A segmented basis set of quadruple zeta valence quality plus polarization functions(QZP)for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian.This set was augmented with diffuse functions ...A segmented basis set of quadruple zeta valence quality plus polarization functions(QZP)for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian.This set was augmented with diffuse functions to describe electrons farther away from the nuclei adequately.Using the ZORA-CCSD(T)/QZP-ZORA theoretical model,atomic ionization energies and bond lengths,harmonic vibrational frequencies,and atomization energies of some molecules were calculated.The addition of core-valence corrections has been shown to improve the agreement between theoretical and experimental results for molecular properties.For atomization energies,a similar observation emerges when considering spin-orbit couplings.With the augmented QZP-ZORA set,static mean dipole polarizabilities of a set of atoms were calculated and compared with previously published recommended and experimental values.Performance evaluations of the ZORA and Douglas–Kroll–Hess Hamiltonians were made for each property studied.展开更多
An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same t...An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.展开更多
H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and unique...H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.展开更多
We consider a singular perturbation problem which describes 2D Darcy-Stokes flow. An H(div)- conforming rectangular element, DS-R14, is proposed and analyzed first. This element has 14 degrees of freedom for velocit...We consider a singular perturbation problem which describes 2D Darcy-Stokes flow. An H(div)- conforming rectangular element, DS-R14, is proposed and analyzed first. This element has 14 degrees of freedom for velocity and is proved to be uniformly convergent with respect to perturbation constant. We then simplify this element to get another H(div)-conforming rectangular element, DS-R12, which has 12 degrees of freedom for velocity. The uniform convergence is also obtained for this element. Finally, we construct a de Rham complex corresponding to DS-R12 element.展开更多
Hierarchical bases of arbitrary order for H(div)-conforming triangular and tetrahedral elements are constructedwith the goal of improving the conditioning of the mass and stiffness matrices.For the basis with the tria...Hierarchical bases of arbitrary order for H(div)-conforming triangular and tetrahedral elements are constructedwith the goal of improving the conditioning of the mass and stiffness matrices.For the basis with the triangular element,it is found numerically that the conditioning is acceptable up to the approximation of order four,and is better than a corresponding basis in the dissertation by Sabine Zaglmayr[High Order Finite Element Methods for Electromagnetic Field Computation,Johannes Kepler Universit¨at,Linz,2006].The sparsity of the mass matrices from the newly constructed basis and from the one by Zaglmayr is similar for approximations up to order four.The stiffness matrix with the new basis is much sparser than that with the basis by Zaglmayr for approximations up to order four.For the tetrahedral element,it is identified numerically that the conditioning is acceptable only up to the approximation of order three.Compared with the newly constructed basis for the triangular element,the sparsity of the massmatrices fromthe basis for the tetrahedral element is relatively sparser.展开更多
We construct a well-conditioned hierarchical basis for triangular H(curl)-conforming elements with selected orthogonality.The basis functions are grouped into edge and interior functions,and the later is further group...We construct a well-conditioned hierarchical basis for triangular H(curl)-conforming elements with selected orthogonality.The basis functions are grouped into edge and interior functions,and the later is further grouped into normal and bubble functions.In our construction,the trace of the edge shape functions are orthonormal on the associated edge.The interior normal functions,which are perpendicular to an edge,and the bubble functions are both orthonormal among themselves over the reference element.The construction is made possible with classic orthogonal polynomials,viz.,Legendre and Jacobi polynomials.For both the mass matrix and the quasi-stiffness matrix,better conditioning of the new basis is shown by a comparison with the basis previously proposed by Ainsworth and Coyle[Comput.Methods.Appl.Mech.Engrg.,190(2001),6709-6733].展开更多
In order to solve the magnetohydrodynamics(MHD)equations with a H(div)-conforming element,a novel approach is proposed to ensure the exact divergence-free condition on the magnetic field.The idea is to add on each ele...In order to solve the magnetohydrodynamics(MHD)equations with a H(div)-conforming element,a novel approach is proposed to ensure the exact divergence-free condition on the magnetic field.The idea is to add on each element an extra interior bubble function from a higher order hierarchicalH(div)-conforming basis.Four such hierarchical bases for theH(div)-conforming quadrilateral,triangular,hexahedral,and tetrahedral elements are either proposed(in the case of tetrahedral)or reviewed.Numerical results have been presented to show the linear independence of the basis functions for the two simplicial elements.Good matrix conditioning has been confirmed numerically up to the fourth order for the triangular element and up to the third order for the tetrahedral element.展开更多
A partially orthonormal basis is constructed with better conditioning properties for tetrahedral H(curl)-conforming Nedelec elements. The shape functions are classified into several categories with respect to their ...A partially orthonormal basis is constructed with better conditioning properties for tetrahedral H(curl)-conforming Nedelec elements. The shape functions are classified into several categories with respect to their topological entities on the reference 3-simplex. The basis functions in each category are constructed to achieve maximum orthogonaiity. The numerical study on the matrix conditioning shows that for the mass and quasi-stiffness matrices, and in a logarithmic scale the condition number grows linearly vs. order of approximation up to order three. For each order of approximation, the condition number of the quasi-stiffness matrix is about one order less than the corresponding one for the mass matrix. Also, up to order six of approximation the conditioning of the mass and quasi- stiffness matrices with the proposed basis is better than the corresponding one with the Ainsworth-Coyle basis Internat. J. Numer. Methods. Engrg., 58:2103-2130, 2003. except for order four with the quasi-stiffness matrix. Moreover, with the new basis the composite matrix μM + S has better conditioning than the Ainsworth-Coyle basis for a wide range of the parameter μ.展开更多
The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciab...The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood.In this publication,the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh,where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular.This combination of increase of approximation properties,done in an a priori or a posteriori manner,is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular.The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.展开更多
Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a problem of the in...Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a problem of the initial boundary values for a system of 3-dimensional nonlinear parabolic partial differential equations, one being the pressure flow equation and the other is the concentration convection-dispersion equation of the salt contained. For a generic case of a 3-dimensional bounded region, a backward-difference time-stepping scheme is defined. It approximates the pressure by the standard Galerkin procedure and the concentration by a Galerkin method of charederistics, where calculus of variations, theory of prior estimates and techniques are made use of Optimal order estimates in H1 norm are derived for the errors in the approximate solution.展开更多
基金the financial support of Conselho Nacional de Desenvolvimento Científico e Tecnológico and Coordenacao de Aperfeic oamento de Pessoal de Nível Superior (Brazilian Agencies)。
文摘A segmented basis set of quadruple zeta valence quality plus polarization functions(QZP)for H through Xe was developed to be used in conjunction with the ZORA Hamiltonian.This set was augmented with diffuse functions to describe electrons farther away from the nuclei adequately.Using the ZORA-CCSD(T)/QZP-ZORA theoretical model,atomic ionization energies and bond lengths,harmonic vibrational frequencies,and atomization energies of some molecules were calculated.The addition of core-valence corrections has been shown to improve the agreement between theoretical and experimental results for molecular properties.For atomization energies,a similar observation emerges when considering spin-orbit couplings.With the augmented QZP-ZORA set,static mean dipole polarizabilities of a set of atoms were calculated and compared with previously published recommended and experimental values.Performance evaluations of the ZORA and Douglas–Kroll–Hess Hamiltonians were made for each property studied.
基金Supported by the National Natural Science Foundation of China (10601022)Natural Science Foundation of Inner Mongolia Autonomous Region (200607010106)Youth Science Foundation of Inner Mongolia University(ND0702)
文摘An H^1-Galerkin mixed finite element method is discussed for a class of second order SchrSdinger equation. Optimal error estimates of semidiscrete schemes are derived for problems in one space dimension. At the same time, optimal error estimates are derived for fully discrete schemes. And it is showed that the H1-Galerkin mixed finite element approximations have the same rate of convergence as in the classical mixed finite element methods without requiring the LBB consistency condition.
基金Supported by NNSF(10601022,11061021)Supported by NSF of Inner Mongolia Au-tonomous Region(200607010106)Supported by SRP of Higher Schools of Inner Mongolia(NJ10006)
文摘H1-Galerkin mixed methods are proposed for viscoelasticity wave equation.Depending on the physical quantities of interest,two methods are discussed.The optimal error estimates and the proof of the existence and uniqueness of semidiscrete solutions are derived for problems in one space dimension.And the methods don't require the LBB condition.
基金supported by National Natural Science Foundation of China(Grant No.11071226)the Hong Kong Research Grants Council(Grant No.201112)
文摘We consider a singular perturbation problem which describes 2D Darcy-Stokes flow. An H(div)- conforming rectangular element, DS-R14, is proposed and analyzed first. This element has 14 degrees of freedom for velocity and is proved to be uniformly convergent with respect to perturbation constant. We then simplify this element to get another H(div)-conforming rectangular element, DS-R12, which has 12 degrees of freedom for velocity. The uniform convergence is also obtained for this element. Finally, we construct a de Rham complex corresponding to DS-R12 element.
基金supported in part by a DOE grant DEFG0205ER25678 and NSF grant DMS-1005441。
文摘Hierarchical bases of arbitrary order for H(div)-conforming triangular and tetrahedral elements are constructedwith the goal of improving the conditioning of the mass and stiffness matrices.For the basis with the triangular element,it is found numerically that the conditioning is acceptable up to the approximation of order four,and is better than a corresponding basis in the dissertation by Sabine Zaglmayr[High Order Finite Element Methods for Electromagnetic Field Computation,Johannes Kepler Universit¨at,Linz,2006].The sparsity of the mass matrices from the newly constructed basis and from the one by Zaglmayr is similar for approximations up to order four.The stiffness matrix with the new basis is much sparser than that with the basis by Zaglmayr for approximations up to order four.For the tetrahedral element,it is identified numerically that the conditioning is acceptable only up to the approximation of order three.Compared with the newly constructed basis for the triangular element,the sparsity of the massmatrices fromthe basis for the tetrahedral element is relatively sparser.
基金The research was supported in part by a DOE grant 304(DEFG0205ER25678)a NSFC grant(10828101).
文摘We construct a well-conditioned hierarchical basis for triangular H(curl)-conforming elements with selected orthogonality.The basis functions are grouped into edge and interior functions,and the later is further grouped into normal and bubble functions.In our construction,the trace of the edge shape functions are orthonormal on the associated edge.The interior normal functions,which are perpendicular to an edge,and the bubble functions are both orthonormal among themselves over the reference element.The construction is made possible with classic orthogonal polynomials,viz.,Legendre and Jacobi polynomials.For both the mass matrix and the quasi-stiffness matrix,better conditioning of the new basis is shown by a comparison with the basis previously proposed by Ainsworth and Coyle[Comput.Methods.Appl.Mech.Engrg.,190(2001),6709-6733].
基金This research is supported in part by a DOE grant DEFG0205ER25678 and a NSF grant DMS-1005441.
文摘In order to solve the magnetohydrodynamics(MHD)equations with a H(div)-conforming element,a novel approach is proposed to ensure the exact divergence-free condition on the magnetic field.The idea is to add on each element an extra interior bubble function from a higher order hierarchicalH(div)-conforming basis.Four such hierarchical bases for theH(div)-conforming quadrilateral,triangular,hexahedral,and tetrahedral elements are either proposed(in the case of tetrahedral)or reviewed.Numerical results have been presented to show the linear independence of the basis functions for the two simplicial elements.Good matrix conditioning has been confirmed numerically up to the fourth order for the triangular element and up to the third order for the tetrahedral element.
文摘A partially orthonormal basis is constructed with better conditioning properties for tetrahedral H(curl)-conforming Nedelec elements. The shape functions are classified into several categories with respect to their topological entities on the reference 3-simplex. The basis functions in each category are constructed to achieve maximum orthogonaiity. The numerical study on the matrix conditioning shows that for the mass and quasi-stiffness matrices, and in a logarithmic scale the condition number grows linearly vs. order of approximation up to order three. For each order of approximation, the condition number of the quasi-stiffness matrix is about one order less than the corresponding one for the mass matrix. Also, up to order six of approximation the conditioning of the mass and quasi- stiffness matrices with the proposed basis is better than the corresponding one with the Ainsworth-Coyle basis Internat. J. Numer. Methods. Engrg., 58:2103-2130, 2003. except for order four with the quasi-stiffness matrix. Moreover, with the new basis the composite matrix μM + S has better conditioning than the Ainsworth-Coyle basis for a wide range of the parameter μ.
文摘The(continuous) finite element approximations of different orders for the computation of the solution to electronic structures were proposed in some papers and the performance of these approaches is becoming appreciable and is now well understood.In this publication,the author proposes to extend this discretization for full-potential electronic structure calculations by combining the refinement of the finite element mesh,where the solution is most singular with the increase of the degree of the polynomial approximations in the regions where the solution is mostly regular.This combination of increase of approximation properties,done in an a priori or a posteriori manner,is well-known to generally produce an optimal exponential type convergence rate with respect to the number of degrees of freedom even when the solution is singular.The analysis performed here sustains this property in the case of Hartree-Fock and Kohn-Sham problems.
文摘Both numerical simulation and theoretical analysis of seawater intrusion in coastal regions are of great theoretical importance in environmental sciences. The mathematical model can be described as a problem of the initial boundary values for a system of 3-dimensional nonlinear parabolic partial differential equations, one being the pressure flow equation and the other is the concentration convection-dispersion equation of the salt contained. For a generic case of a 3-dimensional bounded region, a backward-difference time-stepping scheme is defined. It approximates the pressure by the standard Galerkin procedure and the concentration by a Galerkin method of charederistics, where calculus of variations, theory of prior estimates and techniques are made use of Optimal order estimates in H1 norm are derived for the errors in the approximate solution.