Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combin...Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained. The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.展开更多
In this manuscript we present a nonlinear site amplification model for ground-motion prediction equations(GMPEs)in Japan,using a site period-based site class and a site impedance ratio as site parameters.We used a lar...In this manuscript we present a nonlinear site amplification model for ground-motion prediction equations(GMPEs)in Japan,using a site period-based site class and a site impedance ratio as site parameters.We used a large number of shear-wave velocity profiles from the Kiban-Kyoshin network(KiK-net)and the Kyoshin network(K-NET)to construct the one-dimensional(1D)numerical models.The strong-motion records from rock-sites in Japan with different earthquake categories and taken from the Pacific Earthquake Engineering Research Center dataset were used in this study.We fit a set of 1D site amplification models using the spectral amplification ratios derived from 1D equivalent linear analyses.Parameters of site impedance ratios for both linear and nonlinear site response were included in the 1D model.The 1D model could be implemented into GMPEs using a new proposed adjustment method.The adjusted site amplification ratios retain the nonlinear characteristics of the 1D model for strong motions and match the linear amplification ratio in GMPE for weak motions.The nonlinearity of the present site model is reasonably similar to that of the historical models,and the present site model could satisfactorily capture the nonlinear site response in empirical data.展开更多
耐震时程分析(endurance time analysis,ETA)法作为结构响应分析领域的有效简化方法,基于频域地震动反应谱合成的耐震时程曲线无法准确反映时域的脉冲特性,限制了其在近断层脉冲型地震中的应用。为将ETA法应用到近断层脉冲型地震动作用...耐震时程分析(endurance time analysis,ETA)法作为结构响应分析领域的有效简化方法,基于频域地震动反应谱合成的耐震时程曲线无法准确反映时域的脉冲特性,限制了其在近断层脉冲型地震中的应用。为将ETA法应用到近断层脉冲型地震动作用下斜拉桥动力响应分析中,基于增量动力分析(incremental dynamic analysis,IDA)法研究了不同峰值下脉冲、高频分量对斜拉桥动力响应的贡献程度,构建了考虑脉冲和强度特性的斜拉桥动力响应预测模型,利用ETA法模拟高频分量下的斜拉桥动力响应并结合预测模型,预测了近断层脉冲型地震动下斜拉桥的动力响应。结果表明:建立的预测模型可以精确表达不同强度下高频分量与原始地震动响应之间的定量关系;基于ETA模型和IDA法计算出0.6 g下的平均动力响应最大相对误差不超过10%,具有良好的预测精度。研究成果为高效合理地计算近断层脉冲型地震动下斜拉桥的动力响应提供了技术支撑。展开更多
基金Heilongjiang Province Postdoctoral Science Foundation and China Earthquake Administration’s Tenth Five-year Plan Project
文摘Based on presumed active fault and corresponding model, this paper predicted the near-fault ground motion filed of a scenario earthquake (Mw=6 3/4 ) in an active fault by the explicit finite element method in combination with the source time function with improved transmitting artificial boundary and with high-frequency vibration contained. The results indicate that the improved artificial boundary is stable in numerical computation and the predicted strong ground motion has a consistent characteristic with the observed motion.
基金National Science Foundation of China under Grant No.51578470。
文摘In this manuscript we present a nonlinear site amplification model for ground-motion prediction equations(GMPEs)in Japan,using a site period-based site class and a site impedance ratio as site parameters.We used a large number of shear-wave velocity profiles from the Kiban-Kyoshin network(KiK-net)and the Kyoshin network(K-NET)to construct the one-dimensional(1D)numerical models.The strong-motion records from rock-sites in Japan with different earthquake categories and taken from the Pacific Earthquake Engineering Research Center dataset were used in this study.We fit a set of 1D site amplification models using the spectral amplification ratios derived from 1D equivalent linear analyses.Parameters of site impedance ratios for both linear and nonlinear site response were included in the 1D model.The 1D model could be implemented into GMPEs using a new proposed adjustment method.The adjusted site amplification ratios retain the nonlinear characteristics of the 1D model for strong motions and match the linear amplification ratio in GMPE for weak motions.The nonlinearity of the present site model is reasonably similar to that of the historical models,and the present site model could satisfactorily capture the nonlinear site response in empirical data.