期刊文献+
共找到72篇文章
< 1 2 4 >
每页显示 20 50 100
The Group Method of Data Handling (GMDH) and Artificial Neural Networks (ANN)in Time-Series Forecasting of Rice Yield
1
作者 Nadira Mohamed Isa Shabri Ani Samsudin Ruhaidah 《材料科学与工程(中英文B版)》 2011年第3期378-387,共10页
关键词 时间序列预测模型 人工神经网络 GMDH 水稻产量 数据处理 ANN 多项式函数 双曲线
在线阅读 下载PDF
Modeling viscosity of methane,nitrogen,and hydrocarbon gas mixtures at ultra-high pressures and temperatures using group method of data handling and gene expression programming techniques 被引量:1
2
作者 Farzaneh Rezaei Saeed Jafari +1 位作者 Abdolhossein Hemmati-Sarapardeh Amir H.Mohammadi 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第4期431-445,共15页
Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high... Accurate gas viscosity determination is an important issue in the oil and gas industries.Experimental approaches for gas viscosity measurement are timeconsuming,expensive and hardly possible at high pressures and high temperatures(HPHT).In this study,a number of correlations were developed to estimate gas viscosity by the use of group method of data handling(GMDH)type neural network and gene expression programming(GEP)techniques using a large data set containing more than 3000 experimental data points for methane,nitrogen,and hydrocarbon gas mixtures.It is worth mentioning that unlike many of viscosity correlations,the proposed ones in this study could compute gas viscosity at pressures ranging between 34 and 172 MPa and temperatures between 310 and 1300 K.Also,a comparison was performed between the results of these established models and the results of ten wellknown models reported in the literature.Average absolute relative errors of GMDH models were obtained 4.23%,0.64%,and 0.61%for hydrocarbon gas mixtures,methane,and nitrogen,respectively.In addition,graphical analyses indicate that the GMDH can predict gas viscosity with higher accuracy than GEP at HPHT conditions.Also,using leverage technique,valid,suspected and outlier data points were determined.Finally,trends of gas viscosity models at different conditions were evaluated. 展开更多
关键词 Gas Viscosity High pressure high temperature group method of data handling Gene expression programming
在线阅读 下载PDF
Group Method of Data Handling for Modeling Magnetorheological Dampers
3
作者 Khaled Assaleh Tamer Shanableh Yasmin Abu Kheil 《Intelligent Control and Automation》 2013年第1期70-79,共10页
This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons th... This paper proposes the use of Group Method of Data Handling (GMDH) technique for modeling Magneto-Rheological (MR) dampers in the context of system identification. GMDH is a multilayer network of quadratic neurons that offers an effective solution to modeling non-linear systems. As such, we propose the use of GMDH to approximate the forward and inverse dynamic behaviors of MR dampers. We also introduce two enhanced GMDH-based solutions. Firstly, a two-tier architecture is proposed whereby an enhanced GMD model is generated by the aid of a feedback scheme. Secondly, stepwise regression is used as a feature selection method prior to GMDH modeling. The proposed enhancements to GMDH are found to offer improved prediction results in terms of reducing the root-mean-squared error by around 40%. 展开更多
关键词 System IDENTIFICATION Magneto-Rheological DAMPERS group method of data handling POLYNOMIAL CLASSIFIER
暂未订购
Predicting beach profile evolution with group method data handling-type neural networks on beaches with seawalls 被引量:1
4
作者 M.A.LASHTEH NESHAEI M.A.MEHRDAD +1 位作者 N.ABEDIMAHZOON N.ASADOLLAHI 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2013年第2期117-126,共10页
A major goal of coastal engineering is to develop models for the reliable prediction of short-and longterm near shore evolution.The most successful coastal models are numerical models,which allow flexibility in the ch... A major goal of coastal engineering is to develop models for the reliable prediction of short-and longterm near shore evolution.The most successful coastal models are numerical models,which allow flexibility in the choice of initial and boundary conditions.In the present study,evolutionary algorithms(EAs)are employed for multi-objective Pareto optimum design of group method data handling(GMDH)-type neural networks that have been used for bed evolution modeling in the surf zone for reflective beaches,based on the irregular wave experiments performed at the Hydraulic Laboratory of Imperial College(London,UK).The input parameters used for such modeling are significant wave height,wave period,wave action duration,reflection coefficient,distance from shoreline and sand size.In this way,EAs with an encoding scheme are presented for evolutionary design of the generalized GMDH-type neural networks,in which the connectivity configurations in such networks are not limited to adjacent layers.Also,multi-objective EAs with a diversity preserving mechanism are used for Pareto optimization of such GMDH-type neural networks.The most important objectives of GMDH-type neural networks that are considered in this study are training error(TE),prediction error(PE),and number of neurons(N).Different pairs of these objective functions are selected for two-objective optimization processes.Therefore,optimal Pareto fronts of such models are obtained in each case,which exhibit the trade-offs between the corresponding pair of the objectives and,thus,provide different non-dominated optimal choices of GMDH-type neural network model for beach profile evolution.The results showed that the present model has been successfully used to optimally prediction of beach profile evolution on beaches with seawalls. 展开更多
关键词 beach profile evolution genetic algorithms group method of data handling PARETO reflective beaches
原文传递
Implementation of an open-source customizable minimization program for allocation of patients to parallel groups in clinical trials 被引量:1
5
作者 Mahmoud Saghaei Sara Saghaei 《Journal of Biomedical Science and Engineering》 2011年第11期734-739,共6页
Current minimization programs do not permit full control over different aspects of minimization algorithm such as distance or probability measures and may not allow for unequal allocation ratios. This article describe... Current minimization programs do not permit full control over different aspects of minimization algorithm such as distance or probability measures and may not allow for unequal allocation ratios. This article describes the implementation of “MinimPy” an open-source minimization program in Python programming language, which provides full customizetion of minimization features. MinimPy supports naive and biased coin minimization together with various new and classic distance measures. Data syncing is provided to facilitate minimization of multicenter trial over the network. MinimPy can easily be modified to fit special needs of clinical trials and in particular change it to a pure web application, though it currently supports network syncing of data in multi-center trials using network repositories. 展开更多
关键词 Clinical Trial ALLOCATION methods RANDOMIZATION MINIMIZATION Unequal group ALLOCATION Biased COIN MINIMIZATION network Synchronization of data
暂未订购
An improved permeability estimation model using integrated approach of hybrid machine learning technique and Shapley additive explanation
6
作者 Christopher N.Mkono Chuanbo Shen +1 位作者 Alvin K.Mulashani Patrice Nyangi 《Journal of Rock Mechanics and Geotechnical Engineering》 2025年第5期2928-2942,共15页
Accurate reservoir permeability determination is crucial in hydrocarbon exploration and production.Conventional methods relying on empirical correlations and assumptions often result in high costs,time consumption,ina... Accurate reservoir permeability determination is crucial in hydrocarbon exploration and production.Conventional methods relying on empirical correlations and assumptions often result in high costs,time consumption,inaccuracies,and uncertainties.This study introduces a novel hybrid machine learning approach to predict the permeability of the Wangkwar formation in the Gunya oilfield,Northwestern Uganda.The group method of data handling with differential evolution(GMDH-DE)algorithm was used to predict permeability due to its capability to manage complex,nonlinear relationships between variables,reduced computation time,and parameter optimization through evolutionary algorithms.Using 1953 samples from Gunya-1 and Gunya-2 wells for training and 1563 samples from Gunya-3 for testing,the GMDH-DE outperformed the group method of data handling(GMDH)and random forest(RF)in predicting permeability with higher accuracy and lower computation time.The GMDH-DE achieved an R^(2)of 0.9985,RMSE of 3.157,MAE of 2.366,and ME of 0.001 during training,and for testing,the ME,MAE,RMSE,and R^(2)were 1.3508,12.503,21.3898,and 0.9534,respectively.Additionally,the GMDH-DE demonstrated a 41%reduction in processing time compared to GMDH and RF.The model was also used to predict the permeability of the Mita Gamma well in the Mandawa basin,Tanzania,which lacks core data.Shapley additive explanations(SHAP)analysis identified thermal neutron porosity(TNPH),effective porosity(PHIE),and spectral gamma-ray(SGR)as the most critical parameters in permeability prediction.Therefore,the GMDH-DE model offers a novel,efficient,and accurate approach for fast permeability prediction,enhancing hydrocarbon exploration and production. 展开更多
关键词 PERMEABILITY HYDROCARBON Differential evolution Shapley additive explanation(SHAP) group method of data handling Well logs
在线阅读 下载PDF
Hourly traffic flow forecasting using a new hybrid modelling method 被引量:11
7
作者 LIU Hui ZHANG Xin-yu +2 位作者 YANG Yu-xiang LI Yan-fei YU Cheng-qing 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第4期1389-1402,共14页
Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department t... Short-term traffic flow forecasting is a significant part of intelligent transportation system.In some traffic control scenarios,obtaining future traffic flow in advance is conducive to highway management department to have sufficient time to formulate corresponding traffic flow control measures.In hence,it is meaningful to establish an accurate short-term traffic flow method and provide reference for peak traffic flow warning.This paper proposed a new hybrid model for traffic flow forecasting,which is composed of the variational mode decomposition(VMD)method,the group method of data handling(GMDH)neural network,bi-directional long and short term memory(BILSTM)network and ELMAN network,and is optimized by the imperialist competitive algorithm(ICA)method.To illustrate the performance of the proposed model,there are several comparative experiments between the proposed model and other models.The experiment results show that 1)BILSTM network,GMDH network and ELMAN network have better predictive performance than other single models;2)VMD can significantly improve the predictive performance of the ICA-GMDH-BILSTM-ELMAN model.The effect of VMD method is better than that of EEMD method and FEEMD method.To conclude,the proposed model which is made up of the VMD method,the ICA method,the BILSTM network,the GMDH network and the ELMAN network has excellent predictive ability for traffic flow series. 展开更多
关键词 traffic flow forecasting intelligent transportation system imperialist competitive algorithm variational mode decomposition group method of data handling bi-directional long and short term memory ELMAN
在线阅读 下载PDF
Real-Time and Intelligent Flood Forecasting Using UAV-Assisted Wireless Sensor Network 被引量:1
8
作者 Shidrokh Goudarzi Seyed Ahmad Soleymani +6 位作者 Mohammad Hossein Anisi Domenico Ciuonzo Nazri Kama Salwani Abdullah Mohammad Abdollahi Azgomi Zenon Chaczko Azri Azmi 《Computers, Materials & Continua》 SCIE EI 2022年第1期715-738,共24页
The Wireless Sensor Network(WSN)is a promising technology that could be used to monitor rivers’water levels for early warning flood detection in the 5G context.However,during a flood,sensor nodes may be washed up or ... The Wireless Sensor Network(WSN)is a promising technology that could be used to monitor rivers’water levels for early warning flood detection in the 5G context.However,during a flood,sensor nodes may be washed up or become faulty,which seriously affects network connectivity.To address this issue,Unmanned Aerial Vehicles(UAVs)could be integrated with WSN as routers or data mules to provide reliable data collection and flood prediction.In light of this,we propose a fault-tolerant multi-level framework comprised of a WSN and a UAV to monitor river levels.The framework is capable to provide seamless data collection by handling the disconnections caused by the failed nodes during a flood.Besides,an algorithm hybridized with Group Method Data Handling(GMDH)and Particle Swarm Optimization(PSO)is proposed to predict forthcoming floods in an intelligent collaborative environment.The proposed water-level prediction model is trained based on the real dataset obtained fromthe Selangor River inMalaysia.The performance of the work in comparison with other models has been also evaluated and numerical results based on different metrics such as coefficient of determination(R2),correlation coefficient(R),RootMean Square Error(RMSE),Mean Absolute Percentage Error(MAPE),and BIAS are provided. 展开更多
关键词 Unmanned aerial vehicles wireless sensor networks group method data handling particle swarm optimization river flow prediction
在线阅读 下载PDF
Best compromising crashworthiness design of automotive S-rail using TOPSIS and modified NSGAⅡ 被引量:6
9
作者 Abolfazl Khalkhali 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第1期121-133,共13页
In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Mo... In order to reduce both the weight of vehicles and the damage of occupants in a crash event simultaneously, it is necessary to perform a multi-objective optimal design of the automotive energy absorbing components. Modified non-dominated sorting genetic algorithm II(NSGA II) was used for multi-objective optimization of automotive S-rail considering absorbed energy(E), peak crushing force(Fmax) and mass of the structure(W) as three conflicting objective functions. In the multi-objective optimization problem(MOP), E and Fmax are defined by polynomial models extracted using the software GEvo M based on train and test data obtained from numerical simulation of quasi-static crushing of the S-rail using ABAQUS. Finally, the nearest to ideal point(NIP)method and technique for ordering preferences by similarity to ideal solution(TOPSIS) method are used to find the some trade-off optimum design points from all non-dominated optimum design points represented by the Pareto fronts. Results represent that the optimum design point obtained from TOPSIS method exhibits better trade-off in comparison with that of optimum design point obtained from NIP method. 展开更多
关键词 automotive S-rail crashworthiness technique for ordering preferences by similarity to ideal solution(TOPSIS) method group method of data handling(GMDH) algorithm multi-objective optimization modified non-dominated sorting genetic algorithm(NSGA II) Pareto front
在线阅读 下载PDF
Global Solar Radiation Maps of Saudi Arabia
10
作者 M. Mohandes S. Rehman 《Journal of Energy and Power Engineering》 2010年第12期57-63,共7页
This paper uses Abductive network to predict global solar radiation in any location in the Kingdom of Saudi Arabia (KSA) based on sunshine duration, month number, latitude, longitude, and altitude of the location. R... This paper uses Abductive network to predict global solar radiation in any location in the Kingdom of Saudi Arabia (KSA) based on sunshine duration, month number, latitude, longitude, and altitude of the location. Results indicate good agreement between measured and predicted GSR values for each of the 35 locations with known GSR values. Finally, the data from all available stations are used to train an abductive network to estimate the GSR values anywhere in the Kingdom based on latitude and longitude. GSR values are estimated using the developed method at 25 additional locations throughout the kingdom and used with the measured data from the 35 available measurement stations to draw a comprehensive contour map of GSR values for KSA. 展开更多
关键词 Abductory induction mechanism (AIM) group method of data handling (GMDH) solar radiation map renewable energy.
在线阅读 下载PDF
数据处理组合法在橡胶配方设计回归建模中的应用 被引量:22
11
作者 高齐圣 隋树林 +3 位作者 范汝良 程宝家 孟宪德 纪奎江 《合成橡胶工业》 CAS CSCD 1997年第3期169-170,共2页
通过均匀设计安排橡胶配方试验,进而用数据处理组合方法(GMDH)建立高精度的回归模型。丁基橡胶配方实例表明,GMDH是目前较好的一种橡胶配方回归设计方法。
关键词 橡胶 配方设计 数据处理 回归模型 组合法 建模
在线阅读 下载PDF
人工神经网络BP算法的改进及其应用 被引量:109
12
作者 李晓峰 刘光中 《四川大学学报(工程科学版)》 EI CAS CSCD 2000年第2期105-109,共5页
:对传统的BP算法进行了改进 ,提出了BP神经网络动态全参数自调整学习算法 ,又将其编制成计算机程序 ,使得隐层节点和学习速率的选取全部动态实现 ,减少了人为因素的干预 ,改善了学习速率和网络的适应能力。计算结果表明 :BP神经网络动... :对传统的BP算法进行了改进 ,提出了BP神经网络动态全参数自调整学习算法 ,又将其编制成计算机程序 ,使得隐层节点和学习速率的选取全部动态实现 ,减少了人为因素的干预 ,改善了学习速率和网络的适应能力。计算结果表明 :BP神经网络动态全参数自调整算法较传统的方法优越 ,训练后的神经网络模型不仅能准确地拟合训练值 。 展开更多
关键词 神经网络 BP算法 自调整 自组织方法 学习速率
在线阅读 下载PDF
人工神经网络BP算法的改进和结构的自调整 被引量:30
13
作者 刘光中 李晓峰 《运筹学学报》 CSCD 北大核心 2001年第1期81-88,共8页
本文解决了BP神经网络结构参数和学习速率的选取问题,并对传统的BP算法进行了改进,提出了BP神经网络动态全参数自调整学习算法,又将其编制成计算机程序,使得隐层节点和学习速率的选取全部动态实现,减少了人为因素的干预,改... 本文解决了BP神经网络结构参数和学习速率的选取问题,并对传统的BP算法进行了改进,提出了BP神经网络动态全参数自调整学习算法,又将其编制成计算机程序,使得隐层节点和学习速率的选取全部动态实现,减少了人为因素的干预,改善了学习速率和网络的适应能力.计算结果表明:BP神经网络动态全参数自调整算法较传统的方法优越.训练后的神经网络模型不仅能准确地拟合训练值,而且能较精确地预测未来趋势. 展开更多
关键词 人工神经网络 BP算法 学习速率 自组织方法 自调整学习算法 BP神经网络 预测模型
在线阅读 下载PDF
数据组合处理方法在数据预测中的应用 被引量:8
14
作者 周敏 李世玲 张富堂 《计算机测量与控制》 CSCD 2006年第7期939-941,共3页
数据组合处理方法(GMDH)是20世纪70年代发展起来的一种启发式自组织建立模型的方法;它能充分地、合理地利用数据,自动进行变量组合,筛选以及判断从而得到合适的模型;简单介绍了该方法建模的基本原理和算法实现,给出了仿真算例,并与用... 数据组合处理方法(GMDH)是20世纪70年代发展起来的一种启发式自组织建立模型的方法;它能充分地、合理地利用数据,自动进行变量组合,筛选以及判断从而得到合适的模型;简单介绍了该方法建模的基本原理和算法实现,给出了仿真算例,并与用相同资料建立的PPR预测模型的预测结果进行了比较;仿真结果表明,用GMDH方法建立非线性系统模型,具有预测精度高、计算稳定性好等优点。 展开更多
关键词 数据组合处理方法 非线性系统 建模 预测
在线阅读 下载PDF
特高含水期水驱油井压裂潜力研究 被引量:7
15
作者 张文 王禄春 +1 位作者 郭玮琪 赵鑫 《岩性油气藏》 CSCD 2012年第4期115-120,共6页
针对特高含水期水驱油井压裂对象不断变差,压裂选井、选层难度不断加大等问题,从油藏工程角度和矿场实际出发,综合运用复相关及灰色关联方法进行了主要影响因素的筛选,分析了压裂层段有效厚度、压裂层段渗透率、压裂层段地层系数与全井... 针对特高含水期水驱油井压裂对象不断变差,压裂选井、选层难度不断加大等问题,从油藏工程角度和矿场实际出发,综合运用复相关及灰色关联方法进行了主要影响因素的筛选,分析了压裂层段有效厚度、压裂层段渗透率、压裂层段地层系数与全井地层系数比值、压裂前全井含水、压裂前全井日产液、压裂前压差等6项压裂效果的主要影响因素。运用数据组合处理方法(GMDH)建立了压裂增油量与主要影响因素之间的回归模型,运用经济学的投入、产出原理建立了压裂增油量经济界限模型,明确了压裂增油是否经济有效与压裂井投入及相应成本变化之间的关系。研究中所运用的方法及建立的压裂增油量预测模型和经济界限模型,对特高含水期水驱油井压裂潜力的研究具有一定的参考价值。 展开更多
关键词 压裂 影响因素 数据组合方法 经济模型 潜力预测
在线阅读 下载PDF
基于迁移学习的客户信用评估模型研究 被引量:7
16
作者 朱兵 贺昌政 李慧媛 《运筹与管理》 CSSCI CSCD 北大核心 2015年第2期201-207,共7页
客户信用评估是银行等金融企业日常经营活动中的重要组成部分。一般违约样本在客户总体中只占少数,而能按时还款客户样本占多数,这就是客户信用评估中常见的类别不平衡问题。目前,用于客户信用评估的方法尚不能有效解决少数类样本稀缺... 客户信用评估是银行等金融企业日常经营活动中的重要组成部分。一般违约样本在客户总体中只占少数,而能按时还款客户样本占多数,这就是客户信用评估中常见的类别不平衡问题。目前,用于客户信用评估的方法尚不能有效解决少数类样本稀缺带来的类别不平衡。本研究引入迁移学习技术整合系统内外部信息,以解决少数类样本稀缺带来的类别不平衡问题。为了提高对来自系统外部少数类样本信息的使用效率,构建了一种新的迁移学习模型:以基于集成技术的迁移装袋模型为基础,使用两阶段抽样和数据分组处理技术分别对其基模型生成和集成策略进行改进。运用重庆某商业银行信用卡客户数据进行的实证研究结果表明:与目前客户信用评估的常用方法相比,新模型能更好地处理绝对稀缺条件下类别不平衡对客户信用评估的影响,特别对占少数的违约客户有更好的预测精度。 展开更多
关键词 客户信用评估 类别不平衡 迁移学习 数据分组处理技术
在线阅读 下载PDF
基于Grey-GMDH的模块化实时潮汐预报 被引量:5
17
作者 张泽国 尹建川 柳成 《中国海洋大学学报(自然科学版)》 CAS CSCD 北大核心 2018年第11期140-146,共7页
为了提高潮汐水位的实时预测精度,本文提出了一种基于灰色的数据处理群模块化(Grey-GMDH)潮汐水位实时预测模型。模块化将潮汐分解为两部分:由天体引潮力形成的天文潮部分和由各种天气以及环境因素引起非天文潮部分。使用Grey-GMDH模型... 为了提高潮汐水位的实时预测精度,本文提出了一种基于灰色的数据处理群模块化(Grey-GMDH)潮汐水位实时预测模型。模块化将潮汐分解为两部分:由天体引潮力形成的天文潮部分和由各种天气以及环境因素引起非天文潮部分。使用Grey-GMDH模型和调和分析模型分别对潮汐的非天文潮和天文潮部分进行仿真预测,然后将两部分的预测结果综合形成最终的潮汐预测值。并选用San Diego港口的实测潮汐值数据进行实时预报的仿真实验,实验结果验证了该方法的可行性与有效性并取得了良好的仿真结果,验证了模型有着较高的预报精度。 展开更多
关键词 潮汐水位实时预报 调和分析法 模块化 数据处理群网络 灰色模型
在线阅读 下载PDF
基于Log-GMDH模型的我国能源消费中长期预测 被引量:7
18
作者 李红梅 贺昌政 肖进 《软科学》 CSSCI 北大核心 2012年第5期51-54,66,共5页
利用Logistic函数作为GMDH两水平自回归算法的传递函数构建了新模型:Log-GMDH模型。运用我国1979~1999年的历史能源消费总量数据,将Log-GMDH模型在检测集(2000~2010年)上的预测结果与自回归移动平均(ARMA)模型和BP神经网络模型进行了... 利用Logistic函数作为GMDH两水平自回归算法的传递函数构建了新模型:Log-GMDH模型。运用我国1979~1999年的历史能源消费总量数据,将Log-GMDH模型在检测集(2000~2010年)上的预测结果与自回归移动平均(ARMA)模型和BP神经网络模型进行了比较,表明Log-GMDH模型有更准确和更稳定的预测效果。对我国未来30年(2011~2040年)的能源消费总量进行预测时,发现Log-GMDH模型更适合于反映我国新形势下可持续发展的能源战略。运用Log-GMDH模型的预测结果得到:我国未来能源消费先将有较大幅度的增长,到2030年总量将达62.55亿吨标准煤,之后能源消费将逐步得到较好的控制,预计将于2040年实现"零增长",届时全国能源消费总量约为65.70亿吨标准煤。 展开更多
关键词 能源消费 预测 GMDH Logistic函数
在线阅读 下载PDF
基于分组数据处理神经网络气动人工肌肉迟滞特性 被引量:7
19
作者 崔霞 施光林 沈伟 《上海交通大学学报》 EI CAS CSCD 北大核心 2012年第6期931-935,共5页
气动人工肌肉的动态特性中存在着非常复杂的迟滞现象.目前对其迟滞特性的研究很不充分,甚至对其输入空间都难以确定.为此,建立了单自由度气动人工肌肉实验平台,利用分组数据处理神经网络独特的自组织特性,运用数据挖掘技术探索气动人工... 气动人工肌肉的动态特性中存在着非常复杂的迟滞现象.目前对其迟滞特性的研究很不充分,甚至对其输入空间都难以确定.为此,建立了单自由度气动人工肌肉实验平台,利用分组数据处理神经网络独特的自组织特性,运用数据挖掘技术探索气动人工肌肉迟滞特性的输入空间.将自适应模糊小脑模型神经网络引入滑模控制,基于已确定的输入空间,在每个采样周期逼近迟滞力不断变化的动态值,在线实时补偿迟滞力的影响.实验结果验证了输入空间选取的合理性和有效性. 展开更多
关键词 分组数据处理神经网络 气动人工肌肉 迟滞力 输入空间
在线阅读 下载PDF
基于数据自组织挖掘的机械设备状态退化预警方法 被引量:4
20
作者 胡瑾秋 张来斌 +1 位作者 胡春艳 李文强 《中国石油大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第3期142-147,共6页
在设备状态监测过程中引入数据自组织挖掘思想,建立一种设备状态退化预警方法。采用隐马尔科夫模型(HMM)对设备的早期退化状态进行准确辨识和评估,并进一步建立设备退化过程的自组织预测模型。案例分析中将该方法应用到旋转机械轴承运... 在设备状态监测过程中引入数据自组织挖掘思想,建立一种设备状态退化预警方法。采用隐马尔科夫模型(HMM)对设备的早期退化状态进行准确辨识和评估,并进一步建立设备退化过程的自组织预测模型。案例分析中将该方法应用到旋转机械轴承运行状态退化的预警过程中。结果表明,基于自组织数据挖掘的设备状态退化趋势预测方法预测效果准确、客观性强,预测值与实际值的拟合程度高,相对误差仅为3.1%。新方法能够预测设备未来时间段的退化状态及其发展趋势,提前给出预警信息,有效地制定预知维修计划,及时采取预防措施,防止因设备突发失效引起非计划停机造成生产和经济损失。 展开更多
关键词 数据自组织挖掘 隐马尔科夫模型 数据分组处理方法 状态退化预警
在线阅读 下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部