An aluminum(Al)based nearly guided-wave surface plasmon resonance(NGWSPR)sensor is investigated in the far-ultraviolet(FUV)region.By simultaneously optimizing the thickness of Al and dielectric films,the sensitivity o...An aluminum(Al)based nearly guided-wave surface plasmon resonance(NGWSPR)sensor is investigated in the far-ultraviolet(FUV)region.By simultaneously optimizing the thickness of Al and dielectric films,the sensitivity of the optimized Al-based FUV-NGWSPR sensor increases from 183/RIU to 309/RIU,and its figure of merit rises from 26.47 RIU^(-1)to 32.59 RIU^(-1)when the refractive index of dielectric increases from 2 to 5.Compared with a traditional FUV-SPR sensor without dielectric,the optimized FUV-NGWSPR sensor can realize simultaneous improvement of sensitivity and figure of merit.In addition,the FUV-NGWSPR sensor with realistic materials(diamond,Ta_(2)O_(5),and GaN)is also investigated,and 137.84%,52.70%,and 41.89%sensitivity improvements are achieved respectively.This work proposes a method for performance improvement of FUV-SPR sensors by exciting nearly guided-wave,and could be helpful for the high-performance SPR sensor in the short-wavelength region.展开更多
The photonic spin Hall effect(SHE) has been intensively studied and widely applied, especially in spin photonics.However, the SHE is weak and is difficult to detect directly. In this paper, we propose a method to enha...The photonic spin Hall effect(SHE) has been intensively studied and widely applied, especially in spin photonics.However, the SHE is weak and is difficult to detect directly. In this paper, we propose a method to enhance SHE with the guided-wave surface-plasmon resonance(SPR). By covering a dielectric with high refractive index on the surface of silver film, the photonic SHE can be greatly enhanced, and a giant transverse shift of horizontal polarization state is observed due to the evanescent field enhancement near the interface at the top dielectric layer and air. The maximum transverse shift of the horizontal polarization state with 11.5 μm is obtained when the thickness of Si film is optimum. There is at least an order of magnitude enhancement in contrast with the transverse shift in the conventional SPR configuration. Our research is important for providing an effective way to improve the photonic SHE and may offer the opportunity to characterize the parameters of the dielectric layer with the help of weak measurements and development of sensors based on the photonic SHE.展开更多
This paper researches end diffraction of slab waveguide and then matching efficiency between the far-field and its Gaussian approximate field is analyzed leads to a new definition of divergence half-angle. Finally, wh...This paper researches end diffraction of slab waveguide and then matching efficiency between the far-field and its Gaussian approximate field is analyzed leads to a new definition of divergence half-angle. Finally, why the far-field can be approximated by a Gaussian function is presented according to characteristic of beam propagation factor.展开更多
The wave propagation in a magneto-electro-elastic plate was studied. Some new characteristics were discovered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV and Quasi-SH waves and arranged by t...The wave propagation in a magneto-electro-elastic plate was studied. Some new characteristics were discovered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV and Quasi-SH waves and arranged by the standing wavenumber; there are many patterns for the physical property of the magneto-electro-elastic dielectric medium influencing the stress wave propagation. We proposed a self-adjoint method, by which the guided-wave restriction condition was derived. After the corresponding orthogonal sets were found, the analytic dispersion equa-tion was obtained. In the end, an example was presented. The dispersive spectrum, the group velocity curved face and the steady-state response curve of a mag-neto-electro-elastic plate were plotted. Then the wave propagations affected by the induced electric and magnetic fields were analyzed.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61805007 and 11547241)
文摘An aluminum(Al)based nearly guided-wave surface plasmon resonance(NGWSPR)sensor is investigated in the far-ultraviolet(FUV)region.By simultaneously optimizing the thickness of Al and dielectric films,the sensitivity of the optimized Al-based FUV-NGWSPR sensor increases from 183/RIU to 309/RIU,and its figure of merit rises from 26.47 RIU^(-1)to 32.59 RIU^(-1)when the refractive index of dielectric increases from 2 to 5.Compared with a traditional FUV-SPR sensor without dielectric,the optimized FUV-NGWSPR sensor can realize simultaneous improvement of sensitivity and figure of merit.In addition,the FUV-NGWSPR sensor with realistic materials(diamond,Ta_(2)O_(5),and GaN)is also investigated,and 137.84%,52.70%,and 41.89%sensitivity improvements are achieved respectively.This work proposes a method for performance improvement of FUV-SPR sensors by exciting nearly guided-wave,and could be helpful for the high-performance SPR sensor in the short-wavelength region.
基金National Natural Science Foundation of China(NSFC)(61505111,61490713,51806001)Natural Science Foundation of Guangdong Province(2015A030313549)+3 种基金China Postdoctoral Science Foundation(2016M602509)Science and Technology Planning Project of Guangdong Province(2016B050501005)Science and Technology Project of Shenzhen(JCYJ20150324141711667)Natural Science Foundation of SZU(827-000051,827-000052,827-000059)
文摘The photonic spin Hall effect(SHE) has been intensively studied and widely applied, especially in spin photonics.However, the SHE is weak and is difficult to detect directly. In this paper, we propose a method to enhance SHE with the guided-wave surface-plasmon resonance(SPR). By covering a dielectric with high refractive index on the surface of silver film, the photonic SHE can be greatly enhanced, and a giant transverse shift of horizontal polarization state is observed due to the evanescent field enhancement near the interface at the top dielectric layer and air. The maximum transverse shift of the horizontal polarization state with 11.5 μm is obtained when the thickness of Si film is optimum. There is at least an order of magnitude enhancement in contrast with the transverse shift in the conventional SPR configuration. Our research is important for providing an effective way to improve the photonic SHE and may offer the opportunity to characterize the parameters of the dielectric layer with the help of weak measurements and development of sensors based on the photonic SHE.
基金Supported by the Program of Fujian Education Department under Grant No. JB09069the Natural Science Fund of Fujian Province under Grant No. 2009J01275
文摘This paper researches end diffraction of slab waveguide and then matching efficiency between the far-field and its Gaussian approximate field is analyzed leads to a new definition of divergence half-angle. Finally, why the far-field can be approximated by a Gaussian function is presented according to characteristic of beam propagation factor.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10572001 and 10232040)
文摘The wave propagation in a magneto-electro-elastic plate was studied. Some new characteristics were discovered: the guided waves are classified in the forms of the Quasi-P, Quasi-SV and Quasi-SH waves and arranged by the standing wavenumber; there are many patterns for the physical property of the magneto-electro-elastic dielectric medium influencing the stress wave propagation. We proposed a self-adjoint method, by which the guided-wave restriction condition was derived. After the corresponding orthogonal sets were found, the analytic dispersion equa-tion was obtained. In the end, an example was presented. The dispersive spectrum, the group velocity curved face and the steady-state response curve of a mag-neto-electro-elastic plate were plotted. Then the wave propagations affected by the induced electric and magnetic fields were analyzed.