Co2O3 was uniformly distributed on the Pd ligament surface.Among the as-prepared samples,the nanoporous Pd/Co2O3 composite generated from dealloying of the Al84.5Pd15Co0.5 alloy had the best electrocatalytic activity,and its activity was enhanced by approximately 230%compared with the nanoporous Pd from dealloying of Al85Pd15.The improvement of the electrocatalytic performance was mainly attributed to the electronic modification effect between Pd and Co as well as the bifunctional mechanism between Pd and Co2O3.
基金National Natural Science Foundation of China (50432020)Henan Innovation Project for University Prominent Re- search Talents (2007KYCX008)+3 种基金Henan Education Department Science and Technology Project (2007430004)Henan Plan Project for College Youth Backbone TeacherHenan University of Science and Technology Major Pre-research Foundation (2005ZD003)Henan University of Science and Technology Personnel Scientific Research Foundation (of023)
文摘Two Al2O3/Cu composites containing 0.24 wt.% Al2O3 and 0.60 wt.% Al2O3 separately are prepared by internal oxidation. Effects of sliding speed and pressure on the frictional characteristics of the composites and copper against brass are investigated and compared. The changes in morphology of the sliding surface and subsurface are examined with scanning electron microscope (SEM) and energy dispersive X-ray spectrum (EDS). The results show that the wear resistance of the Al2O3/Cu composites is superior to that of copper under the same conditions, Under a given electrical current, the wear rate of Al2O3/Cu composites decreases as the Al2O3-content increases, However, the wear rates of the Al2O3/Cu composites and copper increase as the sliding speed and pressure increase under dry sliding condition. The main wear mechanisms for Al2O3/Cu composites are of abrasion and adhesion; for copper, it is adhesion, although wear by oxidation and electrical erosion can also be observed as the speed and pressure rise.
基金supported by the National Natural Science Foundation of China (No. 51608504)Youth Innovation Promotion AssociationChinese Academy of Sciences(No. 2017064)
文摘A series of Na-doped 1 wt% Pd/Al2O3 catalysts with different Na loadings were prepared by wet impregnation and tested for the catalytic oxidation of benzene. Suitable addition of Na had a remarkable promotion effect on water resistance and enhancement of low temperature activity of Pd/Al2O3 catalysts. The optimal mole ratio between Na and Pd was 1:1. The properties of the prepared catalysts were characterized by X-ray diffraction (XRD), Brunauer Emmett Teller (BET), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), O2-temperature-programmed desorption (O2-TPD), and in situ DRIFTS. Results indicated that the addition of Na not only decreased the content of adsorbed water species but also increased the amount of liable surface oxygen species, which are likely the key factors for the excellent water resistance of the catalyst. Na addition also improved the mobility of the lattice oxygen species, which was favorable for catalytic activity. Moreover, the well-dispersed negatively charged Pd particles and suitable redox properties derived from Na addition also contributed to the improved performance and water resistance of the Na1Pd1/Al2O3 catalyst. In situ DRIFTS results revealed that benzene was oxidized to maleate and acetate species via intermediate o-benzoquinone species, which finally turned into harmless CO2 and H2O.
基金supported by the National Natural Science Foundation of China(No.61274019)the Collaborative Innovation Center of Suzhou Nano Science & Technologythe Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘Ti O2-supported Pd Au bimetallic nanoparticles(NPs) with small size and good dispersity were prepared by the room-temperature ionic liquid-assisted bimetal sputtering, which is simple, environmentally friendly, and free of additives and byproducts. Pd/Au atomic ratio can be tuned by controlling the sputtering conditions simply. High catalytic activity was found in Pd Au–NPs–Ti O2 hybrids for solvent-free selective oxidation of 1-phenylethanol using O2 as the oxidant at the low temperature of 50 °C and low pressure of 1 atm. It was found that Pd/Au ratio strongly affected the catalytical activity, and the highest conversion of about 35 % and turnover frequency of about 421 h-1were achieved at 1:1 of Pd/Au atomic ratio. The synergistic effect in Pd Au NPs was also discussed based on the comprehensive characterization results.The present approach may offer an alternative platform for future development of green-chemistry compatible bimetallic nanocatalysts.
基金Project (2006BAB02B05-04- 01/02) supported by the National Key Technologies R&D Program of China
文摘α-Bi2O3 powders were prepared from nanometer Bi powders through low-temperature oxidation at less than 873.15 K. XRD, SEM, TEM and HRTEM were used to characterize the structure and morphology of Bi powders and Bi2O3 particles. Kinetic studies on the bismuth oxidation at low-temperatures were carried out by TGA method. The results show that bismuth beads should be reunited and oxidized to become irregular Bi2O3 powders. The bismuth oxidation follows shrinking core model, and its controlling mechanism varies at different reaction time. Within 0-10 min, the kinetics is controlled by chemical reaction, after that it is controlled by O2 diffusion in the solid α-Bi2O3 layer. The apparent activation energy is determined as 55.19 kJ/mol in liquid-phase oxidation.
基金Project supported by National Natural Science Foundation of China(21173195,21203167)
文摘A series of Pd/La-Al2O3(PLA) catalysts with La-Al2O3(LA) support calcined at different temperatures(500, 700, 900 and 1050 oC) were prepared using an incipient wetness impregnation method. The activity of the fresh and hydrothermally aged PLA catalysts were tested for total oxidation of CO and C3H8. The activity of the fresh PLA catalysts for CO and C3H8 oxidation increased with increasing calcination temperature of the support, while the activities of the aged catalysts declined and became essentially the same. CO chemisorption results revealed that the suppressed activities of the aged catalysts were mainly due to the decline of palladium dispersion. The turnover frequency(TOF) of CO oxidation increased with increasing reduction ability of the catalysts, with a fresh catalyst calcined at 1050 oC having the highest value(0.048 s–1). However, the TOF of C3H8 total oxidation was affected by not only the redox properties of catalysts but also the size of Pd particle, and large Pd particles possessed higher TOF value of C3H8 oxidation, with the highest value(0.125 s–1) being obtained on an aged catalyst calcined at 500 oC.
基金Project(GC13A113)supported by the Technology Research and Development Program of Heilongjiang Provincial Science and Technology DepartmentProject(12511469)supported by Heilongjiang Provincial Science and Technology Department
文摘Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.
基金Projects (50771009, 50731001 and 51071013) supported by the National Natural Science Foundations of China Project (2010CB631200) supported by the National Basic Research Program of China
文摘3Gd2O3-3Yb2O3-4Y2O3 (mole fraction, %) co-doped ZrO2 (GY-YSZ) thermal barrier coatings (TBCs) were produced by electron beam physical vapor deposition (EB-PVD). The oxidation behavior of GY-YSZ at 1 050 ℃ was investigated using impedance spectroscopy (IS) combined with scanning electron microscopy (SEM), Raman spectroscopy and X-ray diffractometry (XRD). Various electrical responses observed in the impedance spectra corresponding to GY-YSZ grains and grain boundaries were explained using circuit modeling. The change in the conduction mechanism of GY-YSZ was found to be related to the O^2- vacancy and lattice distortion due to the stabilizer diffusion during the oxidation. The results also suggested that the specific oxidation information about the GY-YSZ grains and grain boundaries should be acquired at a moderate measurement temperature, which was related to the resistance value in the impedance spectra. The resistance values of the GY-YSZ grains and grain boundaries should be measured at 200 ℃ and 300 ℃, respectively.
基金Project (50771021) supported by the National Natural Science Foundation of China
文摘Al2O3/Au nano-laminated composite coatings were prepared by means of magnetron sputtering. The coating was compact and comprised of nano-laminated Al2O3 and Au layers. High temperature cyclic oxidation test was employed to investigate the oxidation resistance of the composite coatings. The results revealed that the applied Al2O3/Au nano-laminated composite coatings improved the oxidation and spallation resistance of the stainless steel substrate significantly. The mechanism accounting for oxidation resistance was related with the suppression of inward oxygen diffusion and selective oxidation of Cr in the substrate. The mechanism accounting for spallation resistance was attributed to the relaxation of thermal stress by the nano-laminated structure.
基金supported by the National Natural Science Foundation of China(No.21805018)by Sichuan Science and Technology Program(Nos.2022ZHCG0018,2023NSFSC0117 and 2023ZHCG0060)Yibin Science and Technology Program(No.2022JB005)and China Postdoctoral Science Foundation(No.2022M722704).
文摘Layered transition metal oxides have emerged as promising cathode materials for sodium ion batteries.However,irreversible phase transitions cause structural distortion and cation rearrangement,leading to sluggish Na+dynamics and rapid capacity decay.In this study,we propose a medium-entropy cathode by simultaneously introducing Fe,Mg,and Li dopants into a typical P2-type Na_(0.75)Ni_(0.25)Mn_(0.75)O_(2)cathode.The modified Na_(0.75)Ni_(0.2125)Mn_(0.6375)Fe_(0.05)Mg_(0.05)Li_(0.05)O_(2)cathode predominantly exhibits a main P2 phase(93.5%)with a minor O3 phase(6.5%).Through spectroscopy techniques and electrochemical investigations,we elucidate the redox mechanisms of Ni^(2+/3+/4+),Mn^(3+/4+),Fe^(3+/4+),and O_(2)-/O_(2)^(n-)during charging/discharging.The medium-entropy doping mitigates the detrimental P2-O_(2)phase transition at high-voltage,replacing it with a moderate and reversible structural evolution(P2-OP4),thereby enhancing structural stability.Consequently,the modified cathode exhibits a remarkable rate capacity of 108.4 mAh·g^(-1)at 10C,with a capacity retention of 99.0%after 200 cycles at 1C,82.5%after 500 cycles at 5C,and 76.7%after 600 cycles at 10C.Furthermore,it also demonstrates superior electrochemical performance at high cutoff voltage of 4.5 V and extreme temperature(55 and 0℃).This work offers solutions to critical challenges in sodium ion batteries cathode materials.