期刊文献+
共找到19,388篇文章
< 1 2 250 >
每页显示 20 50 100
Simulation-Based Novel Hybrid Proportional Derivative/H-Infinity Controller Design for Improved Trajectory Tracking of a Two-Link Robot Arm
1
作者 BANKOLE Adesola Temitope IGBONOBA Ezekiel Endurance Chukwuemeke 《Journal of Shanghai Jiaotong university(Science)》 2025年第6期1179-1187,共9页
A hybrid control strategy integrating proportional derivative(PD)and the H-infinity control methodology is proposed for a serial two-link robotic manipulator with the goal of improving the tracking performance of the ... A hybrid control strategy integrating proportional derivative(PD)and the H-infinity control methodology is proposed for a serial two-link robotic manipulator with the goal of improving the tracking performance of the robot arm.The H-infinity controller has the ability to achieve a high performance and robustness in the presence of disturbances and uncertainties,while the PD controller is effective in stabilizing the manipulator.Simulation results using Matlab and Simulink show that the proposed hybrid controller,which integrates the advantages of both PD and H-infinity controllers,has the lowest rise time for the second link,the lowest settling time for the two links,the lowest peak time for both links,and the fastest decay of the error response.In addition,the hybrid control scheme also has the lowest mean square error value,with a 53.3%improvement over the H-infinity controller and a 91.8%improvement over the PD controller,indicating an improved trajectory tracking performance when compared with pure PD and pure H-infinity controllers,respectively.It was also found that the hybrid controller has the lowest integral absolute error,integral square error,integral time absolute error,and integral time square error for the second link,while the error values for the first link are satisfactory,showing a superior performance of the hybrid controller above the PD and H-infinity controllers,respectively. 展开更多
关键词 robot arm trajectory tracking proportional derivative(PD)control h-infinity control hybrid PD/h-infinity control
原文传递
Temperature control for liquid-cooled fuel cells based on fuzzy logic and variable-gain generalized supertwisting algorithm
2
作者 CHEN Lin JIA Zhi-huan +1 位作者 DING Tian-wei GAO Jin-wu 《控制理论与应用》 北大核心 2025年第8期1596-1605,共10页
The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade tempe... The liquid cooling system(LCS)of fuel cells is challenged by significant time delays,model uncertainties,pump and fan coupling,and frequent disturbances,leading to overshoot and control oscillations that degrade temperature regulation performance.To address these challenges,we propose a composite control scheme combining fuzzy logic and a variable-gain generalized supertwisting algorithm(VG-GSTA).Firstly,a one-dimensional(1D)fuzzy logic controler(FLC)for the pump ensures stable coolant flow,while a two-dimensional(2D)FLC for the fan regulates the stack temperature near the reference value.The VG-GSTA is then introduced to eliminate steady-state errors,offering resistance to disturbances and minimizing control oscillations.The equilibrium optimizer is used to fine-tune VG-GSTA parameters.Co-simulation verifies the effectiveness of our method,demonstrating its advantages in terms of disturbance immunity,overshoot suppression,tracking accuracy and response speed. 展开更多
关键词 liquid-cooled fuel cell temperature control generalized supertwisting algorithm fuzzy control equilibrium optimizer
在线阅读 下载PDF
Grid-Connected/Islanded Switching Control Strategy for Photovoltaic Storage Hybrid Inverters Based on Modified Chimpanzee Optimization Algorithm
3
作者 Chao Zhou Narisu Wang +1 位作者 Fuyin Ni Wenchao Zhang 《Energy Engineering》 EI 2025年第1期265-284,共20页
Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th... Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability. 展开更多
关键词 Photovoltaic storage hybrid inverters modified chimpanzee optimization algorithm droop control seamless switching
在线阅读 下载PDF
Optimal load frequency control system for two-area connected via AC/DC link using cuckoo search algorithm
4
作者 Gaber EL-SAADY Alexey MIKHAYLOV +2 位作者 Nora BARANYAI Mahrous AHMED Mahmoud HEMEIDA 《虚拟现实与智能硬件(中英文)》 2025年第3期299-316,共18页
Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a ... Background Interconnection of different power systems has a major effect on system stability.This study aims to design an optimal load frequency control(LFC)system based on a proportional-integral(PI)controller for a two-area power system.Methods Two areas were connected through an AC tie line in parallel with a DC link to stabilize the frequency of oscillations in both areas.The PI parameters were tuned using the cuckoo search algorithm(CSA)to minimize the integral absolute error(IAE).A state matrix was provided,and the stability of the system was verified by calculating the eigenvalues.The frequency response was investigated for load variation,changes in the generator rate constraint,the turbine time constant,and the governor time constant.Results The CSA was compared with particle swarm optimization algorithm(PSO)under identical conditions.The system was modeled based on a state-space mathematical representation and simulated using MATLAB.The results demonstrated the effectiveness of the proposed controller based on both algorithms and,it is clear that CSA is superior to PSO.Conclusion The CSA algorithm smoothens the system response,reduces ripples,decreases overshooting and settling time,and improves the overall system performance under different disturbances. 展开更多
关键词 Load frequency control Cuckoo search algorithm PI controllers State space modeling
在线阅读 下载PDF
Fishing Ship Trajectory Tracking Control Based on the Closed-Loop Gain Shaping Algorithm Under Rough Sea
5
作者 SONG Chun-yu GUO Te-er SUI Jiang-hua 《China Ocean Engineering》 2025年第2期365-372,共8页
This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working... This paper proposes a separated trajectory tracking controller for fishing ships at sea state level 6 to solve the trajectory tracking problem of a fishing ship in a 6-level sea state,and to adapt to different working environments and safety requirements.The nonlinear feedback method is used to improve the closed-loop gain shaping algorithm.By introducing the sine function,the problem of excessive control energy of the system can be effectively solved.Moreover,an integral separation design is used to solve the influence of the integral term in conventional PID controllers on the transient performance of the system.In this paper,a common 32.98 m large fiberglass reinforced plastic(FRP)trawler is adopted for simulation research at the winds scale of Beaufort No.7.The results show that the track error is smaller than 3.5 m.The method is safe,feasible,concise and effective and has popularization value in the direction of fishing ship trajectory tracking control.This method can be used to improve the level of informatization and intelligence of fishing ships. 展开更多
关键词 trajectory tracking control nonlinear feedback control fishing ship closed-loop gain shaping algorithm rough sea
在线阅读 下载PDF
Optimized control of grid-connected photovoltaic systems:Robust PI controller based on sparrow search algorithm for smart microgrid application
6
作者 Youssef Akarne Ahmed Essadki +2 位作者 Tamou Nasser Maha Annoukoubi Ssadik Charadi 《Global Energy Interconnection》 2025年第4期523-536,共14页
The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.Thi... The integration of renewable energy sources into modern power systems necessitates efficient and robust control strategies to address challenges such as power quality,stability,and dynamic environmental variations.This paper presents a novel sparrow search algorithm(SSA)-tuned proportional-integral(PI)controller for grid-connected photovoltaic(PV)systems,designed to optimize dynamic perfor-mance,energy extraction,and power quality.Key contributions include the development of a systematic SSA-based optimization frame-work for real-time PI parameter tuning,ensuring precise voltage and current regulation,improved maximum power point tracking(MPPT)efficiency,and minimized total harmonic distortion(THD).The proposed approach is evaluated against conventional PSO-based and P&O controllers through comprehensive simulations,demonstrating its superior performance across key metrics:a 39.47%faster response time compared to PSO,a 12.06%increase in peak active power relative to P&O,and a 52.38%reduction in THD,ensuring compliance with IEEE grid standards.Moreover,the SSA-tuned PI controller exhibits enhanced adaptability to dynamic irradiancefluc-tuations,rapid response time,and robust grid integration under varying conditions,making it highly suitable for real-time smart grid applications.This work establishes the SSA-tuned PI controller as a reliable and efficient solution for improving PV system performance in grid-connected scenarios,while also setting the foundation for future research into multi-objective optimization,experimental valida-tion,and hybrid renewable energy systems. 展开更多
关键词 Smart microgrid Photovoltaic system PI controller Sparrow search algorithm GRID-CONNECTED Metaheuristic optimization
在线阅读 下载PDF
An Improved Chicken Swarm Optimization Techniques Based on Cultural Algorithm Operators for Biometric Access Control
7
作者 Jonathan Ponmile Oguntoye Sunday Adeola Ajagbe +4 位作者 Oluyinka Titilayo Adedeji Olufemi Olayanju Awodoye Abigail Bola Adetunji Elijah Olusayo Omidiora Matthew Olusegun Adigun 《Computers, Materials & Continua》 2025年第9期5713-5732,共20页
This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CS... This study proposes a system for biometric access control utilising the improved Cultural Chicken Swarm Optimization(CCSO)technique.This approach mitigates the limitations of conventional Chicken Swarm Optimization(CSO),especially in dealing with larger dimensions due to diversity loss during solution space exploration.Our experimentation involved 600 sample images encompassing facial,iris,and fingerprint data,collected from 200 students at Ladoke Akintola University of Technology(LAUTECH),Ogbomoso.The results demonstrate the remarkable effectiveness of CCSO,yielding accuracy rates of 90.42%,91.67%,and 91.25%within 54.77,27.35,and 113.92 s for facial,fingerprint,and iris biometrics,respectively.These outcomes significantly outperform those achieved by the conventional CSO technique,which produced accuracy rates of 82.92%,86.25%,and 84.58%at 92.57,63.96,and 163.94 s for the same biometric modalities.The study’s findings reveal that CCSO,through its integration of Cultural Algorithm(CA)Operators into CSO,not only enhances algorithm performance,exhibiting computational efficiency and superior accuracy,but also carries broader implications beyond biometric systems.This innovation offers practical benefits in terms of security enhancement,operational efficiency,and adaptability across diverse user populations,shaping more effective and resource-efficient access control systems with real-world applicability. 展开更多
关键词 Access control biometric technology chicken swarm optimization cultural algorithm pattern recognition
在线阅读 下载PDF
A new fixed-depth suspension control algorithm for mobile marine seismometer and its testing results
8
作者 Fei Hou Jiabiao Li +2 位作者 Xinke Zhu Weiwei Ding Zhiteng Yu 《Acta Oceanologica Sinica》 2025年第2期91-103,共13页
A mobile marine seismometer(MMS)is a vertical underwater vehicle that detects ocean seismic waves.One of the critical operational requirements for an MMS is that it remains suspended at a desired depth.This article ai... A mobile marine seismometer(MMS)is a vertical underwater vehicle that detects ocean seismic waves.One of the critical operational requirements for an MMS is that it remains suspended at a desired depth.This article aimed to propose a fixed-depth suspension control for the MMS with a limited onboard energy supply.The research team established a kinematic model to analyze fluctuations in the vertical motion of the MMS and the delayed response of the system.We ascertained a direct one-to-one correlation between the displacement volume of the mobile ocean seismic instrument and the depth at which it reaches a state of neutral buoyancy(commonly referred to as the hover depth).A fixed-depth control algorithm was introduced,allowing a gradual approach to the necessary displacement volume to reach the desired suspension depth.The study optimized the boundary conditions to reduce unnecessary adjustments and mitigate the time delay caused by the instrument’s inertia,thereby significantly minimizing energy consumption.This method does not require calculating the hydrodynamic parameters or transfer functions of the MMS,thereby considerably reducing the implementation complexity.In the three-month sea trial in the South China Sea,the seismic instrument was set to hover at 800 m,with a permissible fluctuation of±100 m,operating on a seven-day cycle.The experimental results show that the seismic instrument has an average hover error of 34.6 m,with a vertical drift depth of 29.6 m per cycle,and the buoyancy adjustment system made six adjustments,indicating that our proposed control method performs satisfactorily.In addition,this method provides new insights for the fixed-depth control of other ocean observation devices that rely on buoyancy adjustment. 展开更多
关键词 mobile marine seismometer fixed-depth control algorithm low buoyancy-adjustment cost faster convergence speed
在线阅读 下载PDF
A Novel Cascaded TID-FOI Controller Tuned with Walrus Optimization Algorithm for Frequency Regulation of Deregulated Power System
9
作者 Geetanjali Dei Deepak Kumar Gupta +3 位作者 Binod Kumar Sahu Amitkumar V.Jha Bhargav Appasani Nicu Bizon 《Energy Engineering》 2025年第8期3399-3431,共33页
This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation techno... This paper presents an innovative and effective control strategy tailored for a deregulated,diversified energy system involving multiple interconnected area.Each area integrates a unique mix of power generation technologies:Area 1 combines thermal,hydro,and distributed generation;Area 2 utilizes a blend of thermal units,distributed solar technologies(DST),and hydro power;andThird control area hosts geothermal power station alongside thermal power generation unit and hydropower units.The suggested control system employs a multi-layered approach,featuring a blended methodology utilizing the Tilted Integral Derivative controller(TID)and the Fractional-Order Integral method to enhance performance and stability.The parameters of this hybrid TID-FOI controller are finely tuned using an advanced optimization method known as the Walrus Optimization Algorithm(WaOA).Performance analysis reveals that the combined TID-FOI controller significantly outperforms the TID and PID controllers when comparing their dynamic response across various system configurations.The study also incorporates investigation of redox flow batteries within the broader scope of energy storage applications to assess their impact on system performance.In addition,the research explores the controller’s effectiveness under different power exchange scenarios in a deregulated market,accounting for restrictions on generation ramp rates and governor hysteresis effects in dynamic control.To ensure the reliability and resilience of the presented methodology,the system transitions and develops across a broad range of varying parameters and stochastic load fluctuation.To wrap up,the study offers a pioneering control approach-a hybrid TID-FOI controller optimized via the Walrus Optimization Algorithm(WaOA)-designed for enhanced stability and performance in a complex,three-region hybrid energy system functioning within a deregulated framework. 展开更多
关键词 Integral time multiplied by absolute error(ITAE) load frequency control(LFC) particle swarm optimization(PSO) tilted integral derivative controller(TID) independent system operator(ISO) walrus optimization algorithm(WaOA) proportional integral derivative controller(PID)
在线阅读 下载PDF
H-Infinity Control of an Adaptive Hybrid Active Power Filter for Power Quality Compensation
10
作者 Luc Vivien Assiene Mouodo Jean Gaston Tamba +1 位作者 Olivier Sosso Mayi Lawren Bibaya 《Energy and Power Engineering》 2020年第11期603-640,共38页
This article highlights an optimal robust control technique called H-infinity, which thanks to a particular algorithm offers several solutions in the experimental implementation of harmonic compensators of systems wit... This article highlights an optimal robust control technique called H-infinity, which thanks to a particular algorithm offers several solutions in the experimental implementation of harmonic compensators of systems with API-siemens modules. This control and command technique is directly tested on a TLC adaptive hybrid filter topology that provides benefits, such as reduced switching losses when injecting currents in the network, limitation of resonance problems and above all low power consumption at the DC bus level, thus allowing us to obtain results for 105 V to be compared with existing models in the literature which require 600 V for the same performance. This article therefore simultaneously offers two essential contributions to the optimization of harmonic pollution control. A first contribution is essentially based on the H-infinite algorithm and its particularity in its implementation on our TLC hybrid model. The second is on the advantages offered by the TLC-HAPF hybrid topology. The results obtained with this algorithm give us THDs conforming to the IEEE 519-1996 and which are very meaningful compared to the results obtained with other robust and stochastic control algorithms taken under the same conditions. 展开更多
关键词 h-infinity algorithm control TCLC-HAPF THD DEPOLLUTION
在线阅读 下载PDF
Data-Driven Learning Control Algorithms for Unachievable Tracking Problems 被引量:1
11
作者 Zeyi Zhang Hao Jiang +1 位作者 Dong Shen Samer S.Saab 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第1期205-218,共14页
For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to in... For unachievable tracking problems, where the system output cannot precisely track a given reference, achieving the best possible approximation for the reference trajectory becomes the objective. This study aims to investigate solutions using the Ptype learning control scheme. Initially, we demonstrate the necessity of gradient information for achieving the best approximation.Subsequently, we propose an input-output-driven learning gain design to handle the imprecise gradients of a class of uncertain systems. However, it is discovered that the desired performance may not be attainable when faced with incomplete information.To address this issue, an extended iterative learning control scheme is introduced. In this scheme, the tracking errors are modified through output data sampling, which incorporates lowmemory footprints and offers flexibility in learning gain design.The input sequence is shown to converge towards the desired input, resulting in an output that is closest to the given reference in the least square sense. Numerical simulations are provided to validate the theoretical findings. 展开更多
关键词 Data-driven algorithms incomplete information iterative learning control gradient information unachievable problems
在线阅读 下载PDF
Improving PID Controller Performance in Nonlinear Oscillatory Automatic Generation Control Systems Using a Multi-objective Marine Predator Algorithm with Enhanced Diversity 被引量:1
12
作者 Yang Yang Yuchao Gao +2 位作者 Jinran Wu Zhe Ding Shangrui Zhao 《Journal of Bionic Engineering》 CSCD 2024年第5期2497-2514,共18页
Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy... Power systems are pivotal in providing sustainable energy across various sectors.However,optimizing their performance to meet modern demands remains a significant challenge.This paper introduces an innovative strategy to improve the opti-mization of PID controllers within nonlinear oscillatory Automatic Generation Control(AGC)systems,essential for the stability of power systems.Our approach aims to reduce the integrated time squared error,the integrated time absolute error,and the rate of change in deviation,facilitating faster convergence,diminished overshoot,and decreased oscillations.By incorporating the spiral model from the Whale Optimization Algorithm(WOA)into the Multi-Objective Marine Predator Algorithm(MOMPA),our method effectively broadens the diversity of solution sets and finely tunes the balance between exploration and exploitation strategies.Furthermore,the QQSMOMPA framework integrates quasi-oppositional learning and Q-learning to overcome local optima,thereby generating optimal Pareto solutions.When applied to nonlinear AGC systems featuring governor dead zones,the PID controllers optimized by QQSMOMPA not only achieve 14%reduction in the frequency settling time but also exhibit robustness against uncertainties in load disturbance inputs. 展开更多
关键词 Multi-objective optimization Automatic generation control PID controller Multi-objective marine predator algorithm Whale optimization algorithm
在线阅读 下载PDF
Robust H-infinity fault-tolerant control for uncertain descriptor systems by dynamical compensators 被引量:7
13
作者 BingLIANG GuangrenDUAN 《控制理论与应用(英文版)》 EI 2004年第3期288-292,共5页
The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered. Based on H-infinity theory in descriptor systems, a... The problem of robust H-infinity fault-tolerant control against sensor failures for a class of uncertain descriptor systems via dynamical compensators is considered. Based on H-infinity theory in descriptor systems, a sufficient condition for the existence of dynamical compensators with H-infinity fault-tolerant function is derived and expressions for the gain matrices in the compensators are presented. The dynamical compensator guarantees that the resultant colsed-loop system is admissible; furthermore, it maintains certain H-infinity norm performance in the normal condition as well as in the event of sensor failures and parameter uncertainties. A numerical example shows the effect of the proposed method. 展开更多
关键词 Fault-tolerant control h-infinity control Uncertain descriptor systems Sensor failures
在线阅读 下载PDF
An LMI approach to robust H-infinity control for uncertain singular time-delay systems 被引量:10
14
作者 Xiaofu JI Hongye SU Jian CHU 《控制理论与应用(英文版)》 EI 2006年第4期361-366,共6页
The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singu... The problem of robust H-infinity control for a class of uncertain singular time-delay systems is studied in this paper. A new approach is proposed to describe the relationship between slow and fast subsystems of singular time- delay systems, based on which, a sufficient condition is presented for a singular time-delay system to be regular, impulse free and stable with an H-infinity performance. The robust H-infinity control problem is solved and an explicit expression of the desired state-feedback control law is also given. The obtained results are formulated in terms of strict linear matrix inequalities (LMIs) involving no decomposition of system matrices. A numerical example is given to show the effectiveness of the proposed method. 展开更多
关键词 Robust h-infinity control Singular system TIME-DELAY Linear matrix inequality (LMI)
在线阅读 下载PDF
Delay-dependent H-infinity control for linear descriptor systems with delay in state 被引量:13
15
作者 FanYANG QinglingZHANG 《控制理论与应用(英文版)》 EI 2005年第1期76-84,共9页
A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop sy... A deky-dependent H-infinity control for descriptor systems with a state-delayis investigated. The purpose of the problem is to design a linear memoryless state-feedbackcontroller such that the resulting closed-loop system is regular, impulse free and stable with anH-infinity norm bound. Firstly, a deky-dependent bounded real lemma(BRL) of the time-deky descriptorsystems is presented in terms of linear matrix inequalities(LMIs) by using a descriptor modeltransformation of the system and by taking a new Lyapunov-Krasovsii functional. The introducedfunctional does not require bounding for cross terms, so it has less conservation. Secondly, withthe help of the obtained bounded real lemma, a sufficient condition for the existence of a newdeky-dependent H-infinity state-feedback controller is shown in terms of nonlinear matrixinequalities and the solvability of the problem can be obtained by using an iterative algorithminvolving convex optimization. Finally, numerical examples are given to demonstrate theeffectiveness of the new method presented. 展开更多
关键词 deky descriptor systems deky-dependent h-infinity control bounded reallemma(BRL) linear matrix inequalities (LMIs)
在线阅读 下载PDF
Decentralized robust H-infinity descriptor output feedback control for value-bounded uncertain descriptor large-scale systems 被引量:6
16
作者 Yongfang XIE Weihua GUI Zhaohui JIANG 《控制理论与应用(英文版)》 EI 2006年第2期193-200,共8页
For a class of value-bounded uncertain descriptor large-scale interconnected systems, the decentralized robust H∞ descriptor output feedback control problem is investigated. A design method based on the bounded real ... For a class of value-bounded uncertain descriptor large-scale interconnected systems, the decentralized robust H∞ descriptor output feedback control problem is investigated. A design method based on the bounded real lemma is developed for a decentralized descriptor dynamic output feedback controller, which is reduced to a feasibility problem for a nonlinear matrix inequality (NLMI). It is proposed to solve the NLMI iteratively by the idea of homotopy, where some of the variables are fixed alternately at each iteration to reduce the NLMI to a linear matrix inequality (LMI). A given example shows the efficiency of this method . 展开更多
关键词 Descriptor output feedback Value-bounded uncertainty Decentralized h-infinity control Homotopy method LMI
在线阅读 下载PDF
H-infinity control for networked control systems (NCS) with time-varying delays 被引量:4
17
作者 Hong ZHAO Min WU +1 位作者 Guoping LIU Jinhua SHE 《控制理论与应用(英文版)》 EI 2005年第2期157-162,共6页
This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-... This paper discusses H-infinity state feedback control for a networked control system with time-varying delays. Based on the flee-weighing matrix method, a dehy-dependent stability criterion satisfying a prescribed H-infinity norm bound is presented for an NCS with unknown, time-varying and bounded delays. And then, the criterion is transformed into sufficient conditions based on linear matrix inequalities for H-infinity control. The conditions thus obtained are also used to design an H-infinity state feedback controller. This design method is further extended to solve the design problem of robust H-infinity state feedback control. A numerical example demonstrates the validity of the method. 展开更多
关键词 h-infinity control Networked control system (NCS) Time-varying delay State feedback Linear matrix inequality(LMI) Robust control
在线阅读 下载PDF
H-infinity control for switched and impulsive singular systems 被引量:4
18
作者 Yujuan YIN Jun ZHAO Yuzhong LIU 《控制理论与应用(英文版)》 EI 2008年第1期86-92,共7页
A new model of dynamical systems is proposed which consists of singular systems with impulsive effects, i.e., switched and impulsive singular systems (SISS). By using the switched Lyapunov functions method, a suffic... A new model of dynamical systems is proposed which consists of singular systems with impulsive effects, i.e., switched and impulsive singular systems (SISS). By using the switched Lyapunov functions method, a sufficient condition for the solvability of the H-infinity control problem for SISSs is given which generalizes the H-infinity control theory for singular systems to switched singular systems with impulsive effects. Then the sufficient condition of solvablity of the H-infinity control problem is presented in terms of linear matrix inequalities. Finally, the effectiveness of the developed aooroach for switched and imoulsive singular svstems is illustrated by a numerical example. 展开更多
关键词 Switched systems Switched singular systems h-infinity control
在线阅读 下载PDF
Two-degree-of-freedom H-infinity control of combustion in diesel engine using a discrete dynamics model 被引量:2
19
作者 Mitsuo HIRATA Sota ISHIZUKI Masasyasu SUZUKI 《Control Theory and Technology》 EI CSCD 2017年第2期109-116,共8页
This paper proposes an H-infinity combustion control method for diesel engines. The plant model is the discrete dynamics model developed by Yasuda et al., which is implementable on a real engine control unit. We intro... This paper proposes an H-infinity combustion control method for diesel engines. The plant model is the discrete dynamics model developed by Yasuda et al., which is implementable on a real engine control unit. We introduce a two-degree-of-freedom control scheme with a feedback controller and a feedforward controller. This scheme achieves both good feedback properties, such as disturbance suppression and robust stability, and a good transient response. The feedforward controller is designed by taking the inverse of the static plant model, and the feedback controller is designed by the H-infinity control method, which reduces the effect of the trubocharger lag. The effectiveness of the proposed method is evaluated in simulations using the nonlinear discrete dynamics model. 展开更多
关键词 Combustion control diesel engines h-infinity control two-degree-of-freedom control
原文传递
Robust reliable H-infinity control for nonlinear uncertain stochastic time-delay systems with Markovian jumping parameters 被引量:2
20
作者 Jianwei XIA Shengyuan XU Yun ZOU 《控制理论与应用(英文版)》 EI 2008年第4期410-414,共5页
This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Mar... This paper deals with the problems of robust reliable exponential stabilization and robust stochastic stabilization with H-infinity performance for a class of nonlinear uncertain time-delay stochastic systems with Markovian jumping parameters. The time delays are assumed to be dependent on the system modes. Delay-dependent conditions for the solvability of these problems are obtained via parameter-dependent Lyapunov functionals. Furthermore, it is shown that the desired state feedback controller can be designed by solving a set of linear matrix inequalities. Finally, the simulation is provided to demonstrate the effectiveness of the proposed methods. 展开更多
关键词 h-infinity control Markovian jump Reliable control Stochastic systems Time delays
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部