An improved Guo Tao algorithm (IGT algorithm) is proposed for solving complicated dynamic function optimization problems, and a function optimization benchmark problem with constrained condition and two dynamic para...An improved Guo Tao algorithm (IGT algorithm) is proposed for solving complicated dynamic function optimization problems, and a function optimization benchmark problem with constrained condition and two dynamic parameters has been designed. The results achieved by IGT algorithm have been compared with the results from the Guo Tao algorithm (GT algorithm). It is shown that the new algorithm (IGT algorithm) provides better results. This preliminarily demonstrates the efficiency of the new algorithm in complicated dynamic environments.展开更多
This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global sea...This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global search and local search in each sub-domain, the former enables individual to draw closer to each optima and keeps the diversity of individuals, while the latter selects local optimal solutions known as latent solutions in sub-domain. In the end, by selecting the global optimal solutions from latent solutions in each sub-domain, we can discover all the optimal solutions easily and quickly.展开更多
基金Supported by the National Natural Science Foundation of China(60473081,60133010)
文摘An improved Guo Tao algorithm (IGT algorithm) is proposed for solving complicated dynamic function optimization problems, and a function optimization benchmark problem with constrained condition and two dynamic parameters has been designed. The results achieved by IGT algorithm have been compared with the results from the Guo Tao algorithm (GT algorithm). It is shown that the new algorithm (IGT algorithm) provides better results. This preliminarily demonstrates the efficiency of the new algorithm in complicated dynamic environments.
基金Supported by the National Natural Science Foundation of China(60133010,60073043,70071042)
文摘This paper presents a parallel two-level evolutionary algorithm based on domain decomposition for solving function optimization problem containing multiple solutions. By combining the characteristics of the global search and local search in each sub-domain, the former enables individual to draw closer to each optima and keeps the diversity of individuals, while the latter selects local optimal solutions known as latent solutions in sub-domain. In the end, by selecting the global optimal solutions from latent solutions in each sub-domain, we can discover all the optimal solutions easily and quickly.