期刊文献+
共找到353,472篇文章
< 1 2 250 >
每页显示 20 50 100
Magnolol inhibits appetite and causes visceral fat loss through Growth/differentiation factor-15(GDF-15)by activating transcription factor 4-CCAAT enhancer binding proteinγ-mediated endoplasmic reticulum stress responses 被引量:1
1
作者 Keru Cheng Yanyun Zhou +4 位作者 Yilong Hao Shengyun Wu Nanping Wang Peng Zhang Yinfang Wang 《Chinese Journal of Natural Medicines》 2025年第3期334-345,共12页
Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant... Magnolol,a compound extracted from Magnolia officinalis,demonstrates potential efficacy in addressing metabolic dysfunction and cardiovascular diseases.Its biological activities encompass anti-inflammatory,antioxidant,anticoagulant,and anti-diabetic effects.Growth/differentiation factor-15(GDF-15),a member of the transforming growth factorβsuperfamily,is considered a potential therapeutic target for metabolic disorders.This study investigated the impact of magnolol on GDF-15 production and its underlying mechanism.The research examined the pharmacological effect of magnolol on GDF-15 expression in vitro and in vivo,and determined the involvement of endoplasmic reticulum(ER)stress signaling in this process.Luciferase reporter assays,chromatin immunoprecipitation,and in vitro DNA binding assays were employed to examine the regulation of GDF-15 by activating transcription factor 4(ATF4),CCAAT enhancer binding proteinγ(CEBPG),and CCCTC-binding factor(CTCF).The study also investigated the effect of magnolol and ATF4 on the activity of a putative enhancer located in the intron of the GDF-15 gene,as well as the influence of single nucleotide polymorphisms(SNPs)on magnolol and ATF4-induced transcription activity.Results demonstrated that magnolol triggers GDF-15 production in endothelial cells(ECs),hepatoma cell line G2(HepG2)and hepatoma cell line 3B(Hep3B)cell lines,and primary mouse hepatocytes.The cooperative binding of ATF4 and CEBPG upstream of the GDF-15 gene or the E1944285 enhancer located in the intron led to full-power transcription of the GDF-15 gene.SNP alleles were found to impact the magnolol and ATF4-induced transcription activity of GDF-15.In high-fat diet ApoE^(-/-)mice,administration of magnolol induced GDF-15 production and partially suppressed appetite through GDF-15.These findings suggest that magnolol regulates GDF-15 expression through priming of promoter and enhancer activity,indicating its potential as a drug for the treatment of metabolic disorders. 展开更多
关键词 MAGNOLOL growth/differentiation factor-15 Activating transcription factor 4 CCAAT enhancer binding proteinγ ENHANCER Metabolic disorder
原文传递
Cedrol ameliorates ulcerative colitis via myeloid differentiation factor 2-mediated inflammation suppression,with barrier restoration and microbiota modulation
2
作者 Yi-Qing Zhao Yu Zhang +2 位作者 Yan Qin Rui-Ya Zhang Jun-Ping Wang 《World Journal of Gastroenterology》 2026年第2期135-151,共17页
BACKGROUND Ulcerative colitis(UC)is a chronic and treatment-resistant disorder requiring potent therapeutics that are effective and safe.Cedrol(CE)is a bioactive natural product present in many traditional Chinese med... BACKGROUND Ulcerative colitis(UC)is a chronic and treatment-resistant disorder requiring potent therapeutics that are effective and safe.Cedrol(CE)is a bioactive natural product present in many traditional Chinese medicines.It is known for its suppression of inflammation and mitigation of oxidative stress.Its therapeutic efficacy and mechanistic underpinnings in UC remain uncharacterized.AIM To investigate the therapeutic potential and mechanisms of CE in UC.METHODS The anti-inflammatory activity and intestinal barrier-repairing effects of CE were assessed in a dextran sulfate sodium-induced murine colitis model.Network pharmacology was employed to predict potential targets and pathways.Then molecular docking and dynamics simulations were utilized to confirm a stable interaction between CE and the toll-like receptor 4(TLR4)/myeloid differentiation factor 2(MD2)complex.The anti-inflammatory mechanisms were further verified using in vitro assays.Additionally,the gut microbiota composition was analyzed via 16S rRNA gene sequencing.RESULTS CE significantly alleviated colitis symptoms,mitigated histopathological damage,and suppressed inflammation.Moreover,CE restored intestinal barrier integrity by enhancing mucus secretion and upregulating tight junction proteins(zonula occludens 1,occludin,claudin-1).Mechanistically,CE stably bound to MD2,inhibiting lipopolysaccharide-induced TLR4 signaling in RAW264.7 cells.This led to suppression of the downstream mitogen-activated protein kinase and nuclear factor kappa B signaling pathways,downregulating the expression of tumor necrosis factor-alpha,interleukin-1β,and interleukin-6.Gut microbiota analysis revealed that CE reversed dextran sulfate sodium-induced dysbiosis with significant enrichment of butyrogenic Christensenella minuta.CONCLUSION CE acted on MD2 to suppress proinflammatory cascades,promoting mucosal barrier reconstitution and microbiota remodeling and supporting its therapeutic use in UC. 展开更多
关键词 CEDROL Ulcerative colitis Toll-like receptor 4 Myeloid differentiation factor 2 Signaling pathways Gut microbiota
暂未订购
Growth differentiation factor 11 modulates metabolism, mitigating the pro-tumoral behavior provided by M2-like macrophages in hepatocellular carcinoma-derived cells
3
作者 Alejandro Escobedo-Calvario Lisette Chávez-Rodríguez +8 位作者 Verónica Souza-Arroyo Leticia Bucio-Ortiz Roxana U Miranda-Labra Felipe Masso Araceli Páez-Arenas Rogelio Hernández-Pando Jens Marquardt María Concepción Gutiérrez-Ruiz Luis E Gomez-Quiroz 《World Journal of Gastroenterology》 2025年第40期148-167,共20页
BACKGROUND Hepatocellular carcinoma(HCC)is one of the most aggressive tumors worldwide.Chronic inflammation contributes to tumor evolution,and the infiltration of tumor-associated macrophages(TAMs),also known as M2-li... BACKGROUND Hepatocellular carcinoma(HCC)is one of the most aggressive tumors worldwide.Chronic inflammation contributes to tumor evolution,and the infiltration of tumor-associated macrophages(TAMs),also known as M2-like macrophages,is associated with the most aggressive behavior.Therefore,these macrophages provide the primary growth and migratory factors to the tumor cells,including those of HCC.Current therapies are not well optimized for eliminating trans-formed cells or neutralizing the tumor immune microenvironment leukocytes,such as TAMs.Growth differentiation factor 11(GDF11)may represent a promi-sing dual therapeutic target due to its reported anti-tumorigenic and immuno-modulatory properties.AIM To characterize the effects of GDF11 in M2-like macrophages and the HCC cell interaction using a functional in vitro model.METHODS This research used THP-1 and Huh7 cell lines.We applied recombinant GDF11(50 ng/mL)every 24 hours on THP-1 differentiated macrophages with M2-like polarization using interleukin-4 and interleukin-13.Firstly,the GDF11 effects on signaling,viability,proliferation,metabolism,and redox state in macrophages were charac-terized.Subsequently,we extracted conditioned media(CM)from macrophages and performed indirect co-cultures with Huh7 cells.The functional parameters were proliferation and migration assays.Finally,we charac-terized secretion in the CM using the cytokine array membrane assay.RESULTS The present study demonstrated that GDF11 activates the canonical pathway Smad2/3 without cytotoxic or prolif-erative effects.We provide evidence that GDF11 also diminishes the pro-tumoral properties of M2-like macrophages.GDF11 promoted the reduction of the M2-like macrophage marker,cluster of differentiation 206,indicating a loss of pro-tumoral properties in these leukocytes.Furthermore,this molecule induced changes in metabolism and an increase in reactive oxygen species.Using CM derived from GDF11-treated M2-like macrophages,we observed a reduction in the proliferation and migratory capacity of liver cancer cells.Moreover,the cytokine profile was affected by GDF11 stimulus,demonstrating that this molecule alters the pro-tumoral properties of TAMs,which in turn impact the behavior of HCC-derived cells.CONCLUSION This in vitro study suggests that mitigating tumor-promoting or M2-like macrophages with GDF11 may be an effective strategy for controlling the aggressiveness of HCC. 展开更多
关键词 Hepatocellular carcinoma growth differentiation factor 11 Tumor-associated macrophages M2-like macro-phages Tumor immune microenvironment
暂未订购
Growth differentiation factor 15 alters intestinal barrier and increases permeability:A new molecular target in inflammatory bowel disease
4
作者 Antonio J Ruiz-Malagón Marina Herraiz-Vilela +16 位作者 Raquel Serrano-Pino Paula García-Ávila Luis Díaz-Suárez Ada DM Carmona-Segovia Victor M Becerra-Munoz Manuel Jiménez-Navarro Isabel Arranz-Salas Juan A López-Villodres Alejandra Fernández-Castañer Fernando Gutiérrez-Martínez Francisco J Rodríguez-González Raquel Camargo-Camero Guillermo Alcaín-Martínez Cristina Rodríguez-Díaz Eduardo García-Fuentes María J Sánchez-Quintero Carlos López-Gómez 《World Journal of Gastroenterology》 2025年第41期108-120,共13页
BACKGROUND Inflammatory bowel disease(IBD)is a group of chronic,inflammatory disorders that include Crohn’s disease and ulcerative colitis.IBD arises from the interaction of various environmental and genetic factors.... BACKGROUND Inflammatory bowel disease(IBD)is a group of chronic,inflammatory disorders that include Crohn’s disease and ulcerative colitis.IBD arises from the interaction of various environmental and genetic factors.Altered gut permeability and mitochondrial stress in the colonic mucosa are two mechanisms previously implicated in IBD pathogenesis.We have previously demonstrated activation of the mitochondrial unfolded protein response(UPRmt)in the colonic mucosa of IBD patients and linked this activation to pro-inflammatory signaling.Growth differentiation factor 15(GDF15)is an important downstream mediator of the UPRmt.AIM To investigate whether GDF15 has a role in IBD and how GDF15 impacts colonic epithelium.METHODS Circulating levels of GDF15 were assessed in plasma samples from IBD patients and healthy controls using an enzyme-linked immunosorbent assay.To study the effects of GDF15 on the colonic mucosa,we employed two different in vitro culture models:Colonic organoids and T84 cells.RESULTS We found that circulating GDF15 Levels were elevated in IBD patients and correlated with markers of inflammation(C-reactive protein)and intestinal permeability[haptoglobin and lipopolysaccharide-binding protein(LBP)].Additionally,we demonstrated that GDF15 alters the intestinal barrier and increases permeability by decreasing the levels of zonula occludens 1 and claudin 1,critical components of tight junctions.Thus,our findings confirm previous reports of increased circulating GDF15 levels in IBD patients and the activation of UPR^(mt).CONCLUSION In the present study,we describe a novel mechanism in IBD pathophysiology,linking mitochondrial stress to the disruption of the intestinal barrier and increased intestinal permeability. 展开更多
关键词 growth differentiation factor 15 Inflammatory bowel disease Crohn's disease Ulcerative colitis Mitochondrial stress Intestinal permeability Tight junctions
暂未订购
Growth differentiation factor 5:a neurotrophic factor with neuroprotective potential in Parkinson’s disease 被引量:1
5
作者 Susan R.Goulding Jayanth Anantha +2 位作者 Louise M.Collins Aideen M.Sullivan Gerard W.O’Keeffe 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第1期38-44,共7页
Parkinson’s disease is the most common movement disorder worldwide,affecting over 6 million people.It is an age-related disease,occurring in 1%of people over the age of 60,and 3%of the population over 80 years.The di... Parkinson’s disease is the most common movement disorder worldwide,affecting over 6 million people.It is an age-related disease,occurring in 1%of people over the age of 60,and 3%of the population over 80 years.The disease is characterized by the progressive loss of midbrain dopaminergic neurons from the substantia nigra,and their axons,which innervate the striatum,resulting in the characteristic motor and non-motor symptoms of Parkinson’s disease.This is paralleled by the intracellular accumulation ofα-synuclein in several regions of the nervous system.Current therapies are solely symptomatic and do not stop or slow disease progression.One promising disease-modifying strategy to arrest the loss of dopaminergic neurons is the targeted delivery of neurotrophic factors to the substantia nigra or striatum,to protect the remaining dopaminergic neurons of the nigrostriatal pathway.However,clinical trials of two well-established neurotrophic factors,glial cell line-derived neurotrophic factor and neurturin,have failed to meet their primary end-points.This failure is thought to be at least partly due to the downregulation byα-synuclein of Ret,the common co-receptor of glial cell line-derived neurorophic factor and neurturin.Growth/differentiation factor 5 is a member of the bone morphogenetic protein family of neurotrophic factors,that signals through the Ret-independent canonical Smad signaling pathway.Here,we review the evidence for the neurotrophic potential of growth/differentiation factor 5 in in vitro and in vivo models of Parkinson’s disease.We discuss new work on growth/differentiation factor 5’s mechanisms of action,as well as data showing that viral delivery of growth/differentiation factor 5 to the substantia nigra is neuroprotective in theα-synuclein rat model of Parkinson’s disease.These data highlight the potential for growth/differentiation factor 5 as a disease-modifying therapy for Parkinson’s disease. 展开更多
关键词 adeno-associated virus bone morphogenetic protein dopaminergic neurons growth/differentiation factor 5 NEURODEGENERATION NEUROPROTECTION neurotrophic factor Parkinson’s disease Smad signaling Α-SYNUCLEIN
暂未订购
Growth Differentiation Factor-9 Gene Expression of Mice Oocytes in Vitro and in Vivo 被引量:5
6
作者 彭宇洪 庄广伦 +2 位作者 周灿权 谢守珍 程冀平 《Zoological Research》 CAS CSCD 北大核心 2006年第5期456-460,共5页
Mice preantral follicles were cultured in vitro for 12 days to achieve metaphase Ⅱ (M Ⅱ ) oocytes. Oocyte growth differentiation factor-9 (GDF-9) gene expression was measured during different growth stages to ex... Mice preantral follicles were cultured in vitro for 12 days to achieve metaphase Ⅱ (M Ⅱ ) oocytes. Oocyte growth differentiation factor-9 (GDF-9) gene expression was measured during different growth stages to explore the relationship between oocyte maturation and GDF-9 gene expression. Preantral follicles of lO-day old mice were isolated from the ovaries and were cultured for 12 days. Oocytes from day 2 (D2), D4, D6, D8, DIO, D12 cultured in vitro were named the in vitro group and oocytes of day 12 (D12), D14, D16, D18, D20, D22 grown in vivo were named the in vivo group. Follicle survival, antrum formation and maturation rate were 89.5%, 51.8% and 56.6% respectively in follicles cultured in vitro. After RT-PCR and agarose gel electrophoresis, relative mRNA abundance of GDF-9 was measured in each group of oocytes. At day 8 - 12, the GDF-9 gene expression level of oocytes in vitro was significantly lower than that in vivo (P 〈 0.05). We conclude that M Ⅱ oocytes can be obtained from in vitro culture of preantral follicles. The GDF- 9 gene expression of oocytes varies at different growth stages in vivo. The low expression of GDF-9 in oocytes cuhured in vitro may be the cause of their low developmental capacity. 展开更多
关键词 MICE CULTURE OOCYTE growth differention factor-9
在线阅读 下载PDF
Expressions ofAxl and Tyro-3 receptors are under regulation of nerve growth factor and are involved in differentiation of PC12 cells 被引量:1
7
作者 王琦 卢清君 +2 位作者 肖冰 郑焱 王晓民 《Neuroscience Bulletin》 SCIE CAS CSCD 2011年第1期15-22,共8页
Objective Tyro-3 and Axl receptors are expressed in brain in a region-specific manner and their bioactivities in the central nervous system remain still elusive.The aim of the present study was to investigate their fu... Objective Tyro-3 and Axl receptors are expressed in brain in a region-specific manner and their bioactivities in the central nervous system remain still elusive.The aim of the present study was to investigate their functions in neuronal differentiation.Methods PC12 cells overexpressing Tyro-3 or Axl were established by transfection with full-length CMV-Tyro3-eCFP or CMV-Axl-eGFP plasmid,respectively.CMV-eGFP plasmid served as a control vector.After that,the fluorescence intensity and distributions of green fluorescent protein (GFP) and cyan fluorescent protein (CFP) in the cells with or without nerve growth factor (NGF) treatment were real-time monitored.Results Expressions of Tyro-3 and Axl receptors were under the regulation of NGF and associated with neuronal differentiation.This was not observed in CMV-eGFP-transfected PC12 cells.Besides,confocal microscopy revealed that NGF affected intracellular localization of full-length Axl-eGFP and Tyro-3eCFP in PC12 cells.Moreover,the development of outgrowth of differentiated PC12 cells under stimulation of NGF was promoted by overexpression of Tyro-3 or Axl.Conclusion Expressions of Tyro-3 and Axl receptors are under the regulation of NGF and are involved in NGF-induced neuronal differentiation of PC12 cells. 展开更多
关键词 AXL Tyro-3 nerve growth factor PC12 cells differentiation
原文传递
Hepatogenic differentiation of mesenchymal stem cells induced by insulin like growth factor-Ⅰ 被引量:10
8
作者 Maryam Ayatollahi Masoud Soleimani +1 位作者 Seyed Ziaadin Tabei Maryam Kabir Salmani 《World Journal of Stem Cells》 SCIE CAS 2011年第12期113-121,共9页
AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow... AIM:To improve hepatic differentiation of human mesenchymal stem cell(MSC)using insulin growth factor 1(IGF-Ⅰ),which has important role in liver development,hepatocyte differentiation and function.METHODS:Bone marrow of healthy donors was aspirated from the iliac crest.The adherent cells expanded rapidly and were maintained with periodic passages until a relatively homogeneous population was established.The identification of these cells was carried out by immunophenotype analysis and differentiation potential into osteocytes and adipocytes.To effectively induce hepatic differentiation,we designed a protocol based on a combination of IGF-Ⅰ and liver specificfactors(hepatocyte growth factor,oncostatin M and dexamethasone).Morphological features,hepatic functions and cytological staining were assessed to evaluate transdifferentiation of human marrow-derived MSCs.RESULTS:Flow cytometric analysis and the differentiation potential into osteoblasts and adipocytes showed that more than 90% of human MSCs which were isolated and expanded were positive by specif ic markers and functional tests.Morphological assessment and evaluation of glycogen storage,albumin and α-feto protein expression,as well as albumin and urea secretion revealed a statistically signif icant difference between the experimental groups and control.CONCLUSION:In vitro differentiated MSCs using IGF-Ⅰwere able to display advanced liver metabolic functions,supporting the possibility of developing them as potential alternatives to primary hepatocytes. 展开更多
关键词 MESENCHYMAL STEM cell differentiation HEPATOCYTE INSULIN-LIKE growth FACTOR 1 Human
暂未订购
Porcine growth differentiation factor 9 gene polymorphisms and their associations with litter size 被引量:4
9
作者 Yushan Zhang Hongli Du +2 位作者 Jing Chen Guanfu Yang Xiquan Zhang 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2008年第3期163-169,共7页
Growth differentiation factor 9 (GDF9) is expressed in oocytes and is thought to be required for ovarian folliculogenesis. Given this function, GDF9 may be considered as a candidate gene controlling pig ovulate rate... Growth differentiation factor 9 (GDF9) is expressed in oocytes and is thought to be required for ovarian folliculogenesis. Given this function, GDF9 may be considered as a candidate gene controlling pig ovulate rate. In this study, the complete coding sequence was cloned (encoding a 444 amino acid), intron sequence and partial 5'-UTR of pig GDF9. RT-PCR results showed that GDF9 mRNA is expressed in a wide range of tissues of the ruttish Erhualian pig. The expression levels of GDF9 mRNA in pituitary, ovary, uterus and oviduct are higher in the Erhualian pigs than those in Duroc pigs, especially in pituitary with a significant difference (P 〈 0.05). Comparative sequencing revealed 12 polymorphisms, including 8 single nucleotide polymorphisms (SNPs) and one 314 bp indel in noncoding regions, and the other 3 SNPs in coding regions. Four polymorphisms, G359C, C1801T, T1806C and 314 bp indel, were developed as markers for further use in population variation and association studies. The G359C polymorphism segregates only in Chinese native pigs, Erhualian and Dahuabai, on the contrary, 314 bp indel segregates only in Duroc and Landrace. C1801T and T1806C sites seem to be completely linked and segregate in Erhualian, Dahuabai and Landrace. In a word, GDF9 may be not associated with pig litter size in extensive populations as per the studies of allele distributions of the four polymorphisms and pilot association in four breeds. 展开更多
关键词 PIG growth differentiation factor 9 CLONING expression POLYMORPHISMS
在线阅读 下载PDF
Correlation between growth differentiation factor-15 and collagen metabolism indicators in patients with myocardial infarction and heart failure 被引量:16
10
作者 Fang-Fang WANG Bao-Xia CHEN +3 位作者 Hai-Yi YU Lin MI Zi-Jian LI Wei GAO 《Journal of Geriatric Cardiology》 SCIE CAS CSCD 2016年第1期88-93,共6页
BackgroundGrowth differentiation factor (GDF)-15, a divergent member of the transforming growth factor beta super-family does appear to be up-regulated in response to experimental pressure overload and progression o... BackgroundGrowth differentiation factor (GDF)-15, a divergent member of the transforming growth factor beta super-family does appear to be up-regulated in response to experimental pressure overload and progression of heart failure (HF). HF frequently develops after myocardial infarction (MI), contributing to worse outcome. The aim of this study is to assess the correlation between GDF-15 levels and markers related to collagen turnover in different stages of HF.MethodsThe study consists of a cohort of 179 patients, including stable angina pectoris patients (AP group,n= 50), old MI patients without HF (OMI group,n = 56), old MI patients with HF (OMI-HF group,n= 38) and normal Control group (n = 35). Both indicators reflecting the synthesis and degradation rates of collagen including precollagen I N-terminal peptide (PINP), type I collagen carboxy-terminal peptide (ICTP), precollagen III N-terminal peptide (PIIINP) and GDF-15 were measured using an enzyme-linked inmunosorbent assay.ResultsThe plasma GDF-15 level was higher in OMI-HF group (1373.4 ± 275.4 ng/L) than OMI group (1036.1 ± 248.6 ng/L), AP group (784.6 ± 222.4 ng/L) and Control group (483.8 ± 186.4 ng/L) (P〈 0.001). The indi-cators of collagen turnover (ICTP, PINP, PIIINP) all increased in the OMI-HF group compared with Control group (3.03 ± 1.02μg/Lvs. 2.08 ± 0.95μg/L, 22.2 ± 6.6μg/Lvs. 16.7 ± 5.1μg/L and 13.2 ± 7.9μg/Lvs. 6.4 ± 2.1μg/L, respectively;P〈 0.01). GDF-15 positively cor-related with ICTP and PIIINP (r = 0.302,P〈 0.001 andr= 0.206,P= 0.006, respectively). GDF-15 positively correlated to the echocardio-graphic diastolic indicators E/Em and left atrial pressure (r= 0.349 and r= 0.358, respectively;P〈 0.01), and inversely correlated to the systolic indicators left ventricular ejection fraction and the average of peak systolic myocardial velocities (Sm) (r=-0.623 and r=-0.365, respectively;P〈 0.01).ConclusionPlasma GDF-15 is associated with the indicators of type I and III collagen turnover. 展开更多
关键词 Biomarkers Collagen turnover growth differentiation factor- 15 Heart failure Myocardial infarction
暂未订购
In vitro growth, differentiation and biological characteristics of neural stem cells 被引量:20
11
作者 Meijiang Yun Lianzhong Wang +1 位作者 Yongcai Wang Xiaolian Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期364-367,共4页
OBJECTIVE: To summarize the biological characteristics of neural stem cells, and the separation, purification. differentiation and source of neural stem cells. DATA SOURCES : An online search of Pubmed database was ... OBJECTIVE: To summarize the biological characteristics of neural stem cells, and the separation, purification. differentiation and source of neural stem cells. DATA SOURCES : An online search of Pubmed database was undertaken to identify English articles about the growth of neural stem cells in vitro published from January 2000 to October 2006 by using the keywords of "neural stem cells, bone marrow mesenchymal stem cells (BMSCs), umbilical cord blood stem cells, embryonic stem cells (ESC), separation methods, neural growth factor". And relevant articles published in IEEE/IEE Electronic Library (IEL) database, Springer Link database and Kluwer Online Journals were also searched, Chinese relevant articles published between January 2000 to October 2006 were searched with the same keywords in Chinese in Chinese journal full-text database. STUDY SELECTION : The articles were primarily screened, and then the full-texts were searched. Inclusive criteria: (1) Articles relevant to the biological characteristics and classification of neural stem cells; (2) Articles about the source, separation and differentiation of the ESCs, BMSCs and umbilical cord blood stem cells. The repetitive studies and reviews were excluded. DATA EXTRACTION : Thirty articles were selected from 203 relevant articles according to the inclusive criteria Articles were excluded because of repetition and reviews. DATA SYNTHESES : Neural stem cells have the ability of self-renewing and high differentiation, and they are obtained from ESCs, nerve tissue, nerve system, BMSCs and umbilical cord blood stem cells. ESCs can be separated by means of mechanical dissociation is better than that of the trypsin digestion, BMSCs by density gradient centrifuge separation, hemolysis, whole-blood culture, etc., and umbilical cord blood stem ceils by Ficoil density gradient centrifugation, hydroxyethyl starch (HES) centrifugation sedimentation, etc. Neural growth factor (NGF) and other factors play an important role in the growth of NSCs, such as transforming growth factor (TGF) is an important player in repairing organs, NGF accelerates the process of growth, insulin-like growth factor serves importantly in the differentiation of stem cells into neuron-like cells. CONCLUSION : As unipotent stem cells, NSCs have the abilities of self-renewal and potential of high differentiation. The method of mechanical dissociation is better than trypsin digestion in e separating ESCs. However, density gradient centrifuge separation is better than other methods in the separation of the BMSCs. NGF and other factors play an important role in the growth of NSCs. 展开更多
关键词 NSCS CELL STEM differentiation and biological characteristics of neural stem cells In vitro growth BMSCS
暂未订购
Growth factor-and cytokine-driven pathways governing liver stemness and differentiation 被引量:7
12
作者 Aránzazu Sánchez Isabel Fabregat 《World Journal of Gastroenterology》 SCIE CAS CSCD 2010年第41期5148-5161,共14页
Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the cont... Liver is unique in its capacity to regenerate in response to injury or tissue loss. Hepatocytes and other liver cells are able to proliferate and repopulate the liver. However, when this response is impaired, the contribution of hepatic progenitors becomes very relevant. Here, we present an update of recent studies on growth factors and cytokine-driven intracellular pathways that govern liver stem/pro-genitor cell expansion and differentiation, and the rel-evance of these signals in liver development, regeneration and carcinogenesis. Tyrosine kinase receptor signaling, in particular, c-Met, epidermal growth factor receptors or fibroblast growth factor receptors, contribute to prolifera-tion, survival and differentiation of liver stem/progenitor cells. Different evidence suggests a dual role for the trans-forming growth factor (TGF)-β signaling pathway in liver stemness and differentiation. On the one hand, TGF-βmediates progression of differentiation from a progenitor stage, but on the other hand, it contributes to the expan-sion of liver stem cells. Hedgehog family ligands are nec-essary to promote hepatoblast proliferation but need to be shut off to permit subsequent hepatoblast differentiation. In the same line, the Wnt family and β-catenin/T-cell fac-tor pathway is clearly involved in the maintenance of liver stemness phenotype, and its repression is necessary for liver differentiation during development. Collectively, data indicate that liver stem/progenitor cells follow their own rules and regulations. The same signals that are essential for their activation, expansion and differentiation are good candidates to contribute, under adequate conditions, to the paradigm of transformation from a pro-regenerative to a pro-tumorigenic role. From a clinical perspective, this is a fundamental issue for liver stem/progenitor cell-based therapies. 展开更多
关键词 Hepatocyte growth factor Epidermal growth factor Fibroblast growth factor Transforming growth factor-β Hedgehog and β-catenin LIVER Stem cell
暂未订购
Changes in expression and secretion patterns of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway molecules during murine neural stem/progenitor cell differentiation in vitro 被引量:4
13
作者 Jiang Lu Kehuan Lu Dongsheng Li 《Neural Regeneration Research》 SCIE CAS CSCD 2012年第22期1688-1694,共7页
In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differ... In the present study, we investigated the dynamic expression of fibroblast growth factor 8 and Sonic Hedgehog signaling pathway related factors in the process of in vitro hippocampal neural stem/progenitor cell differentiation from embryonic Sprague-Dawley rats or embryonic Kunming species mice, using fluorescent quantitative reverse transcription-PCR and western blot analyses. Results demonstrated that the dynamic expression of fibroblast growth factor 8 was similar to fibroblast growth factor receptor 1 expression but not to other fibroblast growth factor receptors. Enzyme-linked immunosorbent assay demonstrated that fibroblast growth factor 8 and Sonic Hedgehog signaling pathway protein factors were secreted by neural cells into the intercellular niche. Our experimental findings indicate that fibroblast growth factor 8 and Sonic Hedgehog expression may be related to the differentiation of neural stem/progenitor cells. 展开更多
关键词 neural stem cells neural progenitor cells fibroblast growth factor 8 Sonic Hedgehog signalpathway SECRETION dynamic differentiation NEURONS neural regeneration
在线阅读 下载PDF
Macrophage inhibitory cytokine-1/growth differentiation factor-15 in premalignant and neoplastic tumours in a high-risk pancreatic cancer cohort 被引量:9
14
作者 Robert Sean O’Neill Sam Emmanuel +1 位作者 David Williams Alina Stoita 《World Journal of Gastroenterology》 SCIE CAS 2020年第14期1660-1673,共14页
BACKGROUND Pancreatic cancer(PC)is a leading cause of cancer related mortality worldwide,with poor survival due to late diagnosis.Currently,biomarkers have limited use in early diagnosis of PC.Macrophage inhibitory cy... BACKGROUND Pancreatic cancer(PC)is a leading cause of cancer related mortality worldwide,with poor survival due to late diagnosis.Currently,biomarkers have limited use in early diagnosis of PC.Macrophage inhibitory cytokine-1 or growth differentiation factor-15(MIC-1/GDF15)has been implicated as a potential serum biomarker in PC and other malignancies.AIM To determine the role of MIC-1/GDF15 in detecting pre-malignant pancreatic lesions and neoplastic tumours in an asymptomatic high-risk cohort part of Australian Pancreatic Cancer Screening Program.METHODS A feasibility prospective single centre cohort study was performed.Participants recruited for yearly surveillance with endoscopic ultrasound(EUS)had serial fasting blood samples collected before EUS for MIC-1/GDF15,C-reactive protein and carbohydrate antigen 19-9.Patients were stratified into five groups based on EUS findings:Normal;pancreatic cysts,branch-duct intraductal papillary mucinous neoplasm;diffuse non-specific abnormalities;and neoplastic tumours.MIC-1/GDF15 serum levels were quantified using ELISA.Participants in whom EUS demonstrated abnormalities but not malignancy were closely followed up with magnetic resonance imaging(MRI)or computed tomography.RESULTS One hundred twenty participants were prospectively recruited from 2011-2018.Forty-seven participants(39.2%)had an abnormal EUS and five participants(4.2%)were diagnosed with neoplastic tumours,three by EUS(two pancreatic and one liver)and two by MRI/computed tomography(breast cancer,bladder cancer),which were performed for follow up of abnormal EUS.Baseline serum MIC-1/GDF15 was a significant predictor of neoplastic tumours on receiver operator characteristic curve analysis[area under curve(AUC)=0.814,P=0.023].Baseline serum MIC-1/GDF15 had moderate predictive capacity for branch-duct intraductal papillary mucinous neoplasm(AUC=0.644)and neoplastic tumours noted on EUS(AUC=0.793),however this was not significant(P=0.188 and 0.081 respectively).Serial serum MIC-1/GDF15 did not demonstrate a significant percentage change between a normal and abnormal EUS(P=0.213).Median baseline MIC-1/GDF15 was greater in those with neoplastic tumours(Median=1039.6,interquartile range=727.0-1977.7)compared to those diagnosed with a benign lesion(Median=570.1,interquartile range=460.7-865.2)on EUS and MRI(P=0.012).CONCLUSION In this pilot study MIC-1/GDF15 has predictive capacity for neoplastic tumours in asymptomatic individuals with a genetic predisposition for PC.Further imagining may be warranted in patients with abnormal EUS and raised serum MIC-1/GDF15.Larger multicentric prospective studies are required to further define the role of MIC-1/GDF15 as a serological biomarker in pre-malignant pancreatic lesions and neoplastic tumours. 展开更多
关键词 growth differentiation factor 15 Cytokines PANCREATIC NEOPLASMS DIGESTIVE system NEOPLASMS PANCREATIC diseases Biomarkers Diagnostic screening programs
暂未订购
Fibroblast Growth Factor-2 Counteracts the Effect of Ciliary Neurotrophic Factor on Spontaneous Differentiation in Adult Hippocampal Progenitor Cells 被引量:3
15
作者 贺致礼 丁君 +4 位作者 张建芳 刘颖 龚成新 孙圣刚 陈红辉 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2012年第6期867-871,共5页
Neural stem/progenitor cells (NSCs) can spontaneously differentiate into neurons and glial cells in the absence of mitogen fibroblast growth factor-2 (FGF-2) or epidermal growth factor (EGF) in medium and the spontane... Neural stem/progenitor cells (NSCs) can spontaneously differentiate into neurons and glial cells in the absence of mitogen fibroblast growth factor-2 (FGF-2) or epidermal growth factor (EGF) in medium and the spontaneous differentiation of NSCs is mediated partially by endogenous ciliary neuro-trophic factor (CNTF). This study examined the relationship of FGF-2 and CNTF in the spontaneous differentiation of adult hippocampal progenitor cells (AHPs). AHPs were cultured in the medium containing different concentration of FGF-2 (1–100 ng/mL). Western blotting and immunofluorescence staining were applied to detect the expression of the astrocytic marker GFAP, the neuronal marker Tuj1, the oligodendrocytic marker CNPase and, Nestin, the marker of AHPs. The expression of endogenous CNTF in AHPs at early (passage 4) and late stage (passage 22) was also measured by Western blotting. The results showed that FGF-2 increased the expression of Nestin, dramatically inhibited the expression of GFAP and Tuj1 and slightly suppressed the expression of CNPase. FGF-2 down-regulated the expression of endogenous CNTF in AHPs at both early (passage 4) and late stage (passage 22). These results suggested that FGF-2 could inhibit the spontaneous differentiation of cultured AHPs by negatively regulating the expression of endogenous CNTF in AHPs. 展开更多
关键词 spontaneous differentiation neural progenitor cells basic fibroblast growth factor neuro-genesis
暂未订购
Osteogenic differentiation of mesenchymal stem cells promoted by overexpression of connective tissue growth factor 被引量:10
16
作者 Jin-jing WANG Feng YE +6 位作者 Li-jia CHENG Yu-jun SHI Ji BAO Huai-qiang SUN Wei WANG Peng ZHANG Hong BU 《Journal of Zhejiang University-Science B(Biomedicine & Biotechnology)》 SCIE CAS CSCD 2009年第5期355-367,共13页
Objective:Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focusing on combining gene transfection with tissue engineering techniques.The aim of this study is to ... Objective:Large segmental bone defect repair remains a clinical and scientific challenge with increasing interest focusing on combining gene transfection with tissue engineering techniques.The aim of this study is to investigate the effect of connective tissue growth factor(CTGF) on the proliferation and osteogenic differentiation of the bone marrow mesenchymal stem cells(MSCs).Methods:A CTGF-expressing plasmid(pCTGF) was constructed and transfected into MSCs.Then expressions of bone morphogenesis-related genes,proliferation rate,alkaline phosphatase activity,and mineralization were examined to evaluate the osteogenic potential of the CTGF gene-modified MSCs.Results:Overexpression of CTGF was confirmed in pCTGF-MSCs.pCTGF transfection significantly enhanced the proliferation rates of pCTGF-MSCs(P<0.05).CTGF induced a 7.5-fold increase in cell migration over control(P<0.05).pCTGF transfection enhanced the expression of bone matrix proteins,such as bone sialo-protein,osteocalcin,and collagen type I in MSCs.The levels of alkaline phosphatase(ALP) activities of pCTGF-MSCs at the 1st and 2nd weeks were 4.0-and 3.0-fold higher than those of MSCs cultured in OS-medium,significantly higher than those of mock-MSCs and normal control MSCs(P<0.05).Overexpression of CTGF in MSCs enhanced the capability to form mineralized nodules.Conclusion:Overexpression of CTGF could improve the osteogenic differentiation ability of MSCs,and the CTGF gene-modified MSCs are potential as novel cell resources of bone tissue engineering. 展开更多
关键词 Mesenchymal stem cells (MSCs) Connective tissue growth factor (CTGF) Osteogenic differentiation OSTEOBLASTS OVEREXPRESSION Gene modification
原文传递
Transforming growth factor-β and smooth muscle differentiation 被引量:2
17
作者 Xia Guo Shi-You Chen 《World Journal of Biological Chemistry》 CAS 2012年第3期41-52,共12页
Transforming growth factor(TGF)-β family members are multifunctional cytokines regulating diverse cel- lular functions such as growth,adhesion,migration, apoptosis,and differentiation.TGF-βs elicit their effects via... Transforming growth factor(TGF)-β family members are multifunctional cytokines regulating diverse cel- lular functions such as growth,adhesion,migration, apoptosis,and differentiation.TGF-βs elicit their effects via specific typeⅠand typeⅡserine/threonine kinase receptors and intracellular Smad transcription factors. Knockout mouse models for the different components of the TGF-β signaling pathway have revealed their critical roles in smooth muscle cell(SMC)differentia- tion.Genetic studies in humans have linked mutations in these signaling components to specific cardiovascular disorders such as aorta aneurysm and congenital heart diseases due to SMC defects.In this review,the current understanding of TGF-β function in SMC differentiation is highlighted,and the role of TGF-βsignaling in SMC- related diseases is discussed. 展开更多
关键词 TRANSFORMING growth factor β SMAD SMOOTH MUSCLE cell differentiation CARDIOVASCULAR DISEASES
暂未订购
Noggin versus basic fibroblast growth factor on the differentiation of human embryonic stem cells 被引量:2
18
作者 Yan Zhang Junmei Zhou +2 位作者 Zhenfu Fang Manxi Jiang Xuejin Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第23期2171-2177,共7页
The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibro... The difference between Noggin and basic fibroblast growth factor for the neural precursor differen- tiation from human embryonic stem cells has not been studied. In this study, 100 tJg/L Noggin or 20 IJg/L basic fibroblast growth factor in serum-free neural induction medium was used to differen- tiate human embryonic stem cells H14 into neural precursors using monolayer differentiation. Two weeks after induction, significantly higher numbers of neural rosettes formed in the Noggin-induced group than the basic fibroblast growth factor-induced group, as detected by phase contrast micro- scope. Immunofluorescence staining revealed expression levels of Nestin, [3-111 Tubulin and Sox-1 were higher in the induced cells and reverse-transcription PCR showed induced cells expressed Nestin, Sox-1 and Neurofilament mRNA. Protein and mRNA expression in the Noggin-induced group was increased compared with the basic fibroblast growth factor-induced group. Noggin has a greater effect than basic fibroblast growth factor on the induction of human embryonic stem cell differentiation into neural precursors by monolayer differentiation, as Noggin accelerates and in- creases the differentiation of neural precursors. 展开更多
关键词 neural regeneration stem cells basic fibroblast growth factor NOGGIN human embryonic stem cells neural precursors neural differentiation grants-supported paper NEUROREGENERATION
暂未订购
Growth and differentiation factor-11 is developmentally regulated in skeletal muscle and inhibits myoblast differentiation 被引量:3
19
作者 Ferenc Jeanplong Shelley J. Falconer +4 位作者 Mark Thomas Kenneth G. Matthews Jenny M. Oldham Trevor Watson Christopher D. McMahon 《Open Journal of Molecular and Integrative Physiology》 2012年第4期127-138,共12页
Growth and differentiation factor-11 (GDF-11) is a secreted protein that is closely related to myostatin, a known inhibitor of skeletal muscle development. The role of GDF-11 in regulating skeletal muscle growth remai... Growth and differentiation factor-11 (GDF-11) is a secreted protein that is closely related to myostatin, a known inhibitor of skeletal muscle development. The role of GDF-11 in regulating skeletal muscle growth remains unclear and the pattern of expression during post-natal growth has not been reported. Therefore, we sought to determine the expression of GDF-11 during post-natal growth and its effect on myoblast proliferation and differentiation. We collected gastrocnemius muscles from male and female mice at 2, 3, 4, 6, 12, 20 and 32 weeks of age (n = 6 per sex and age). In addition, gastrocnemius muscles were col- lected from male wild-type and myostatin knockout mice at 4, 6, 12 and 20 weeks of age (n = 6 per age and genotype). RNA was extracted and reverse tran- scribed. Northern analysis identified an expected 4.4 kb mRNA transcript for GDF-11 in gastrocnemius muscles of mice. The concentration of GDF-11 mRNA, as determined by quantitative PCR, was increased in gastrocnemius muscles from 2 to 6 weeks—a period of rapid postnatal muscle growth—and remained higher in male than female mice from 4 to 20 weeks of age (P gastrocnemius muscles of myostatin knockout compared with wild-type mice (P < 0.05), which may suggest a compensatory mecha- nism for the lack of myostatin. In support, recombi- nant GDF-11 inhibited differentiation of C2C12 mur- ine myoblasts and those isolated from myostatin knockout and wild-type mice (P < 0.05). Inhibited dif-ferentiation of C2C12 myoblasts was associated with decreased mRNA expression of early and late mo- lecular markers of differentiation (MyoD, myogenin, IGF-II, desmin and MyHC, P < 0.05). Our results suggest that GDF-11 regulates growth of skeletal muscles by inhibiting myoblast differentiation in an autocrine/paracrine manner and, perhaps, also plays a role in regulating sexually dimorphic growth. 展开更多
关键词 GDF-11 DEVELOPMENTAL Expression POST-NATAL Muscle growth Sexual DIMORPHISM MYOBLAST differentiation
暂未订购
Effect of transforming growth factor beta and bone morphogenetic proteins on rat hepatic stellate cell proliferation and transdifferentiation 被引量:17
20
作者 Hong Shen Guo-Jiang Huang Yue-Wen Gong Departments of Internal Medicine,Biochemistry and Medical Genetics,Faculty of Medicine,University of Manitoba,Winnipeg,Manitoba,Canada 《World Journal of Gastroenterology》 SCIE CAS CSCD 2003年第4期784-787,共4页
AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were i... AIM: To explore different roles of TGF-β (transforming growth factor beta) and bone morphogenetic proteins (BMPs)in hepatic stellate cell proliferation and trans-differentiation.METHODS: Hepatic stellate cells were isolated from male Sprague-Dawley rats. Sub-cultured hepatic stellate cells were employed for cell proliferation assay with WST-1 reagent and Western blot analysis with antibody against smooth muscle alpha actin (SMA).RESULTS: The results indicated that TGF-β1 significantly inhibited cell proliferation at concentration as low as 0.1 ng/ml, but both BMP-2 and BMP-4 did not affect cell proliferation at concentration as high as 10 ng/ml. The effect on hepatic stellate cell trans-differentiation was similar between TGFβ1 and BMPs. However, BMPs was more potent at transdifferentiation of hepatic stellate cells than TGF-β1. In addition, we observed that TGF-β1 transient reduced the abundance of SMA in hepatic stellate cells.CONCLUSION: TGF-β may be more important in regulation of hepatic stellate cell proliferation while BMPs may be the major cytokines regulating hepatic stellate cell transdifferentiation. 展开更多
关键词 ANIMALS Bone Morphogenetic Proteins Cell differentiation Cell Division Cells Cultured Liver Male RATS Rats Sprague-Dawley Research Support Non-U.S. Gov't Transforming growth Factor beta
暂未订购
上一页 1 2 250 下一页 到第
使用帮助 返回顶部