In this study,it is aimed to develop a generic model which calculates the trajectory of the ejection seat from the jet aircraft,by taking into account the parameters that will affect the seat movement such as the seat...In this study,it is aimed to develop a generic model which calculates the trajectory of the ejection seat from the jet aircraft,by taking into account the parameters that will affect the seat movement such as the seat’s launch speed,ejection direction,ejection angle,altitude of the aircraft,distance/height from the aircraft rudder and canopy,pilot and ejection seat weight.With the model algorithm proposed,the ejection seat trajectory model was developed on MATLAB.The ejection seat trajectory model is based on point mass trajectory mathematical model.In this study,an analytical study of the problem has been made for modeling the flight trajectory of the ejection seat after it has been ejected.Past studies were used as a basis for validation and simulation.By writing a generic MATLAB code,a user interface was developed and presented to the user as a module.This generic code that has been developed could be used for simulations by users in the future by revising it in accordance with their own job descriptions.展开更多
This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic ...This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme.展开更多
In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from mo...In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from motors, a multistep dynamics modeling strategy is proposed and a robust controller based on neural network(NN)-adaptive algorithm is designed. At the first step of dynamics modeling, the dynamics model of the reduced HHA is established by Lagrange method. At the second step of dynamics modeling, the parameter uncertain part resulting mainly from the idealization of the HHA is learned by adaptive algorithm. In the trajectory tracking controller, the radial basis function(RBF) NN, whose optimal weights are learned online by adaptive algorithm, is used to learn the upper limit function of the total uncertainties including frictions, disturbances, abrasion and pulse forces. To a great extent, the conservatism of this robust trajectory tracking controller is reduced, and by this controller the HHA can impersonate mostly human actions. The proof and simulation results testify the validity of the adaptive strategy for parameter learning and the neural network-adaptive strategy for the trajectory tracking control.展开更多
BACKGROUND Neck pain,a primary symptom of cervical spondylosis,affects patients'physical and mental health,reducing their quality of life.Pain and emotional state interact;however,their longitudinal interrelations...BACKGROUND Neck pain,a primary symptom of cervical spondylosis,affects patients'physical and mental health,reducing their quality of life.Pain and emotional state interact;however,their longitudinal interrelationship remains unclear.In this study,we applied a dual-trajectory model to assess how neck pain and emotional state evolve together over time and how clinical interventions,particularly acupuncture,influence these trajectories.AIM To investigate the longitudinal relationship between neck pain and emotional state in patients with cervical spondylosis.METHODS This prospective cohort study included 472 patients with cervical spondylosis from eight Chinese hospitals.Participants received acupuncture or medication and were followed up at baseline,and at 1,2,4,6,and 8 weeks.Neck pain and emotional distress were assessed using the Northwick Park Neck Pain Questionnaire(NPQ)and the affective subscale of the Short-Form McGill Pain Questionnaire(SF-MPQ),respectively.Group-based trajectory models and dual trajectory analysis were used to identify and correlate pain-emotion trajectories.Multivariate logistic regression identified predictors of group membership.RESULTS Three trajectory groups were identified for NPQ and SF-MPQ scores(low,medium,and high).Higher NPQ trajectory was associated with older age(OR=1.058,P<0.001)and was significantly reduced by acupuncture(OR=0.382,P<0.001).Similarly,acupuncture lowered the odds of high SF-MPQ trajectory membership(OR=0.336,P<0.001),while age increased it(OR=1.037,P<0.001).Dual-trajectory analysis revealed bidirectional associations:69.1%of patients with low NPQ had low SF-MPQ scores,and 42.6%of patients with high SF-MPQ also had high NPQ scores.Gender was a predictor for medium SF-MPQ trajectory(OR=1.629,P=0.094).Occupation and education levels differed significantly across the trajectory groups(P<0.05).CONCLUSION Over time,neck pain and emotional distress are closely associated in patients with cervical spondylosis.Acupuncture alleviates both outcomes significantly,while age is a risk factor.Integrated approaches to pain and emotional management are encouraged.展开更多
The geometrical model of the filament during the fused deposition modeling (FDM) process was firstly proposed based on three different models, tractrix, parabola, and catenary. Comparing with the actual measured filam...The geometrical model of the filament during the fused deposition modeling (FDM) process was firstly proposed based on three different models, tractrix, parabola, and catenary. Comparing with the actual measured filament curves on the Stratasys 1600 FDM machine, it is indicated that the tractrix model had the best agreement with the actual measured curves. With the analytical simulation, the nozzle trajectories in the straight-line deposition road, circle road, and arbitrary continuous curve road were deduced, according to the traxtric based geometrical model of the filament.展开更多
Conventional trajectory optimization techniques have been challenged by their inability to handle threats with irregular shapes and the tendency to be sensitive to control variations of aircraft. Aiming to overcome th...Conventional trajectory optimization techniques have been challenged by their inability to handle threats with irregular shapes and the tendency to be sensitive to control variations of aircraft. Aiming to overcome these difficulties, this paper presents an alternative approach for trajectory optimization, where the problem is formulated into a parametric optimization of the maneuver variables under a tactics template framework. To reduce the size of the problem, global sensitivity analysis (GSA) is performed to identify the less-influential maneuver variables. The probability collectives (PC) algorithm, which is well-suited to discrete and discontinuous optimization, is applied to solve the trajectory optimization problem. The robustness of the trajectory is assessed through multiple sampling around the chosen values of the maneuver variables. Meta-models based on radius basis function (RBF) are created for evaluations of the means and deviations of the problem objectives and constraints. To guarantee the approximation accuracy, the meta-models are adaptively updated during optimization. The proposed approach is demonstrated on a typical airground attack mission scenario. Results reveal that the proposed approach is capable of generating robust and optimal trajectories with both accuracy and efficiency.展开更多
To accurately reconstruct the tomographic gamma scanning(TGS)transmission measurement image,this study optimized the transmission reconstruction equation based on the actual situation of TGS transmission measurement.U...To accurately reconstruct the tomographic gamma scanning(TGS)transmission measurement image,this study optimized the transmission reconstruction equation based on the actual situation of TGS transmission measurement.Using the transmission reconstruction equation and the Monte Carlo program Geant4,an innovative virtual trajectory length model was constructed.This model integrated the solving process for the trajectory length and detection efficiency within the same model.To mitigate the influence of the angular distribution ofγ-rays emitted by the transmitted source at the detector,the transport processes of numerous particles traversing a virtual nuclear waste barrel with a density of zero were simulated.Consequently,a certain amount of information was captured at each step of particle transport.Simultaneously,the model addressed the nonuniform detection efficiency of the detector end face by considering whether the energy deposition of particles in the detector equaled their initial energy.Two models were established to validate the accuracy and reliability of the virtual trajectory length model.Model 1 was a simplified nuclear waste barrel,whereas Model 2 closely resembled the actual structure of a nuclear waste barrel.The results indicated that the proposed virtual trajectory length model significantly enhanced the precision of the trajectory length determination,substantially increasing the quality of the reconstructed images.For example,the reconstructed images of Model 2 using the“point-to-point”and average trajectory models revealed a signalto-noise ratio increase of 375.0%and 112.7%,respectively.Thus,the virtual trajectory length model proposed in this study holds paramount significance for the precise reconstruction of transmission images.Moreover,it can provide support for the accurate detection of radioactive activity in nuclear waste barrels.展开更多
To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’...To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’along the spiral trajectory,was proposed.From the kinematics analysis,it is found that the machining quality of micro-dimpled structures is highly dependent on the machining trajectory using spiral trajectory tool reciprocating motion.To reveal this causation,simulation modelling and experimental studies were carried out.A simulation model was developed to quantitatively and qualitatively investigate the influence of the trajectory discretization strategies(constant-angle and constant-arc length)and parameters(discrete angle,discrete arc length,and pitch)on surface texture and residual height of micro-dimpled structures.Subsequently,micro-dimpled structures were milled under different trajectory discretization strategies and parameters with spiral trajectory tool reciprocating motion.A comprehensive comparison between the milled results and simulation analysis was made based on geometry accuracy,surface morphology and surface roughness of milled dimples.Meanwhile,the errors and factors affecting the above three aspects were analyzed.The results demonstrate both the feasibility of the established simulation model and the machining capability of this machining way in milling high-quality micro-dimpled structures.Spiral trajectory tool reciprocating motion provides a new machining way for milling micro-dimpled structures and micro-dimpled functional surfaces.And an appropriate machining trajectory can be generated based on the optimized trajectory parameters,thus contributing to the improvement of machining quality and efficiency.展开更多
Background: Workplace violence (WV) towards psychiatric staff has commonly been associated with Posttraumatic Stress Disorder (PTSD). However, prospective studies have shown that not all psychiatric staff who experien...Background: Workplace violence (WV) towards psychiatric staff has commonly been associated with Posttraumatic Stress Disorder (PTSD). However, prospective studies have shown that not all psychiatric staff who experience workplace violence experience post-traumatic stress. Purpose: We want to examine the longitudinal trajectories of PTSD in this population to identify possible subgroups that might be more at risk. Furthermore, we need to investigate whether certain risk factors of PTSD might identify membership in the subgroups. Method: In a sample of psychiatric staff from 18 psychiatric wards in Denmark who had reported an incident of WV, we used Latent Growth Mixture Modelling (LGMM) and further logistic regression analysis to investigate this. Results: We found three separate PTSD trajectories: a recovering, a delayed-onset, and a moderate-stable trajectory. Higher social support and negative cognitive appraisals about oneself, the world and self-blame predicted membership in the delayed-onset trajectory, while higher social support and lower accept coping predicted membership in the delayed-onset trajectory. Conclusion: Although most psychiatric staff go through a natural recovery, it is important to be aware of and identify staff members who might be struggling long-term. More focus on the factors that might predict these groups should be an important task for psychiatric departments to prevent posttraumatic symptomatology from work.展开更多
Objective We aimed to investigate the patterns of fasting blood glucose(FBG)trajectories and analyze the relationship between various occupational hazard factors and FBG trajectories in male steelworkers.Methods The s...Objective We aimed to investigate the patterns of fasting blood glucose(FBG)trajectories and analyze the relationship between various occupational hazard factors and FBG trajectories in male steelworkers.Methods The study cohort included 3,728 workers who met the selection criteria for the Tanggang Occupational Cohort(TGOC)between 2017 and 2022.A group-based trajectory model was used to identify the FBG trajectories.Environmental risk scores(ERS)were constructed using regression coefficients from the occupational hazard model as weights.Univariate and multivariate logistic regression analyses were performed to explore the effects of occupational hazard factors using the ERS on FBG trajectories.Results FBG trajectories were categorized into three groups.An association was observed between high temperature,noise exposure,and FBG trajectory(P<0.05).Using the first quartile group of ERS1 as a reference,the fourth quartile group of ERS1 had an increased risk of medium and high FBG by 1.90and 2.21 times,respectively(odds ratio[OR]=1.90,95%confidence interval[CI]:1.17–3.10;OR=2.21,95%CI:1.09–4.45).Conclusion An association was observed between occupational hazards based on ERS and FBG trajectories.The risk of FBG trajectory levels increase with an increase in ERS.展开更多
Airports are being developed and expanded rapidly in China to accommodate and promote a growing aviation market.The future Beijing Daxing International Airport(DAX) will serve as the central airport of the JingJinJi...Airports are being developed and expanded rapidly in China to accommodate and promote a growing aviation market.The future Beijing Daxing International Airport(DAX) will serve as the central airport of the JingJinJi megaregion,knitting the Beijing,Tianjin,and Hebei regions together.DAX will be a busy airport from its inception,relieving congestion and accommodating growth from Beijing Capital International Airport(PEK),currently the second busiest airport in the world in passengers moved.We aim to model terminal airspace designs and possible conflicts in the future Beijing Multi-Airport System(MAS).We investigate standard arrival procedures and mathematically model current and future arrival trajectories into PEK and DAX by collecting large quantities of publicly available track data from historical arrivals operating within the Beijing terminal airspace.We find that(1) trajectory models constructed from real data capture aberrations and deviations from standard arrival procedures,validating the need to incorporate data on historical trajectories with standard procedures when evaluating the airspace and(2) given all existing constraints,DAX may be restricted to using north and east arrival flows,constraining the capacity required to handle the increases in air traffic demand to Beijing.The results indicate that the terminal airspace above Beijing,and the future JingJinJi region,requires careful consideration if the full capacity benefits of the two major airports are to be realized.展开更多
This is the first of a three-part series of pape rs which introduces a general background of building trajectory-oriented road net work data models, including motivation, related works, and basic concepts. The p urpos...This is the first of a three-part series of pape rs which introduces a general background of building trajectory-oriented road net work data models, including motivation, related works, and basic concepts. The p urpose of the series is to develop a trajectory-oriented road network data mode l, namely carriageway-based road network data model (CRNM). Part 1 deals with t he modeling background. Part 2 proposes the principle and architecture of the CR NM. Part 3 investigates the implementation of the CRNM in a case study. In the p resent paper, the challenges of managing trajectory data are discussed. Then, de veloping trajectory-oriented road network data models is proposed as a solution and existing road network data models are reviewed. Basic representation approa ches of a road network are introduced as well as its constitution.展开更多
This is the second of a three-part series of papers which presents the principle and architecture of the CRNM, a trajectory-oriented, carriageway-based road network data model. The first part of the series has introdu...This is the second of a three-part series of papers which presents the principle and architecture of the CRNM, a trajectory-oriented, carriageway-based road network data model. The first part of the series has introduced a general background of building trajectory-oriented road network data models, including motivation, related works, and basic concepts. Based on it, this paper describs the CRNM in detail. At first, the notion of basic roadway entity is proposed and discussed. Secondly, carriageway is selected as the basic roadway entity after compared with other kinds of roadway, and approaches to representing other roadways with carriageways are introduced. At last, an overall architecture of the CRNM is proposed.展开更多
Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Cons...Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Considering that the motion trajectory of a vehicle at an intersection partly obeys the statistical law of historical data once its driving intention is determined,this paper proposes a long short-term memory based(LSTM-based)framework that combines intention prediction and trajectory prediction together.First,we build an intersection prior trajectories model(IPTM)by clustering and statistically analyzing a large number of prior traffic flow trajectories.The prior trajectories model with fitted probabilistic density is used to approximate the distribution of the predicted trajectory,and also serves as a reference for credibility evaluation.Second,we conduct the intention prediction through another LSTM model and regard it as a crucial cue for a trajectory forecast at the early stage.Furthermore,the predicted intention is also a key that is associated with the prior trajectories model.The proposed framework is validated on two publically released datasets,next generation simulation(NGSIM)and INTERACTION.Compared with other prediction methods,our framework is able to sample a trajectory from the estimated distribution,with its accuracy improved by about 20%.Finally,the credibility evaluation,which is based on the prior trajectories model,makes the framework more practical in the real-world applications.展开更多
A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC co...A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.展开更多
The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stre...The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stress field.This study investigated its evolution by constructing a large-scale physical model according to the in situ conditions of the longwall panel.Theoretical analysis was used to reveal the mechanism of stress distribution in the overburden.The modelling results showed that:(1)The major principal stress field is arch-shaped,and the strata overlying both the solid zones and gob constitute a series of coordinated load-bearing structures.The stress increasing zone is like a macro stress arch.High stress is especially concentrated on both shoulders of the arch-shaped structure.The stress concentration of the solid zone in front of the gob is higher than the rear solid zone.(2)The characteristics of the vertical stress field in different regions are significantly different.Stress decreases in the zone above the gob and increases in solid zones on both sides of it.The mechanical analysis show that for a given stratum,the trajectories of principal stress are arch-shaped or inverselyarched,referred to as the‘‘principal stress arch’’,irrespective of its initial breaking or periodic breaking,and determines the fracture morphology.That is,the trajectories of tensile principal stress are inversely arched before the first breaking of the strata,and cause the breaking lines to resemble an inverted funnel.In case of periodic breaking,the breaking line forms an obtuse angle with the advancing direction of the panel.Good agreement was obtained between the results of physical modeling and the theoretical analysis.展开更多
Abstract: The mathematical model of a high-speed underwater vehicle getting catastrophe in the out-of-water course and a nonlinear sliding mode control with the adaptive backstepping approach for the catastrophic cou...Abstract: The mathematical model of a high-speed underwater vehicle getting catastrophe in the out-of-water course and a nonlinear sliding mode control with the adaptive backstepping approach for the catastrophic course are proposed. The speed change is large at the moment that the high-speed underwater vehicle launches out of the water to attack an air target. It causes motion parameter uncertainties and affects the precision attack ability. The trajectory angle dynamic characteristic is based on the description of the transformed state-coordinates, the nonlinear sliding mode control is designed to track a linear reference model. Furthermore, the adaptive backstepping control approach is utilized to improve the robustness against the unknown parameter uncertainties. With the proposed control of attitude tracking, the controlled navigational control system possesses the advantages of good transient performance and robustness to parametric uncertainties. These can be predicted and regulated through the design of a linear reference model that has the desired dynamic behavior for the trajectory of the high-speed underwater vehicle to attack its target. Finally, some digital simulation results show that the control system can be applied to a catastrophic course, and that it illustrates great robustness against system parameter uncertainties and external disturbances.展开更多
This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively...This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively. An overall architecture of the CRNM has been proposed in the last paper. On the basis of the above discusses, a linear reference method (LRM) for providing spatial references for location points of a trajectory is developed. A case study is introduced to illustrate the application of the CRNM for modeling a road network in the real world is given. A comprehensive conclusion is given for the series of papers.展开更多
One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish au...One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish autonomous tasks. The characteristic model(CM) based all-coefficient adaptive control(ACAC) designed for PPF systems in horizontal and vertical trajectory control is proposed. The method is easy to use and convenient to adjust and test. Just a few parameters are adapted during the control process. In application, vertical and horizontal CMs are designed and ACAC controllers are constructed to control vertical altitude and horizontal trajectory of PPF based on the proposed CMs, respectively. Result analysis of different simulations shows that the applied ACAC control method is effective for trajectory tracking of the PPF systems and the approach guarantees the transient performance of the PPF systems with better disturbance rejection ability.展开更多
Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surround...Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.展开更多
文摘In this study,it is aimed to develop a generic model which calculates the trajectory of the ejection seat from the jet aircraft,by taking into account the parameters that will affect the seat movement such as the seat’s launch speed,ejection direction,ejection angle,altitude of the aircraft,distance/height from the aircraft rudder and canopy,pilot and ejection seat weight.With the model algorithm proposed,the ejection seat trajectory model was developed on MATLAB.The ejection seat trajectory model is based on point mass trajectory mathematical model.In this study,an analytical study of the problem has been made for modeling the flight trajectory of the ejection seat after it has been ejected.Past studies were used as a basis for validation and simulation.By writing a generic MATLAB code,a user interface was developed and presented to the user as a module.This generic code that has been developed could be used for simulations by users in the future by revising it in accordance with their own job descriptions.
基金supported in part by the National Natural Science Foundation of China(61933001,62061160371)Joint Funds of Equipment Pre-Research and Ministry of Education of China(6141A02033339)Beijing Top Discipline for Artificial Intelligent Science and Engineering,University of Science and Technology Beijing。
文摘This paper studies the trajectory tracking problem of flapping-wing micro aerial vehicles(FWMAVs)in the longitudinal plane.First of all,the kinematics and dynamics of the FWMAV are established,wherein the aerodynamic force and torque generated by flapping wings and the tail wing are explicitly formulated with respect to the flapping frequency of the wings and the degree of tail wing inclination.To achieve autonomous tracking,an adaptive control scheme is proposed under the hierarchical framework.Specifically,a bounded position controller with hyperbolic tangent functions is designed to produce the desired aerodynamic force,and a pitch command is extracted from the designed position controller.Next,an adaptive attitude controller is designed to track the extracted pitch command,where a radial basis function neural network is introduced to approximate the unknown aerodynamic perturbation torque.Finally,the flapping frequency of the wings and the degree of tail wing inclination are calculated from the designed position and attitude controllers,respectively.In terms of Lyapunov's direct method,it is shown that the tracking errors are bounded and ultimately converge to a small neighborhood around the origin.Simulations are carried out to verify the effectiveness of the proposed control scheme.
基金supported by National Basic Research and Development Program of China (973 Program, Grant No. 2006CB705402)
文摘In order to solve the problem of trajectory tracking for a class of novel serial-parallel hybrid humanoid arm(HHA), which has parameters uncertainty, frictions, disturbance, abrasion and pulse forces derived from motors, a multistep dynamics modeling strategy is proposed and a robust controller based on neural network(NN)-adaptive algorithm is designed. At the first step of dynamics modeling, the dynamics model of the reduced HHA is established by Lagrange method. At the second step of dynamics modeling, the parameter uncertain part resulting mainly from the idealization of the HHA is learned by adaptive algorithm. In the trajectory tracking controller, the radial basis function(RBF) NN, whose optimal weights are learned online by adaptive algorithm, is used to learn the upper limit function of the total uncertainties including frictions, disturbances, abrasion and pulse forces. To a great extent, the conservatism of this robust trajectory tracking controller is reduced, and by this controller the HHA can impersonate mostly human actions. The proof and simulation results testify the validity of the adaptive strategy for parameter learning and the neural network-adaptive strategy for the trajectory tracking control.
基金Supported by 2022 Chinese Medicine Scientific Research Project of Hebei Administration of Traditional Chinese Medicine,No.20221572025 Annual Scientific Research Project of Higher Education Institutions in Hebei Province,No.QN2025654.
文摘BACKGROUND Neck pain,a primary symptom of cervical spondylosis,affects patients'physical and mental health,reducing their quality of life.Pain and emotional state interact;however,their longitudinal interrelationship remains unclear.In this study,we applied a dual-trajectory model to assess how neck pain and emotional state evolve together over time and how clinical interventions,particularly acupuncture,influence these trajectories.AIM To investigate the longitudinal relationship between neck pain and emotional state in patients with cervical spondylosis.METHODS This prospective cohort study included 472 patients with cervical spondylosis from eight Chinese hospitals.Participants received acupuncture or medication and were followed up at baseline,and at 1,2,4,6,and 8 weeks.Neck pain and emotional distress were assessed using the Northwick Park Neck Pain Questionnaire(NPQ)and the affective subscale of the Short-Form McGill Pain Questionnaire(SF-MPQ),respectively.Group-based trajectory models and dual trajectory analysis were used to identify and correlate pain-emotion trajectories.Multivariate logistic regression identified predictors of group membership.RESULTS Three trajectory groups were identified for NPQ and SF-MPQ scores(low,medium,and high).Higher NPQ trajectory was associated with older age(OR=1.058,P<0.001)and was significantly reduced by acupuncture(OR=0.382,P<0.001).Similarly,acupuncture lowered the odds of high SF-MPQ trajectory membership(OR=0.336,P<0.001),while age increased it(OR=1.037,P<0.001).Dual-trajectory analysis revealed bidirectional associations:69.1%of patients with low NPQ had low SF-MPQ scores,and 42.6%of patients with high SF-MPQ also had high NPQ scores.Gender was a predictor for medium SF-MPQ trajectory(OR=1.629,P=0.094).Occupation and education levels differed significantly across the trajectory groups(P<0.05).CONCLUSION Over time,neck pain and emotional distress are closely associated in patients with cervical spondylosis.Acupuncture alleviates both outcomes significantly,while age is a risk factor.Integrated approaches to pain and emotional management are encouraged.
基金Project (No. 50576088) supported by the National Natural Science Foundation of China
文摘The geometrical model of the filament during the fused deposition modeling (FDM) process was firstly proposed based on three different models, tractrix, parabola, and catenary. Comparing with the actual measured filament curves on the Stratasys 1600 FDM machine, it is indicated that the tractrix model had the best agreement with the actual measured curves. With the analytical simulation, the nozzle trajectories in the straight-line deposition road, circle road, and arbitrary continuous curve road were deduced, according to the traxtric based geometrical model of the filament.
基金supported by Open Research Foundation of Science and Technology on Aerospace Flight Dynamics Laboratory (No. 2012afd1010)
文摘Conventional trajectory optimization techniques have been challenged by their inability to handle threats with irregular shapes and the tendency to be sensitive to control variations of aircraft. Aiming to overcome these difficulties, this paper presents an alternative approach for trajectory optimization, where the problem is formulated into a parametric optimization of the maneuver variables under a tactics template framework. To reduce the size of the problem, global sensitivity analysis (GSA) is performed to identify the less-influential maneuver variables. The probability collectives (PC) algorithm, which is well-suited to discrete and discontinuous optimization, is applied to solve the trajectory optimization problem. The robustness of the trajectory is assessed through multiple sampling around the chosen values of the maneuver variables. Meta-models based on radius basis function (RBF) are created for evaluations of the means and deviations of the problem objectives and constraints. To guarantee the approximation accuracy, the meta-models are adaptively updated during optimization. The proposed approach is demonstrated on a typical airground attack mission scenario. Results reveal that the proposed approach is capable of generating robust and optimal trajectories with both accuracy and efficiency.
基金supported by The Youth Science Foundation of Sichuan Province(Nos.2022NSFSC1230,2022NSFSC1231,and 23NSFSC5321)the Science and Technology Innovation Seedling Project of Sichuan Province(No.MZGC20230080)+2 种基金the General project of national Natural Science Foundation of China(No.12075039)the Youth Science Foundation of China(No.12105030)the Key project of the National Natural Science Foundation of China(No.U19A2086)。
文摘To accurately reconstruct the tomographic gamma scanning(TGS)transmission measurement image,this study optimized the transmission reconstruction equation based on the actual situation of TGS transmission measurement.Using the transmission reconstruction equation and the Monte Carlo program Geant4,an innovative virtual trajectory length model was constructed.This model integrated the solving process for the trajectory length and detection efficiency within the same model.To mitigate the influence of the angular distribution ofγ-rays emitted by the transmitted source at the detector,the transport processes of numerous particles traversing a virtual nuclear waste barrel with a density of zero were simulated.Consequently,a certain amount of information was captured at each step of particle transport.Simultaneously,the model addressed the nonuniform detection efficiency of the detector end face by considering whether the energy deposition of particles in the detector equaled their initial energy.Two models were established to validate the accuracy and reliability of the virtual trajectory length model.Model 1 was a simplified nuclear waste barrel,whereas Model 2 closely resembled the actual structure of a nuclear waste barrel.The results indicated that the proposed virtual trajectory length model significantly enhanced the precision of the trajectory length determination,substantially increasing the quality of the reconstructed images.For example,the reconstructed images of Model 2 using the“point-to-point”and average trajectory models revealed a signalto-noise ratio increase of 375.0%and 112.7%,respectively.Thus,the virtual trajectory length model proposed in this study holds paramount significance for the precise reconstruction of transmission images.Moreover,it can provide support for the accurate detection of radioactive activity in nuclear waste barrels.
基金co-supported the National Natural Science Foundation of China(No.52235010)the Heilongjiang Postdoctoral Fund(No.LBH-Z22136)the New Era Longjiang Excellent Master and Doctoral Dissertation Fund(No.LJYXL2022-057).
文摘To mill fine and well-defined micro-dimpled structures,a machining manner of spiral trajectory tool reciprocating motion,where the tool repeats the process of‘feed milling–retract–cutting feed–feed milling again’along the spiral trajectory,was proposed.From the kinematics analysis,it is found that the machining quality of micro-dimpled structures is highly dependent on the machining trajectory using spiral trajectory tool reciprocating motion.To reveal this causation,simulation modelling and experimental studies were carried out.A simulation model was developed to quantitatively and qualitatively investigate the influence of the trajectory discretization strategies(constant-angle and constant-arc length)and parameters(discrete angle,discrete arc length,and pitch)on surface texture and residual height of micro-dimpled structures.Subsequently,micro-dimpled structures were milled under different trajectory discretization strategies and parameters with spiral trajectory tool reciprocating motion.A comprehensive comparison between the milled results and simulation analysis was made based on geometry accuracy,surface morphology and surface roughness of milled dimples.Meanwhile,the errors and factors affecting the above three aspects were analyzed.The results demonstrate both the feasibility of the established simulation model and the machining capability of this machining way in milling high-quality micro-dimpled structures.Spiral trajectory tool reciprocating motion provides a new machining way for milling micro-dimpled structures and micro-dimpled functional surfaces.And an appropriate machining trajectory can be generated based on the optimized trajectory parameters,thus contributing to the improvement of machining quality and efficiency.
文摘Background: Workplace violence (WV) towards psychiatric staff has commonly been associated with Posttraumatic Stress Disorder (PTSD). However, prospective studies have shown that not all psychiatric staff who experience workplace violence experience post-traumatic stress. Purpose: We want to examine the longitudinal trajectories of PTSD in this population to identify possible subgroups that might be more at risk. Furthermore, we need to investigate whether certain risk factors of PTSD might identify membership in the subgroups. Method: In a sample of psychiatric staff from 18 psychiatric wards in Denmark who had reported an incident of WV, we used Latent Growth Mixture Modelling (LGMM) and further logistic regression analysis to investigate this. Results: We found three separate PTSD trajectories: a recovering, a delayed-onset, and a moderate-stable trajectory. Higher social support and negative cognitive appraisals about oneself, the world and self-blame predicted membership in the delayed-onset trajectory, while higher social support and lower accept coping predicted membership in the delayed-onset trajectory. Conclusion: Although most psychiatric staff go through a natural recovery, it is important to be aware of and identify staff members who might be struggling long-term. More focus on the factors that might predict these groups should be an important task for psychiatric departments to prevent posttraumatic symptomatology from work.
基金supported by the Key Research and Development Program of the Ministry of Science and Technology of China(grant number:2016YF0900605)the Key Research and Development Program of Hebei Province(grant number:192777129D)+1 种基金the Joint Fund for Iron and Steel of the Natural Science Foundation of Hebei Province(grant number:H2016209058)the National Natural Science Foundation for Regional Joint Fund of China(grant number:U22A20364)。
文摘Objective We aimed to investigate the patterns of fasting blood glucose(FBG)trajectories and analyze the relationship between various occupational hazard factors and FBG trajectories in male steelworkers.Methods The study cohort included 3,728 workers who met the selection criteria for the Tanggang Occupational Cohort(TGOC)between 2017 and 2022.A group-based trajectory model was used to identify the FBG trajectories.Environmental risk scores(ERS)were constructed using regression coefficients from the occupational hazard model as weights.Univariate and multivariate logistic regression analyses were performed to explore the effects of occupational hazard factors using the ERS on FBG trajectories.Results FBG trajectories were categorized into three groups.An association was observed between high temperature,noise exposure,and FBG trajectory(P<0.05).Using the first quartile group of ERS1 as a reference,the fourth quartile group of ERS1 had an increased risk of medium and high FBG by 1.90and 2.21 times,respectively(odds ratio[OR]=1.90,95%confidence interval[CI]:1.17–3.10;OR=2.21,95%CI:1.09–4.45).Conclusion An association was observed between occupational hazards based on ERS and FBG trajectories.The risk of FBG trajectory levels increase with an increase in ERS.
文摘Airports are being developed and expanded rapidly in China to accommodate and promote a growing aviation market.The future Beijing Daxing International Airport(DAX) will serve as the central airport of the JingJinJi megaregion,knitting the Beijing,Tianjin,and Hebei regions together.DAX will be a busy airport from its inception,relieving congestion and accommodating growth from Beijing Capital International Airport(PEK),currently the second busiest airport in the world in passengers moved.We aim to model terminal airspace designs and possible conflicts in the future Beijing Multi-Airport System(MAS).We investigate standard arrival procedures and mathematically model current and future arrival trajectories into PEK and DAX by collecting large quantities of publicly available track data from historical arrivals operating within the Beijing terminal airspace.We find that(1) trajectory models constructed from real data capture aberrations and deviations from standard arrival procedures,validating the need to incorporate data on historical trajectories with standard procedures when evaluating the airspace and(2) given all existing constraints,DAX may be restricted to using north and east arrival flows,constraining the capacity required to handle the increases in air traffic demand to Beijing.The results indicate that the terminal airspace above Beijing,and the future JingJinJi region,requires careful consideration if the full capacity benefits of the two major airports are to be realized.
文摘This is the first of a three-part series of pape rs which introduces a general background of building trajectory-oriented road net work data models, including motivation, related works, and basic concepts. The p urpose of the series is to develop a trajectory-oriented road network data mode l, namely carriageway-based road network data model (CRNM). Part 1 deals with t he modeling background. Part 2 proposes the principle and architecture of the CR NM. Part 3 investigates the implementation of the CRNM in a case study. In the p resent paper, the challenges of managing trajectory data are discussed. Then, de veloping trajectory-oriented road network data models is proposed as a solution and existing road network data models are reviewed. Basic representation approa ches of a road network are introduced as well as its constitution.
文摘This is the second of a three-part series of papers which presents the principle and architecture of the CRNM, a trajectory-oriented, carriageway-based road network data model. The first part of the series has introduced a general background of building trajectory-oriented road network data models, including motivation, related works, and basic concepts. Based on it, this paper describs the CRNM in detail. At first, the notion of basic roadway entity is proposed and discussed. Secondly, carriageway is selected as the basic roadway entity after compared with other kinds of roadway, and approaches to representing other roadways with carriageways are introduced. At last, an overall architecture of the CRNM is proposed.
基金partly supported by the National Natural Science Foundation of China(61903034,U1913203,61973034,91120003)the Program for Changjiang Scholars and Innovative Research Team in University(IRT-16R06,T2014224)+1 种基金China Postdoctoral Science Foundation funded project(2019TQ0035)Beijing Institute of Technology Research Fund Program for Young Scholars。
文摘Intersections are quite important and complex traffic scenarios,where the future motion of surrounding vehicles is an indispensable reference factor for the decision-making or path planning of autonomous vehicles.Considering that the motion trajectory of a vehicle at an intersection partly obeys the statistical law of historical data once its driving intention is determined,this paper proposes a long short-term memory based(LSTM-based)framework that combines intention prediction and trajectory prediction together.First,we build an intersection prior trajectories model(IPTM)by clustering and statistically analyzing a large number of prior traffic flow trajectories.The prior trajectories model with fitted probabilistic density is used to approximate the distribution of the predicted trajectory,and also serves as a reference for credibility evaluation.Second,we conduct the intention prediction through another LSTM model and regard it as a crucial cue for a trajectory forecast at the early stage.Furthermore,the predicted intention is also a key that is associated with the prior trajectories model.The proposed framework is validated on two publically released datasets,next generation simulation(NGSIM)and INTERACTION.Compared with other prediction methods,our framework is able to sample a trajectory from the estimated distribution,with its accuracy improved by about 20%.Finally,the credibility evaluation,which is based on the prior trajectories model,makes the framework more practical in the real-world applications.
基金Supported by Natural Science Foundation of China(Grant Nos.52072051,51705044)Chongqing Municipal Natural Science Foundation of China(Grant No.cstc2020jcyj-msxmX0956)+1 种基金State Key Laboratory of Mechanical System and Vibration(Grant No.MSV202016)State Key Laboratory of Mechanical Transmissions(Grant No.SKLMT-KFKT-201806).
文摘A comparative study of model predictive control(MPC)schemes and robust Hstate feedback control(RSC)method for trajectory tracking is proposed in this paper.The main objective of this paper is to compare MPC and RSC controllers’performance in tracking predefined trajectory under different scenarios.MPC controller is designed based on the simple longitudinal-yaw-lateral motions of a single-track vehicle with a linear tire,which is an approximation of the more realistic model of a vehicle with double-track motion with a non-linear tire mode.RSC is designed on the basis of the same method as adopted for the MPC controller to achieve a fair comparison.Then,three test cases are built in CarSim-Simulink joint platform.Specifically,the verification test is used to test the tracking accuracy of MPC and RSC controller under well road conditions.Besides,the double lane change test with low road adhesion is designed to find the maximum velocity that both controllers can carry out while guaranteeing stability.Furthermore,an extreme curve test is built where the road adhesion changes suddenly,in order to test the performance of both controllers under extreme conditions.Finally,the advantages and disadvantages of MPC and RSC under different scenarios are also discussed.
基金This work was supported by the National Natural Science Foundation of China(NSFC,Grant No.51874175)the China Coal Technology&Engineering Group Foundation(Grant Nos.2018RC001,KJ-2018-TDKCZL-02).Comments from two anonymous reviewers and the editor are also greatly appreciated.
文摘The evolution of mining-induced stress field in longwall panel is closely related to the fracture field and the breaking characteristics of strata.Few laboratory experiments have been conducted to investigate the stress field.This study investigated its evolution by constructing a large-scale physical model according to the in situ conditions of the longwall panel.Theoretical analysis was used to reveal the mechanism of stress distribution in the overburden.The modelling results showed that:(1)The major principal stress field is arch-shaped,and the strata overlying both the solid zones and gob constitute a series of coordinated load-bearing structures.The stress increasing zone is like a macro stress arch.High stress is especially concentrated on both shoulders of the arch-shaped structure.The stress concentration of the solid zone in front of the gob is higher than the rear solid zone.(2)The characteristics of the vertical stress field in different regions are significantly different.Stress decreases in the zone above the gob and increases in solid zones on both sides of it.The mechanical analysis show that for a given stratum,the trajectories of principal stress are arch-shaped or inverselyarched,referred to as the‘‘principal stress arch’’,irrespective of its initial breaking or periodic breaking,and determines the fracture morphology.That is,the trajectories of tensile principal stress are inversely arched before the first breaking of the strata,and cause the breaking lines to resemble an inverted funnel.In case of periodic breaking,the breaking line forms an obtuse angle with the advancing direction of the panel.Good agreement was obtained between the results of physical modeling and the theoretical analysis.
基金supported by Hubei Provincial Natural Science Foundation of China(No.2012FFC09401)
文摘Abstract: The mathematical model of a high-speed underwater vehicle getting catastrophe in the out-of-water course and a nonlinear sliding mode control with the adaptive backstepping approach for the catastrophic course are proposed. The speed change is large at the moment that the high-speed underwater vehicle launches out of the water to attack an air target. It causes motion parameter uncertainties and affects the precision attack ability. The trajectory angle dynamic characteristic is based on the description of the transformed state-coordinates, the nonlinear sliding mode control is designed to track a linear reference model. Furthermore, the adaptive backstepping control approach is utilized to improve the robustness against the unknown parameter uncertainties. With the proposed control of attitude tracking, the controlled navigational control system possesses the advantages of good transient performance and robustness to parametric uncertainties. These can be predicted and regulated through the design of a linear reference model that has the desired dynamic behavior for the trajectory of the high-speed underwater vehicle to attack its target. Finally, some digital simulation results show that the control system can be applied to a catastrophic course, and that it illustrates great robustness against system parameter uncertainties and external disturbances.
文摘This is the final of a three-part series of papers which mainly discusses the implementation issues of the CRNM. The first two papers in the series have introduced the modeling background and methodology, respectively. An overall architecture of the CRNM has been proposed in the last paper. On the basis of the above discusses, a linear reference method (LRM) for providing spatial references for location points of a trajectory is developed. A case study is introduced to illustrate the application of the CRNM for modeling a road network in the real world is given. A comprehensive conclusion is given for the series of papers.
基金Project(61273138)supported by the National Natural Science Foundation of ChinaProject(14JCZDJC39300)supported by the Key Fund of Tianjin,China
文摘One of the primary difficulties in using powered parafoil(PPF) systems is the lack of effective trajectory tracking controllers since the trajectory tracking control is the essential operation for PPF to accomplish autonomous tasks. The characteristic model(CM) based all-coefficient adaptive control(ACAC) designed for PPF systems in horizontal and vertical trajectory control is proposed. The method is easy to use and convenient to adjust and test. Just a few parameters are adapted during the control process. In application, vertical and horizontal CMs are designed and ACAC controllers are constructed to control vertical altitude and horizontal trajectory of PPF based on the proposed CMs, respectively. Result analysis of different simulations shows that the applied ACAC control method is effective for trajectory tracking of the PPF systems and the approach guarantees the transient performance of the PPF systems with better disturbance rejection ability.
基金supported by the National Key Research and Development Program of China(2018AAA0101005,2018AAA0102404)the Program of the Huawei Technologies Co.Ltd.(FA2018111061SOW12)+1 种基金the National Natural Science Foundation of China(61773054)the Youth Research Fund of the State Key Laboratory of Complex Systems Management and Control(20190213)。
文摘Human trajectory prediction is essential and promising in many related applications. This is challenging due to the uncertainty of human behaviors, which can be influenced not only by himself, but also by the surrounding environment. Recent works based on long-short term memory(LSTM) models have brought tremendous improvements on the task of trajectory prediction. However, most of them focus on the spatial influence of humans but ignore the temporal influence. In this paper, we propose a novel spatial-temporal attention(ST-Attention) model,which studies spatial and temporal affinities jointly. Specifically,we introduce an attention mechanism to extract temporal affinity,learning the importance for historical trajectory information at different time instants. To explore spatial affinity, a deep neural network is employed to measure different importance of the neighbors. Experimental results show that our method achieves competitive performance compared with state-of-the-art methods on publicly available datasets.