对部分线性模型的aglasso(adaptive group lasso)参数估计及变量选择问题进行研究.通过构造aglasso的估计函数,将分组部分线性模型变量的选择问题转化为分组因子的选择问题.理论研究表明:该方法能相合地识别真实模型,并且估计具有oracl...对部分线性模型的aglasso(adaptive group lasso)参数估计及变量选择问题进行研究.通过构造aglasso的估计函数,将分组部分线性模型变量的选择问题转化为分组因子的选择问题.理论研究表明:该方法能相合地识别真实模型,并且估计具有oracle性质.最后通过模拟研究了所提方法的有限样本性质.展开更多
功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题...功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题,引入sparse group Lasso(sgLasso)方法进一步改善超网络的创建。首先,利用sgLasso方法进行超网络创建;然后,引入两组超网络特有的属性指标进行特征提取以及特征选择,这些指标分别是基于单一节点的聚类系数和基于一对节点的聚类系数;最后,将特征选择后得到的两组有显著差异的特征通过多核学习进行特征融合和分类。实验结果表明,所提方法经过多特征融合取得了87.88%的分类准确率。该结果表明为了改善脑功能超网络的创建,需要考虑到组信息,但不能逼迫使用整组信息,可以适当地对组结构进行扩展。展开更多
传统的CVaR条件风险价值组合投资模型能够很好的度量市场风险,但是容易在决策的过程中产生极端的投资权重,对CVaR模型增加一般范数约束后可以解决极端投资权重的问题,但却忽略了金融市场上常见的板块联动效应。基于上述原因,文章在...传统的CVaR条件风险价值组合投资模型能够很好的度量市场风险,但是容易在决策的过程中产生极端的投资权重,对CVaR模型增加一般范数约束后可以解决极端投资权重的问题,但却忽略了金融市场上常见的板块联动效应。基于上述原因,文章在传统的CVaR模型的基础上,施加Adaptive Group LASSO惩罚,构建了一种基于Adaptive Group LASSO的CVaR高维组合投资模型,通过Adaptive Group LASSO分位数回归求解算法,实现了在消除极端投资头寸的同时达到金融资产组水平上变量稀疏化的目的。最后,蒙特卡洛模拟与实证研究均发现,与传统的CVaR组合投资模型以及带有LAS—SO约束的CVaR组合投资模型相比,基于Adaptive Group LASSO的CVaR模型能够更好的考虑板块联动效应,并在行业组水平上选择相应的金融资产。展开更多
Index tracking is known to be a passive portfolio management strategy by replicating the performance of a real or virtual index.However,the full replication,which considers all the asserts consisted of the index,often...Index tracking is known to be a passive portfolio management strategy by replicating the performance of a real or virtual index.However,the full replication,which considers all the asserts consisted of the index,often suffers from small and illiquid positions and large transaction costs.Thus,it is preferred to purchase sparse portfolios.Besides,existing literature pointed out the phenomenon of the co-movement in assert returns,indicating that the index tracking problems possibly contain group structures together with sparsity.Based on the consideration of the grouping effects and sparsity in index tracking problems,this paper proposes a grouping sparse index tracking model with nonnegative restrictions.We derive a modified version of coordinate decent algorithm for solving the model.The asymptotic properties are also discussed in detail.To show the efficiency of the model,we apply it into the constrained index tracking problem in Shanghai stock market,i.e.tracking SSE 50 Index.By selecting about 10 stocks,the result shows that nonnegative group lasso outperforms nonnegative lasso in assert allocation.展开更多
文摘对部分线性模型的aglasso(adaptive group lasso)参数估计及变量选择问题进行研究.通过构造aglasso的估计函数,将分组部分线性模型变量的选择问题转化为分组因子的选择问题.理论研究表明:该方法能相合地识别真实模型,并且估计具有oracle性质.最后通过模拟研究了所提方法的有限样本性质.
文摘功能超网络广泛地应用于脑疾病诊断和分类研究中,而现有的关于超网络创建的研究缺乏解释分组效应的能力或者仅考虑到脑区间组级的信息,这样构建的脑功能超网络会丢失一些有用的连接或包含一些虚假的信息,因此,考虑到脑区间的组结构问题,引入sparse group Lasso(sgLasso)方法进一步改善超网络的创建。首先,利用sgLasso方法进行超网络创建;然后,引入两组超网络特有的属性指标进行特征提取以及特征选择,这些指标分别是基于单一节点的聚类系数和基于一对节点的聚类系数;最后,将特征选择后得到的两组有显著差异的特征通过多核学习进行特征融合和分类。实验结果表明,所提方法经过多特征融合取得了87.88%的分类准确率。该结果表明为了改善脑功能超网络的创建,需要考虑到组信息,但不能逼迫使用整组信息,可以适当地对组结构进行扩展。
文摘传统的CVaR条件风险价值组合投资模型能够很好的度量市场风险,但是容易在决策的过程中产生极端的投资权重,对CVaR模型增加一般范数约束后可以解决极端投资权重的问题,但却忽略了金融市场上常见的板块联动效应。基于上述原因,文章在传统的CVaR模型的基础上,施加Adaptive Group LASSO惩罚,构建了一种基于Adaptive Group LASSO的CVaR高维组合投资模型,通过Adaptive Group LASSO分位数回归求解算法,实现了在消除极端投资头寸的同时达到金融资产组水平上变量稀疏化的目的。最后,蒙特卡洛模拟与实证研究均发现,与传统的CVaR组合投资模型以及带有LAS—SO约束的CVaR组合投资模型相比,基于Adaptive Group LASSO的CVaR模型能够更好的考虑板块联动效应,并在行业组水平上选择相应的金融资产。
基金supported by the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202400514)the Foundation Project of Chongqing Normal University(Grand No.23XLB020)+1 种基金partly supported by Chongqing Social Science Planning Doctoral Program(Grant No.2022BS064)the Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJQN202301541)。
文摘Index tracking is known to be a passive portfolio management strategy by replicating the performance of a real or virtual index.However,the full replication,which considers all the asserts consisted of the index,often suffers from small and illiquid positions and large transaction costs.Thus,it is preferred to purchase sparse portfolios.Besides,existing literature pointed out the phenomenon of the co-movement in assert returns,indicating that the index tracking problems possibly contain group structures together with sparsity.Based on the consideration of the grouping effects and sparsity in index tracking problems,this paper proposes a grouping sparse index tracking model with nonnegative restrictions.We derive a modified version of coordinate decent algorithm for solving the model.The asymptotic properties are also discussed in detail.To show the efficiency of the model,we apply it into the constrained index tracking problem in Shanghai stock market,i.e.tracking SSE 50 Index.By selecting about 10 stocks,the result shows that nonnegative group lasso outperforms nonnegative lasso in assert allocation.