In the big forest countries, there is an actual challenge of accessing the forests for their resources, operational wildfire management, and economic estimations for various purposes. In Russia, there are two ways to ...In the big forest countries, there is an actual challenge of accessing the forests for their resources, operational wildfire management, and economic estimations for various purposes. In Russia, there are two ways to access the forests: by air and by ground means. The first way is quite expensive for any country. The second one is less expensive but has the spatial planning challenges to create access routes by existing public roads and forest glades. Regional authorities and firefighting departments are paying attention to the access by ground means, but there is a certain room to improve their management and cooperation methods on a limited budget. These tasks could be solved by GIS-technologies in a more operational manner to automate the routes’ construction especially during the fire season. We used combined geoinformation technology (developed previously) and satellite product, namely vegetation map from Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate how accessible any forest area is when moving by public roads and forest glades from a fire station as a starting point. These stations are the main centers to fight the forest fires within the territory of ground protection zones in Russia and we have considered them as the logistic centers to manage the forest resources also. Transport model was created in two variants: no-barriers and barriers-based (forestries). By using these two models we have shown two different scenarios of action. The key area was Novosibirsk Region located in the Siberian Federal District, Russia. We have created a series of maps to show the transport accessibility of forest areas from the fire stations. Estimation of “located” pixels or forest areas accessible from the fire stations for the key area is about 66% - 83%;the most accessible forest type is mixed forests. The number of inaccessible pixels has been increased by more than two times in barriers scenario. Technology can be used for different thematic data sources and domains like ecology or economy.展开更多
The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, i...The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, identify the primary cause of bottlenecks formation and take measures mitigating the impact of bottlenecks on the airport terminal operation. Many studies dealing with the problems of airport landside capacity are focused mainly on the processing part of the airport terminal and consider the airport terminal to be an isolated system. Even the most of models of airport landside operations developed using various simulation (both generic and dedicated) software packages (e.g., PaxSim, SLAM, WITNESS, ARENA or EXTEND) are designed for simulating the passenger and baggage flows only between curb-side and apron. Although this approach provides valuable data concerning capacity, delays or processing bottlenecks, in some cases identified capacity constraints are only the symptoms of the actual problem. In order to discover the cause of the problem, it is necessary to consider the airport terminal as an integral part of much more complex regional, national or international transportation system. This article reflects the above mentioned requirements and introduces an innovative approach to passenger and baggage flow simulation based on the fact that airport terminal is considered as an integral part of air passenger door-to-door transportation process.展开更多
The cubic pyrochlore Tl_(2)Ru_(2)O_(7) undergoes concurrently a metal–insulator transition (MIT) and a first-order structural transition at T_(MIT)≈120 K,below which the system was found to form one-dimensional spin...The cubic pyrochlore Tl_(2)Ru_(2)O_(7) undergoes concurrently a metal–insulator transition (MIT) and a first-order structural transition at T_(MIT)≈120 K,below which the system was found to form one-dimensional spin-one Haldane chains associated with an orbital ordering of Ru-4d electrons.With an aim to tune and access distinct ground states with strong entanglements of multiple degrees of freedom,i.e.,spin,orbital,charge,and lattice,we utilize a high-pressure approach to regulate the MIT of this system.Our detailed resistivityρ(T) measurements on the polycrystalline Tl_(2)Ru_(2)O_(7) samples under various hydrostatic pressures indeed reveal an unusual evolution of the electronic ground states.At first,the MIT is suppressed monotonically from 120 K at ambient to about 70 K at 1.5 GPa and then vanishes suddenly at about 1.8 GPa without achieving a metallic ground state.Meanwhile,the system evolves into a semiconducting ground state with magnitude ofρ(T) in the entire temperature range enhanced gradually by further increasing pressure.Prior to the abrupt disappearance of MIT,a new electronic order manifested as a kink-like anomaly inρ(T) emerges at T_(0)>T_(MIT) at 1.2 GPa and it continues to increase with pressure,producing a tricritical-point-like behavior in the T–P phase diagram of Tl_(2)Ru_(2)O_(7).The presence of two successive transitions at T_(0 )and T_(MIT )in the pressure range 1.2–1.5 GPa indicates an inhomogeneous electronic state nearby the tricritical point.At P≥3 GPa,another broad anomaly emerges inρ(T) at T_(1)>T_(0),and T_(1)continuously increases with pressure,dividing the semiconductingρ(T) into distinct thermally activated regions.These rich phenomena in the pressurized Tl_(2)Ru_(2)O_(7) should originate from the complex interplay of strongly entangled multiple quantum degrees of freedom in the system near the localized-to-itinerant crossover regime.展开更多
Hard coal mining in the German Ruhr district has a tradition of more than 200 years. Starting in the south near the river Ruhr with mining of seams near to the surface, mining wandered to the north with coal seams dee...Hard coal mining in the German Ruhr district has a tradition of more than 200 years. Starting in the south near the river Ruhr with mining of seams near to the surface, mining wandered to the north with coal seams deeper and deeper. In the same way all environmental effects of mining wandered from south to north, as there are abandoned mining sites, contaminated areas, burning mining dumps, subsided areas and gas accesses at day ground. This all happened in a very high populated area with more than four million inhabitants. Therefore Germany has a long tradition in solving environmental problems of mining activities. The very good interaction of mine authority, mining companies and the mine workers’ union is the main reason why the problems of decreasing mining activities in Germany were solved without economic, environmental or social hazards.展开更多
文摘In the big forest countries, there is an actual challenge of accessing the forests for their resources, operational wildfire management, and economic estimations for various purposes. In Russia, there are two ways to access the forests: by air and by ground means. The first way is quite expensive for any country. The second one is less expensive but has the spatial planning challenges to create access routes by existing public roads and forest glades. Regional authorities and firefighting departments are paying attention to the access by ground means, but there is a certain room to improve their management and cooperation methods on a limited budget. These tasks could be solved by GIS-technologies in a more operational manner to automate the routes’ construction especially during the fire season. We used combined geoinformation technology (developed previously) and satellite product, namely vegetation map from Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate how accessible any forest area is when moving by public roads and forest glades from a fire station as a starting point. These stations are the main centers to fight the forest fires within the territory of ground protection zones in Russia and we have considered them as the logistic centers to manage the forest resources also. Transport model was created in two variants: no-barriers and barriers-based (forestries). By using these two models we have shown two different scenarios of action. The key area was Novosibirsk Region located in the Siberian Federal District, Russia. We have created a series of maps to show the transport accessibility of forest areas from the fire stations. Estimation of “located” pixels or forest areas accessible from the fire stations for the key area is about 66% - 83%;the most accessible forest type is mixed forests. The number of inaccessible pixels has been increased by more than two times in barriers scenario. Technology can be used for different thematic data sources and domains like ecology or economy.
文摘The problems of airport landside capacity assessment are of industry-wide interest. Evaluation of landside capacity enables airport operators and airport designers to identify passenger and baggage flow bottlenecks, identify the primary cause of bottlenecks formation and take measures mitigating the impact of bottlenecks on the airport terminal operation. Many studies dealing with the problems of airport landside capacity are focused mainly on the processing part of the airport terminal and consider the airport terminal to be an isolated system. Even the most of models of airport landside operations developed using various simulation (both generic and dedicated) software packages (e.g., PaxSim, SLAM, WITNESS, ARENA or EXTEND) are designed for simulating the passenger and baggage flows only between curb-side and apron. Although this approach provides valuable data concerning capacity, delays or processing bottlenecks, in some cases identified capacity constraints are only the symptoms of the actual problem. In order to discover the cause of the problem, it is necessary to consider the airport terminal as an integral part of much more complex regional, national or international transportation system. This article reflects the above mentioned requirements and introduces an innovative approach to passenger and baggage flow simulation based on the fact that airport terminal is considered as an integral part of air passenger door-to-door transportation process.
基金supported by the National Key Research and Development Program of China (Grant Nos. 2023YFA1406100 and 2021YFA1400200)the National Natural Science Foundation of China (Grant Nos. 12025408 and 12174424)+2 种基金the Youth Innovation Promotion Association of Chinese Academy of Scineces (Grant No. 2023007)support from the National Natural Science Foundation of China (Grant No. 11904272)the Open Fund of Hubei Provincial Key Laboratory of Metallurgical Industry Process Systems Science (Grant No. Z202202)。
文摘The cubic pyrochlore Tl_(2)Ru_(2)O_(7) undergoes concurrently a metal–insulator transition (MIT) and a first-order structural transition at T_(MIT)≈120 K,below which the system was found to form one-dimensional spin-one Haldane chains associated with an orbital ordering of Ru-4d electrons.With an aim to tune and access distinct ground states with strong entanglements of multiple degrees of freedom,i.e.,spin,orbital,charge,and lattice,we utilize a high-pressure approach to regulate the MIT of this system.Our detailed resistivityρ(T) measurements on the polycrystalline Tl_(2)Ru_(2)O_(7) samples under various hydrostatic pressures indeed reveal an unusual evolution of the electronic ground states.At first,the MIT is suppressed monotonically from 120 K at ambient to about 70 K at 1.5 GPa and then vanishes suddenly at about 1.8 GPa without achieving a metallic ground state.Meanwhile,the system evolves into a semiconducting ground state with magnitude ofρ(T) in the entire temperature range enhanced gradually by further increasing pressure.Prior to the abrupt disappearance of MIT,a new electronic order manifested as a kink-like anomaly inρ(T) emerges at T_(0)>T_(MIT) at 1.2 GPa and it continues to increase with pressure,producing a tricritical-point-like behavior in the T–P phase diagram of Tl_(2)Ru_(2)O_(7).The presence of two successive transitions at T_(0 )and T_(MIT )in the pressure range 1.2–1.5 GPa indicates an inhomogeneous electronic state nearby the tricritical point.At P≥3 GPa,another broad anomaly emerges inρ(T) at T_(1)>T_(0),and T_(1)continuously increases with pressure,dividing the semiconductingρ(T) into distinct thermally activated regions.These rich phenomena in the pressurized Tl_(2)Ru_(2)O_(7) should originate from the complex interplay of strongly entangled multiple quantum degrees of freedom in the system near the localized-to-itinerant crossover regime.
文摘Hard coal mining in the German Ruhr district has a tradition of more than 200 years. Starting in the south near the river Ruhr with mining of seams near to the surface, mining wandered to the north with coal seams deeper and deeper. In the same way all environmental effects of mining wandered from south to north, as there are abandoned mining sites, contaminated areas, burning mining dumps, subsided areas and gas accesses at day ground. This all happened in a very high populated area with more than four million inhabitants. Therefore Germany has a long tradition in solving environmental problems of mining activities. The very good interaction of mine authority, mining companies and the mine workers’ union is the main reason why the problems of decreasing mining activities in Germany were solved without economic, environmental or social hazards.