Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity...Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare.展开更多
The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communicati...The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.展开更多
This article presents information on the study of the flora of Uzbekistan based on grid system mapping. The urban flora of the city of Bukhara was researched in it. As a result of research, the territory of Bukhara ci...This article presents information on the study of the flora of Uzbekistan based on grid system mapping. The urban flora of the city of Bukhara was researched in it. As a result of research, the territory of Bukhara city was divided into 85 indexes based on 1 × 1 km<sup>2</sup> grid mapping system. The diversity and density of species in the indexes are determined. The influence of anthropogenic factors on the diversity of species in the indexes is determined.展开更多
The transport processes of plasmas in grid systems of krypton(Kr) ion thrusters at different acceleration voltages were simulated with a 3 D-PIC model, and the result was compared with xenon(Xe) ion thrusters. The...The transport processes of plasmas in grid systems of krypton(Kr) ion thrusters at different acceleration voltages were simulated with a 3 D-PIC model, and the result was compared with xenon(Xe) ion thrusters. The variation of the screen grid transparency, the accelerator grid current ratio and the divergence loss were explored. It is found that the screen grid transparency increases with the acceleration voltage and decreases with the beam current, while the accelerator grid current ratio and divergence loss decrease first and then increase with the beam current. This result is the same with Xe ion thrusters. Simulation results also show that Kr ion thrusters have more advantages than Xe ion thrusters, such as higher screen grid transparency, smaller accelerator grid current ratio, larger cut-off current threshold, and better divergence loss characteristic. These advantages mean that Kr ion thrusters have the ability of operating in a wide range of current. Through comprehensive analyses, it can be concluded that using Kr as propellant is very suitable for a multimode ion thruster design.展开更多
A 2D hybrid-PIC simulation model is proposed to investigate the beam extraction phenomena of the ion thruster. In which the electrons of the plasma sheath upstream the accelerator grid are assumed as particles while t...A 2D hybrid-PIC simulation model is proposed to investigate the beam extraction phenomena of the ion thruster. In which the electrons of the plasma sheath upstream the accelerator grid are assumed as particles while the downstream are fluid for improving the calculation efficiency. The ion transparency, plasma sheath formation, ion beam extraction characteristic of a two- and three-grid system have been compared in detail in this paper. From the comparison of the appearing time of the under-perveance phenomena in the two- and three-grid system, it illustrated that the two grid system has the wider operation range of the plasma densities than the three-grid one.展开更多
A dynamic uniform Cartesian grid system was developed in order to reduce the computational time in inundation simulation using a Godunov-type finite volume scheme. The reduction is achieved by excluding redundant dry ...A dynamic uniform Cartesian grid system was developed in order to reduce the computational time in inundation simulation using a Godunov-type finite volume scheme. The reduction is achieved by excluding redundant dry cells, which cannot be effectively avoided with a conventional Cartesian uniform grid system, as the wet area is unknown before computation. The new grid system expands dynamically with wetting, through addition of new cells according to moving wet-dry fronts. The new grid system is straightforward in implementation. Its application in a field-scale flood simulation shows that the new grid system is able to produce the same results as the conventional grid, but the computational efficiency is fairly improved.展开更多
Surface mount technology product manufacturing grid(SMT-MG) is a typical application which grid technology was applied to SMT product manufacturing.In this paper,for SMT-MG system,conception and intension of SMT-MG we...Surface mount technology product manufacturing grid(SMT-MG) is a typical application which grid technology was applied to SMT product manufacturing.In this paper,for SMT-MG system,conception and intension of SMT-MG were analyzed.Then six-layer architecture of SMT-MG was constructed and mesh three-dimensional matrix organization mode of SMT-MG was studied.Operation mechanism of SMT-MG was discussed emphatically which include adaptive evolution mechanism,PUSH/PULL driving mechanism,cooperation game mechanism,feedback,regulation and control mechanism,coordination mechanism and impetus mechanism.The study of SMT-MG must be useful for developing of electronic product manufacturing.展开更多
This paper presents a detailed design of a photovoltaic (PV) system for use in the rural electrification of remote settlements that are far off from the electricity grid. Since investment in building transmission line...This paper presents a detailed design of a photovoltaic (PV) system for use in the rural electrification of remote settlements that are far off from the electricity grid. Since investment in building transmission lines from the grid to these localities is not viable, a good solution is <span>an</span><span> installation in these areas of standalone photovoltaic systems. The design process comprises the choice and dimensioning of the solar panels, the battery storage, DC-AC inverter, and mini transmission grid to the different homes. The design is for a 15 kW PV system including an economic evaluation and analysis using Hybrid Optimization of Multiple Energy Resources (HOMER) software. Data on the average monthly solar radiation and temperature w</span><span>ere</span><span> obtained from various sources, including, Photovoltaic Geographical Information System (PVGIS) for Africa. From this data the study area receives a monthly average solar insolation of 6.16 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day with the worst month </span><span>being </span><span>August with 5.22 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day. The total daily electrical energy consumption is estimated to be about 72.525 kWh. Simulation results using HOMER software shows that the overall capital cost of the PV system components is $122,337, a replacement cost of $12,889 and an operation and maintenance cost of $29,946 over 10years. A financial analysis of the system showed that the design was both viable and sustainable with low maintenance cost</span><span>.</span>展开更多
Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and control...Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and controlling the grid are essential to system stability.One of the most critical needs for smart-grid execution is fast,precise,and economically synchronized measurements,which are made feasible by Phasor Measurement Units(PMU).PMUs can pro-vide synchronized measurements and measure voltages as well as current phasors dynamically.PMUs utilize GPS time-stamping at Coordinated Universal Time(UTC)to capture electric phasors with great accuracy and precision.This research tends to Deep Learning(DL)advances to design a Residual Network(ResNet)model that can accurately identify and classify defects in grid-connected systems.As part of fault detection and probe,the proposed strategy uses a ResNet-50 tech-nique to evaluate real-time measurement data from geographically scattered PMUs.As a result of its excellent signal classification efficiency and ability to extract high-quality signal features,its fault diagnosis performance is excellent.Our results demonstrate that the proposed method is effective in detecting and classifying faults at sufficient time.The proposed approaches classify the fault type with a precision of 98.5%and an accuracy of 99.1%.The long-short-term memory(LSTM),Convolutional Neural Network(CNN),and CNN-LSTM algo-rithms are applied to compare the networks.Real-world data tends to evaluate these networks.展开更多
The electricity situation in Nigeria can be described as epileptic with no sign in view of improvement. This epileptic power situation affects the manufacturing, service and residential sectors of the economy which in...The electricity situation in Nigeria can be described as epileptic with no sign in view of improvement. This epileptic power situation affects the manufacturing, service and residential sectors of the economy which in turn affects the country’s economic growth. Even with the recent reforms in the power sector, more than half of the country’s population still lack access to electricity. The epileptic condition of the power sector can be attributed to the inadequate and inefficient power plants, poor transmission and distribution facilities, and outdated metering system used by electricity consumers. This paper attempts to present the way forward for the Nigerian poor electricity situation by reviewing the power sector as a whole and the renewable energy potentials. We identified the problems in the national grid and then proposed a smart grid model for the Nigerian power sector which will include renewable energy source. We believe that the content of this review paper will solve the poor epileptic condition of the power sector in Nigeria and also enable the proper integration of smart grid technology into the national grid.展开更多
We analyze the deficiencies of current application systems, and discuss the key requirements of distributed Geographie Information serviee (GIS), We construct the distributed GIS on grid platform. Considering the fl...We analyze the deficiencies of current application systems, and discuss the key requirements of distributed Geographie Information serviee (GIS), We construct the distributed GIS on grid platform. Considering the flexibility and efficiency, we integrate the mobile agent technology into the system. We propose a new prototype system, the Geographic Information Grid System (GIGS) based on mobile agent. This system has flexible services and high performance, and improves the sharing of distributed resources. The service strategy of the system and the examples are also presented.展开更多
The joint grid system, which consists of the developed collar grid, the virtual grid and other grids, was used in the embedding technique to solve the problem of finding interpolating cells of the internal and externa...The joint grid system, which consists of the developed collar grid, the virtual grid and other grids, was used in the embedding technique to solve the problem of finding interpolating cells of the internal and external boundary points near the joint regions. With different boundary plane generated along different fixed surface, the collar grid obtained using hyperbolic partial equations can ensure to generate high quality grids and to provide real interpolating cells for the boundary points in the blanking regions. The virtual grid was used to convert solid wall boundary conditions into an interface condition, however, no fluid flow computations were conducted within the virtual grid. The computational result of body strake wing shows that the current developed embedding technique with joint grid system can effectively treat the geometry and can more accurately predict the flow over complexconfiguration with intersecting surfaces.展开更多
In this paper, the cell face velocities in the discretization of the continu- ity equation, the momentum equation, and the scalar equation of a non-staggered grid system are calculated and discussed. Both the momentum...In this paper, the cell face velocities in the discretization of the continu- ity equation, the momentum equation, and the scalar equation of a non-staggered grid system are calculated and discussed. Both the momentum interpolation and the linear interpolation are adopted to evaluate the coefficients in the discretized momentum and scalar equations. Their performances are compared. When the linear interpolation is used to calculate the coefficients, the mass residual term in the coefficients must be dropped to maintain the accuracy and convergence rate of the solution.展开更多
In recent years, injection of renewable energy such as solar power into the power grid is increasing. However, inclusion of large-scale intermittent-type renewable energy requires better management in proper understan...In recent years, injection of renewable energy such as solar power into the power grid is increasing. However, inclusion of large-scale intermittent-type renewable energy requires better management in proper understanding of grid’s variable characteristics and its protection systems. In this paper, the investigation on overvoltage issue is illustrated. Overvoltage in distribution feeder occurs when large amount of solar power is injected at low power demand. Another investigation is on false operation of overcurrent relays due to reverse power to the 33 kV loads. The potential solutions to the two issues are illustrated in the small-sized power grid system using bi-directional inverters on AC buses in charging battery banks and adjusting the relay current settings. The benefits of solar power injection are illustrated whereby output power from generators is decreased and transmission losses are reduced. Electrical Transient Analysis Program (ETAP) was used for investigations.展开更多
This paper presents an opportunity for energy management with an integrated photovoltaic and wind farm for the energy and economic aspects of the commercial area located in Putrajaya. The energy economy accession conf...This paper presents an opportunity for energy management with an integrated photovoltaic and wind farm for the energy and economic aspects of the commercial area located in Putrajaya. The energy economy accession conforming to the wind speed, temperature, solar irradiation, and energy consumption on a daily basis is taken into consideration. Design analysis is done through the industry standard numerical tool. From the result analysis, the recommended ratio of renewable share minimizing stress to the electric grid is proposed. According to the solutions obtained from the numerical design tool, photovoltaic is recommended to be more energy efficient and economically viable in comparison of the fully crowded wind farm. From the proposed solutions, the photovoltaic is able to provide 51% of the energy consumed and it costs RM 0.365 per kW/h.展开更多
This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(...This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.展开更多
Smart grid is an idea of upgradation of the traditional electric grid infrastructure. The efficiency of the existing electrical grid can be automated by integrating with innovative technical equipment such as:?high-te...Smart grid is an idea of upgradation of the traditional electric grid infrastructure. The efficiency of the existing electrical grid can be automated by integrating with innovative technical equipment such as:?high-tech forecasting system, digital sensors, advanced two-way communication and two-way power flow systems. Smart grid establishes an interface between utility and consumer which helps to use energy, based on the preferences of price, eco-friendly and without technical system issues. It empowers the grid to be more secure, reliable and efficient. The peer-reviewed articles and published government reports have been reviewed, based on the analysis of technical characteristics of power generation systems, eco-friendly sources of power generations, cost reduction, functionality and design of traditional grid versus smart grid. Furthermore, the innovative technologies that enable the grid to integrate with decentralized power generation system efficiently have been considered. This paper claims that in this modern era, it is arduous for traditional grid to fulfill the rising demand of electricity, along with sustainable, eco-friendly and stable power supply, as it cannot be efficiently integrated with decentralized and localized power generation systems and renewable energy sources. The result of this paper shows that decentralized and localized power generation systems are located close to end-users which decrease the transmission and supply cost of electricity. Innovative technologies allow the decentralized and localized power generation systems to be integrated with renewable energy sources which help to reduce the cost of utility services and provide clean energy. Moreover, technological advancement played a decisive role in enabling the electrical system to be more efficient. Electrical reliability can be improved,?greenhouse gas emissions can be reduced, renewable energy sources can efficiently be integrated,?and?rising demand for electricity can be met by embedding advanced applications and technological equipment in the electrical grid.展开更多
It has been recognized recently that when injecting renewable energy source power to a load bus which connected to a distributed feeder in a power grid system, a stability problem occurs particularly when having high ...It has been recognized recently that when injecting renewable energy source power to a load bus which connected to a distributed feeder in a power grid system, a stability problem occurs particularly when having high fault duties that exceeding the circuit breaker ratings at some substations. In this paper an analysis of power flow, short circuit, stability and protection is given in detail to an example of limited 7-bus power grid system. Comparison is illustrated between power grid with and without distributed generators regarding bus voltages, fault currents, critical power angles, selected current transformers and over current relay settings in each bus.展开更多
Fault management study in smart grid systems (SGSs) is important to ensure the stability of the system. Also, it is important to know the major types of power failures for the effective operation of the SGS. This pape...Fault management study in smart grid systems (SGSs) is important to ensure the stability of the system. Also, it is important to know the major types of power failures for the effective operation of the SGS. This paper reviews diverse types of faults that might appear in the SGS and gives a survey about the impact of renewable energy resources (RERs) on the behavior of the system. Moreover, this paper offers different fault detection and localization techniques that can be used for SGSs. Furthermore, a potential fault management case study is proposed in this paper. The SGS model in this paper is investigated using both of the Matlab/Simulink and the Real Time Digital Simulation (RTDS) to compute the fault management study. Simulation results show the fast response to a power failure in the system which improves the stability of the SGS.展开更多
Roughly 99% of the demand for electricity in Brazil is supplied by a national interconnected grid. The remaining 1% is spread in several “isolated systems” of the Amazon region—mini-grids that rely on expensive die...Roughly 99% of the demand for electricity in Brazil is supplied by a national interconnected grid. The remaining 1% is spread in several “isolated systems” of the Amazon region—mini-grids that rely on expensive diesel gensets due to high commodity and transportation costs. The isolated systems also have remote communities disconnected altogether from the mini-grids with inadequate health, education and leisure services. These communities are precariously supplied by small inefficient diesel gensets that run for a few hours per day. In this article, we propose a sustainable and economic alternative for the electric supply of the remote communities of isolated systems through a combination of photovoltaic solar generation and storage. The objective is to improve access to electricity with savings for the communities. The present paper outlines a public policy to meet this objective.展开更多
文摘Demand Side Management(DSM)is a vital issue in smart grids,given the time-varying user demand for electricity and power generation cost over a day.On the other hand,wireless communications with ubiquitous connectivity and low latency have emerged as a suitable option for smart grid.The design of any DSM system using a wireless network must consider the wireless link impairments,which is missing in existing literature.In this paper,we propose a DSM system using a Real-Time Pricing(RTP)mechanism and a wireless Neighborhood Area Network(NAN)with data transfer uncertainty.A Zigbee-based Internet of Things(IoT)model is considered for the communication infrastructure of the NAN.A sample NAN employing XBee and Raspberry Pi modules is also implemented in real-world settings to evaluate its reliability in transferring smart grid data over a wireless link.The proposed DSM system determines the optimal price corresponding to the optimum system welfare based on the two-way wireless communications among users,decision-makers,and energy providers.A novel cost function is adopted to reduce the impact of changes in user numbers on electricity prices.Simulation results indicate that the proposed system benefits users and energy providers.Furthermore,experimental results demonstrate that the success rate of data transfer significantly varies over the implemented wireless NAN,which can substantially impact the performance of the proposed DSM system.Further simulations are then carried out to quantify and analyze the impact of wireless communications on the electricity price,user welfare,and provider welfare.
文摘The Smart Grid is an enhancement of the traditional grid system and employs new technologies and sophisticated communication techniques for electrical power transmission and distribution. The Smart Grid’s communication network shares information about status of its several integrated IEDs (Intelligent Electronic Devices). However, the IEDs connected throughout the Smart Grid, open opportunities for attackers to interfere with the communications and utilities resources or take clients’ private data. This development has introduced new cyber-security challenges for the Smart Grid and is a very concerning issue because of emerging cyber-threats and security incidents that have occurred recently all over the world. The purpose of this research is to detect and mitigate Distributed Denial of Service [DDoS] with application to the Electrical Smart Grid System by deploying an optimized Stealthwatch Secure Network analytics tool. In this paper, the DDoS attack in the Smart Grid communication networks was modeled using Stealthwatch tool. The simulated network consisted of Secure Network Analytic tools virtual machines (VMs), electrical Grid network communication topology, attackers and Target VMs. Finally, the experiments and simulations were performed, and the research results showed that Stealthwatch analytic tool is very effective in detecting and mitigating DDoS attacks in the Smart Grid System without causing any blackout or shutdown of any internal systems as compared to other tools such as GNS3, NeSSi2, NISST Framework, OMNeT++, INET Framework, ReaSE, NS2, NS3, M5 Simulator, OPNET, PLC & TIA Portal management Software which do not have the capability to do so. Also, using Stealthwatch tool to create a security baseline for Smart Grid environment, contributes to risk mitigation and sound security hygiene.
文摘This article presents information on the study of the flora of Uzbekistan based on grid system mapping. The urban flora of the city of Bukhara was researched in it. As a result of research, the territory of Bukhara city was divided into 85 indexes based on 1 × 1 km<sup>2</sup> grid mapping system. The diversity and density of species in the indexes are determined. The influence of anthropogenic factors on the diversity of species in the indexes is determined.
基金co-supported by the National Natural Science Foundation of China (No. 11675040)the Fundamental Research Funds for the Central Universities of China (Nos. 3102014KYJD005 and 1191329723)
文摘The transport processes of plasmas in grid systems of krypton(Kr) ion thrusters at different acceleration voltages were simulated with a 3 D-PIC model, and the result was compared with xenon(Xe) ion thrusters. The variation of the screen grid transparency, the accelerator grid current ratio and the divergence loss were explored. It is found that the screen grid transparency increases with the acceleration voltage and decreases with the beam current, while the accelerator grid current ratio and divergence loss decrease first and then increase with the beam current. This result is the same with Xe ion thrusters. Simulation results also show that Kr ion thrusters have more advantages than Xe ion thrusters, such as higher screen grid transparency, smaller accelerator grid current ratio, larger cut-off current threshold, and better divergence loss characteristic. These advantages mean that Kr ion thrusters have the ability of operating in a wide range of current. Through comprehensive analyses, it can be concluded that using Kr as propellant is very suitable for a multimode ion thruster design.
基金supported by National Natural Science Foundation of China (No. 11702123)Technology Based Research Projects of SASTIND (No. JSZL2017203B008)Fund for Distinguished Young Talents of CAST (No. 9140C550206130C55003)
文摘A 2D hybrid-PIC simulation model is proposed to investigate the beam extraction phenomena of the ion thruster. In which the electrons of the plasma sheath upstream the accelerator grid are assumed as particles while the downstream are fluid for improving the calculation efficiency. The ion transparency, plasma sheath formation, ion beam extraction characteristic of a two- and three-grid system have been compared in detail in this paper. From the comparison of the appearing time of the under-perveance phenomena in the two- and three-grid system, it illustrated that the two grid system has the wider operation range of the plasma densities than the three-grid one.
基金supported by the National Natural Science Foundation of China(Grant No.19672016)the National Key R&D Program of China(Grant No.2016YFC0402704)+1 种基金the State Key Program of the National Natural Science Foundation of China(Grant No.41330858)the UK Natural Environment Research Council(NERC)(Grant No.NE/K008781/1)
文摘A dynamic uniform Cartesian grid system was developed in order to reduce the computational time in inundation simulation using a Godunov-type finite volume scheme. The reduction is achieved by excluding redundant dry cells, which cannot be effectively avoided with a conventional Cartesian uniform grid system, as the wet area is unknown before computation. The new grid system expands dynamically with wetting, through addition of new cells according to moving wet-dry fronts. The new grid system is straightforward in implementation. Its application in a field-scale flood simulation shows that the new grid system is able to produce the same results as the conventional grid, but the computational efficiency is fairly improved.
文摘Surface mount technology product manufacturing grid(SMT-MG) is a typical application which grid technology was applied to SMT product manufacturing.In this paper,for SMT-MG system,conception and intension of SMT-MG were analyzed.Then six-layer architecture of SMT-MG was constructed and mesh three-dimensional matrix organization mode of SMT-MG was studied.Operation mechanism of SMT-MG was discussed emphatically which include adaptive evolution mechanism,PUSH/PULL driving mechanism,cooperation game mechanism,feedback,regulation and control mechanism,coordination mechanism and impetus mechanism.The study of SMT-MG must be useful for developing of electronic product manufacturing.
文摘This paper presents a detailed design of a photovoltaic (PV) system for use in the rural electrification of remote settlements that are far off from the electricity grid. Since investment in building transmission lines from the grid to these localities is not viable, a good solution is <span>an</span><span> installation in these areas of standalone photovoltaic systems. The design process comprises the choice and dimensioning of the solar panels, the battery storage, DC-AC inverter, and mini transmission grid to the different homes. The design is for a 15 kW PV system including an economic evaluation and analysis using Hybrid Optimization of Multiple Energy Resources (HOMER) software. Data on the average monthly solar radiation and temperature w</span><span>ere</span><span> obtained from various sources, including, Photovoltaic Geographical Information System (PVGIS) for Africa. From this data the study area receives a monthly average solar insolation of 6.16 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day with the worst month </span><span>being </span><span>August with 5.22 kWh/</span><span>m</span><sup><span style="vertical-align:super;">2</span></sup><span>/day. The total daily electrical energy consumption is estimated to be about 72.525 kWh. Simulation results using HOMER software shows that the overall capital cost of the PV system components is $122,337, a replacement cost of $12,889 and an operation and maintenance cost of $29,946 over 10years. A financial analysis of the system showed that the design was both viable and sustainable with low maintenance cost</span><span>.</span>
文摘Smart Grids(SG)is a power system development concept that has received significant attention nationally.SG signifies real-time data for specific communication requirements.The best capabilities for monitoring and controlling the grid are essential to system stability.One of the most critical needs for smart-grid execution is fast,precise,and economically synchronized measurements,which are made feasible by Phasor Measurement Units(PMU).PMUs can pro-vide synchronized measurements and measure voltages as well as current phasors dynamically.PMUs utilize GPS time-stamping at Coordinated Universal Time(UTC)to capture electric phasors with great accuracy and precision.This research tends to Deep Learning(DL)advances to design a Residual Network(ResNet)model that can accurately identify and classify defects in grid-connected systems.As part of fault detection and probe,the proposed strategy uses a ResNet-50 tech-nique to evaluate real-time measurement data from geographically scattered PMUs.As a result of its excellent signal classification efficiency and ability to extract high-quality signal features,its fault diagnosis performance is excellent.Our results demonstrate that the proposed method is effective in detecting and classifying faults at sufficient time.The proposed approaches classify the fault type with a precision of 98.5%and an accuracy of 99.1%.The long-short-term memory(LSTM),Convolutional Neural Network(CNN),and CNN-LSTM algo-rithms are applied to compare the networks.Real-world data tends to evaluate these networks.
文摘The electricity situation in Nigeria can be described as epileptic with no sign in view of improvement. This epileptic power situation affects the manufacturing, service and residential sectors of the economy which in turn affects the country’s economic growth. Even with the recent reforms in the power sector, more than half of the country’s population still lack access to electricity. The epileptic condition of the power sector can be attributed to the inadequate and inefficient power plants, poor transmission and distribution facilities, and outdated metering system used by electricity consumers. This paper attempts to present the way forward for the Nigerian poor electricity situation by reviewing the power sector as a whole and the renewable energy potentials. We identified the problems in the national grid and then proposed a smart grid model for the Nigerian power sector which will include renewable energy source. We believe that the content of this review paper will solve the poor epileptic condition of the power sector in Nigeria and also enable the proper integration of smart grid technology into the national grid.
基金Supported by the National Technology Research and De-velopment Programof China (863 Program,2002AA135340) and the Na-tional Key Basic Research and Development Program ( 973 Program,2004CB318206)
文摘We analyze the deficiencies of current application systems, and discuss the key requirements of distributed Geographie Information serviee (GIS), We construct the distributed GIS on grid platform. Considering the flexibility and efficiency, we integrate the mobile agent technology into the system. We propose a new prototype system, the Geographic Information Grid System (GIGS) based on mobile agent. This system has flexible services and high performance, and improves the sharing of distributed resources. The service strategy of the system and the examples are also presented.
文摘The joint grid system, which consists of the developed collar grid, the virtual grid and other grids, was used in the embedding technique to solve the problem of finding interpolating cells of the internal and external boundary points near the joint regions. With different boundary plane generated along different fixed surface, the collar grid obtained using hyperbolic partial equations can ensure to generate high quality grids and to provide real interpolating cells for the boundary points in the blanking regions. The virtual grid was used to convert solid wall boundary conditions into an interface condition, however, no fluid flow computations were conducted within the virtual grid. The computational result of body strake wing shows that the current developed embedding technique with joint grid system can effectively treat the geometry and can more accurately predict the flow over complexconfiguration with intersecting surfaces.
基金Project supported by the National Natural Science Foundation of China (Nos. 51176204 and 51134006)
文摘In this paper, the cell face velocities in the discretization of the continu- ity equation, the momentum equation, and the scalar equation of a non-staggered grid system are calculated and discussed. Both the momentum interpolation and the linear interpolation are adopted to evaluate the coefficients in the discretized momentum and scalar equations. Their performances are compared. When the linear interpolation is used to calculate the coefficients, the mass residual term in the coefficients must be dropped to maintain the accuracy and convergence rate of the solution.
文摘In recent years, injection of renewable energy such as solar power into the power grid is increasing. However, inclusion of large-scale intermittent-type renewable energy requires better management in proper understanding of grid’s variable characteristics and its protection systems. In this paper, the investigation on overvoltage issue is illustrated. Overvoltage in distribution feeder occurs when large amount of solar power is injected at low power demand. Another investigation is on false operation of overcurrent relays due to reverse power to the 33 kV loads. The potential solutions to the two issues are illustrated in the small-sized power grid system using bi-directional inverters on AC buses in charging battery banks and adjusting the relay current settings. The benefits of solar power injection are illustrated whereby output power from generators is decreased and transmission losses are reduced. Electrical Transient Analysis Program (ETAP) was used for investigations.
基金supported by the Taylor's University Flagship Research under Grant No.TUFR/2017/001/01
文摘This paper presents an opportunity for energy management with an integrated photovoltaic and wind farm for the energy and economic aspects of the commercial area located in Putrajaya. The energy economy accession conforming to the wind speed, temperature, solar irradiation, and energy consumption on a daily basis is taken into consideration. Design analysis is done through the industry standard numerical tool. From the result analysis, the recommended ratio of renewable share minimizing stress to the electric grid is proposed. According to the solutions obtained from the numerical design tool, photovoltaic is recommended to be more energy efficient and economically viable in comparison of the fully crowded wind farm. From the proposed solutions, the photovoltaic is able to provide 51% of the energy consumed and it costs RM 0.365 per kW/h.
文摘This study presents a comprehensive impact analysis of the rotor angle stability of a proposed international connection between the Philippines and Sabah,Malaysia,as part of the Association of Southeast Asian Nations(ASEAN)Power Grid.This study focuses on modeling and evaluating the dynamic performance of the interconnected system,considering the high penetration of renewable sources.Power flow,small signal stability,and transient stability analyses were conducted to assess the ability of the proposed linked power system models to withstand small and large disturbances,utilizing the Power Systems Analysis Toolbox(PSAT)software in MATLAB.All components used in the model are documented in the PSAT library.Currently,there is a lack of publicly available studies regarding the implementation of this specific system.Additionally,the study investigates the behavior of a system with a high penetration of renewable energy sources.Based on the findings,this study concludes that a system is generally stable when interconnection is realized,given its appropriate location and dynamic component parameters.Furthermore,the critical eigenvalues of the system also exhibited improvement as the renewable energy sources were augmented.
文摘Smart grid is an idea of upgradation of the traditional electric grid infrastructure. The efficiency of the existing electrical grid can be automated by integrating with innovative technical equipment such as:?high-tech forecasting system, digital sensors, advanced two-way communication and two-way power flow systems. Smart grid establishes an interface between utility and consumer which helps to use energy, based on the preferences of price, eco-friendly and without technical system issues. It empowers the grid to be more secure, reliable and efficient. The peer-reviewed articles and published government reports have been reviewed, based on the analysis of technical characteristics of power generation systems, eco-friendly sources of power generations, cost reduction, functionality and design of traditional grid versus smart grid. Furthermore, the innovative technologies that enable the grid to integrate with decentralized power generation system efficiently have been considered. This paper claims that in this modern era, it is arduous for traditional grid to fulfill the rising demand of electricity, along with sustainable, eco-friendly and stable power supply, as it cannot be efficiently integrated with decentralized and localized power generation systems and renewable energy sources. The result of this paper shows that decentralized and localized power generation systems are located close to end-users which decrease the transmission and supply cost of electricity. Innovative technologies allow the decentralized and localized power generation systems to be integrated with renewable energy sources which help to reduce the cost of utility services and provide clean energy. Moreover, technological advancement played a decisive role in enabling the electrical system to be more efficient. Electrical reliability can be improved,?greenhouse gas emissions can be reduced, renewable energy sources can efficiently be integrated,?and?rising demand for electricity can be met by embedding advanced applications and technological equipment in the electrical grid.
文摘It has been recognized recently that when injecting renewable energy source power to a load bus which connected to a distributed feeder in a power grid system, a stability problem occurs particularly when having high fault duties that exceeding the circuit breaker ratings at some substations. In this paper an analysis of power flow, short circuit, stability and protection is given in detail to an example of limited 7-bus power grid system. Comparison is illustrated between power grid with and without distributed generators regarding bus voltages, fault currents, critical power angles, selected current transformers and over current relay settings in each bus.
文摘Fault management study in smart grid systems (SGSs) is important to ensure the stability of the system. Also, it is important to know the major types of power failures for the effective operation of the SGS. This paper reviews diverse types of faults that might appear in the SGS and gives a survey about the impact of renewable energy resources (RERs) on the behavior of the system. Moreover, this paper offers different fault detection and localization techniques that can be used for SGSs. Furthermore, a potential fault management case study is proposed in this paper. The SGS model in this paper is investigated using both of the Matlab/Simulink and the Real Time Digital Simulation (RTDS) to compute the fault management study. Simulation results show the fast response to a power failure in the system which improves the stability of the SGS.
文摘Roughly 99% of the demand for electricity in Brazil is supplied by a national interconnected grid. The remaining 1% is spread in several “isolated systems” of the Amazon region—mini-grids that rely on expensive diesel gensets due to high commodity and transportation costs. The isolated systems also have remote communities disconnected altogether from the mini-grids with inadequate health, education and leisure services. These communities are precariously supplied by small inefficient diesel gensets that run for a few hours per day. In this article, we propose a sustainable and economic alternative for the electric supply of the remote communities of isolated systems through a combination of photovoltaic solar generation and storage. The objective is to improve access to electricity with savings for the communities. The present paper outlines a public policy to meet this objective.