为降低公路车辆发生火灾事故的风险,减少人员伤亡以及保护公路结构安全,精准并快速检测火灾的发生尤为重要。针对目前公路场景下火灾检测精度不高、检测速度较慢的问题,提出了一种基于改进YOLOv8模型的火灾检测算法。通过重新设计C2f模...为降低公路车辆发生火灾事故的风险,减少人员伤亡以及保护公路结构安全,精准并快速检测火灾的发生尤为重要。针对目前公路场景下火灾检测精度不高、检测速度较慢的问题,提出了一种基于改进YOLOv8模型的火灾检测算法。通过重新设计C2f模块,添加了高效通道注意力(Efficient Channel Attention,ECA)机制,提高了检测精度,减轻了车辆尾灯的干扰;使用SIoU(Shape-Aware Intersection over Union)优化原始网络模型的损失函数,提高了边界框的回归性能;在颈部(Neck)模块引入一种轻量化卷积——GSConv(Grouped Spatial Convolution)使模型能够在保证检测精度的同时提高检测速度,增强了模型的实时性效果。实验结果显示,相较于原模型,改进模型在公路车辆火灾检测数据集上,平均精度均值(mean Average Precision,mAP)提高了1.8%,轻量化后的模型参数下降了10%,前传耗时减少了13.6%,拥有更高的检测精度和检测速度,可以满足火灾实时性检测要求。展开更多
针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同...针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。展开更多
文摘为降低公路车辆发生火灾事故的风险,减少人员伤亡以及保护公路结构安全,精准并快速检测火灾的发生尤为重要。针对目前公路场景下火灾检测精度不高、检测速度较慢的问题,提出了一种基于改进YOLOv8模型的火灾检测算法。通过重新设计C2f模块,添加了高效通道注意力(Efficient Channel Attention,ECA)机制,提高了检测精度,减轻了车辆尾灯的干扰;使用SIoU(Shape-Aware Intersection over Union)优化原始网络模型的损失函数,提高了边界框的回归性能;在颈部(Neck)模块引入一种轻量化卷积——GSConv(Grouped Spatial Convolution)使模型能够在保证检测精度的同时提高检测速度,增强了模型的实时性效果。实验结果显示,相较于原模型,改进模型在公路车辆火灾检测数据集上,平均精度均值(mean Average Precision,mAP)提高了1.8%,轻量化后的模型参数下降了10%,前传耗时减少了13.6%,拥有更高的检测精度和检测速度,可以满足火灾实时性检测要求。
文摘针对柑橘罐头生产中橘瓣外观检测的速度和精度低的问题,以及主流检测模型的参数量较高问题,提出一种轻量化橘瓣外观检测模型,即YOLOv7-VSS。首先,该模型引入利用Hard-Swish激活函数改进后的EfficientViT网络作为主干网络,通过输入不同层次的特征减少不同检测头的映射相似度,缓解冗余计算,并通过级联组注意力机制增强网络的特征提取能力;其次,引入一种slim-neck模块,融合标准卷积和深度可分离卷积的特性,减小模型的规模,同时保持高精度;然后,为进一步缩小模型体积并加快推理速度,将SPPCSPC替换为SPPF结构;最后,为符合数据集中橘瓣的位置特点,使用MPDIoU损失函数来提升预测框的回归精度。实验结果表明,所提出的橘瓣外观检测模型的大小相比于YOLOv7减小了63.81%,检测精度达到了96.57%;同时,经过在Jetson Orin Nano上部署测试,模型大小和检测精度的平衡性相较于同类型的方法有较大提升,可满足柑橘罐头生产线的要求。