We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theo- retically designed a new sensor for detecting water molecules using single-waJ1ed ZnO nanotubes using a combination ...We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theo- retically designed a new sensor for detecting water molecules using single-waJ1ed ZnO nanotubes using a combination of density functional theory and the non-equilibrium Green's function method. Details of the geometric structures and adsorption energies of the H2O molecules on the ZnO nanotube surface have been investigated, Our computational results demonstrate that the formation of hydrogen bonding between the H2O molecules and the ZnO nanotube, and adsorption energies of the H2O molecules on the ZnO nanotube are larger than the adsorption energies of other gas molecules present in the atmospheric environment. Moreover, the current-voltage curves of the ZnO nanotube with and without H2O molecules adsorbed on its surface are calculated, the results of which showed that the H2O molecules form stable adsorption configurations that could lead to the decrease in current. These results suggest that the single-walled ZnO nanotubes are able to detect and monitor the presence of H2O molecules by applying bias voltages.展开更多
ZnO nanocrystals were prepared by a direct current electrochemical deposition process under 3.0V working voltage and 30A/m^2 current density using zinc sulfate as raw materials.The nanocrystals were characterized by X...ZnO nanocrystals were prepared by a direct current electrochemical deposition process under 3.0V working voltage and 30A/m^2 current density using zinc sulfate as raw materials.The nanocrystals were characterized by X-ray diffraction (XRD)and transmission electron microscopy(TEM).The results indicated that the nanocrystals are hexagonal wurtzite ZnO with particle size range of 25nm~40nm without any treating.Gas sensing properties of the sensors were tested by mixing a gas in air at static state;the tested results showed that the sensors based on nanocrystalline ZnO had satisfied gas sensing properties to H_2S gas at rather low temperature.展开更多
This paper deals with the problem of the state estimation and the sensor faults detection for nonlinear perturbed systems described by Takagi-Sugeno (T-S) fuzzy models with unmeasurable premise variables. Indeed, a ...This paper deals with the problem of the state estimation and the sensor faults detection for nonlinear perturbed systems described by Takagi-Sugeno (T-S) fuzzy models with unmeasurable premise variables. Indeed, a T-S observer is synthesized, in descriptor form, to estimate both the system states and the sensor faults simultaneously. The idea of the proposed approach is to introduce the sensor fault as an auxiliary variable in the state vector. Besides, the T-S model with unmeasurable premise variables is reduced to a perturbed model with measurable variables. Convergence conditions are established with Lyapunov theory and the H∞ performance in order to guarantee the best robustness to disturbances. These conditions are expressed in terms of linear matrix inequalities (LMIs). The parameters of the observer are computed using the solution of the LMI conditions. Finally, a numerical example is given to illustrate the design procedures. Simulation results show the satisfactory performances.展开更多
基金Supported by National Basic Research Program of China (973 Program) (2010CB731800) and National Natural Science Foundation of China (60974059, 60736026, 61021063)
基金Supported by the National Natural Science Foundation of China under Grant No.11174214the Specialized Research Fund for the Doctoral Program of Higher Education under Grant No.20090181110080
文摘We have studied the property of single-walled ZnO nanotubes with adsorbed water molecules, and theo- retically designed a new sensor for detecting water molecules using single-waJ1ed ZnO nanotubes using a combination of density functional theory and the non-equilibrium Green's function method. Details of the geometric structures and adsorption energies of the H2O molecules on the ZnO nanotube surface have been investigated, Our computational results demonstrate that the formation of hydrogen bonding between the H2O molecules and the ZnO nanotube, and adsorption energies of the H2O molecules on the ZnO nanotube are larger than the adsorption energies of other gas molecules present in the atmospheric environment. Moreover, the current-voltage curves of the ZnO nanotube with and without H2O molecules adsorbed on its surface are calculated, the results of which showed that the H2O molecules form stable adsorption configurations that could lead to the decrease in current. These results suggest that the single-walled ZnO nanotubes are able to detect and monitor the presence of H2O molecules by applying bias voltages.
文摘ZnO nanocrystals were prepared by a direct current electrochemical deposition process under 3.0V working voltage and 30A/m^2 current density using zinc sulfate as raw materials.The nanocrystals were characterized by X-ray diffraction (XRD)and transmission electron microscopy(TEM).The results indicated that the nanocrystals are hexagonal wurtzite ZnO with particle size range of 25nm~40nm without any treating.Gas sensing properties of the sensors were tested by mixing a gas in air at static state;the tested results showed that the sensors based on nanocrystalline ZnO had satisfied gas sensing properties to H_2S gas at rather low temperature.
文摘This paper deals with the problem of the state estimation and the sensor faults detection for nonlinear perturbed systems described by Takagi-Sugeno (T-S) fuzzy models with unmeasurable premise variables. Indeed, a T-S observer is synthesized, in descriptor form, to estimate both the system states and the sensor faults simultaneously. The idea of the proposed approach is to introduce the sensor fault as an auxiliary variable in the state vector. Besides, the T-S model with unmeasurable premise variables is reduced to a perturbed model with measurable variables. Convergence conditions are established with Lyapunov theory and the H∞ performance in order to guarantee the best robustness to disturbances. These conditions are expressed in terms of linear matrix inequalities (LMIs). The parameters of the observer are computed using the solution of the LMI conditions. Finally, a numerical example is given to illustrate the design procedures. Simulation results show the satisfactory performances.