期刊文献+
共找到842篇文章
< 1 2 43 >
每页显示 20 50 100
Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique
1
作者 Quynh-Anh Thi Bui Dam Duc Nguyen +2 位作者 Hiep Van Le Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期691-712,共22页
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext... Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design. 展开更多
关键词 Shear bond asphalt pavement grid search OPTIMIZATION machine learning
在线阅读 下载PDF
The Grid Search Algorithm of Tectonic Stress Tensor Based on Focal Mechanism Data and Its Application in the Boundary Zone of China, Vietnam and Laos 被引量:67
2
作者 Yongge Wan Shuzhong Sheng +2 位作者 Jichao Huang Xiang Li Xin Chen 《Journal of Earth Science》 SCIE CAS CSCD 2016年第5期777-785,共9页
Stress field plays a key role in geodynamics. In this study, an algorithm to determine the stress tensor and its confidence range from focal mechanism data by using grid search method was proposed. The experiment uses... Stress field plays a key role in geodynamics. In this study, an algorithm to determine the stress tensor and its confidence range from focal mechanism data by using grid search method was proposed. The experiment uses artificial focal mechanism data which were generated by extensional, compression and strike-slip stress regime and different level of noise, shows that the precision of the estimated stress tensor based on this algorithm is greatly improved compared with traditional algorithms. This algorithm has three advantages:(1) The global optimal solution of the stress tensor is determined by fine grid search of 1o×1o×1o×0.01 and local minimum value is avoided; (2) precision of focal mechanism data can be considered, i.e., different weight of the focal mechanism data contributes differently to the process of determining stress tensor; (3) the confidence range of the determined stress tensor can be obtained by using F-test. We apply this algorithm in the boundary zone of China, Vietnam and Laos, and obtain the stress field with SSE-NNW compressive stress direction and NEE-SWW extensional stress direction. The stress ratio is 0.6, which shows that the eigen values of the stress tensor are nearly in arithmetic sequence. The stress field in this region is consistent with the left-lateral strike slip of the Dienbien-Lauangphrabang arc fault. The result will be helpful in studying the geological dynamic process in this region. 展开更多
关键词 stress tensor grid search focal mechanism uncertainty.
原文传递
Grid Search for Predicting Coronary Heart Disease by Tuning Hyper-Parameters 被引量:2
3
作者 S.Prabu B.Thiyaneswaran +2 位作者 M.Sujatha C.Nalini Sujatha Rajkumar 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期737-749,共13页
Diagnosing the cardiovascular disease is one of the biggest medical difficulties in recent years.Coronary cardiovascular(CHD)is a kind of heart and blood vascular disease.Predicting this sort of cardiac illness leads ... Diagnosing the cardiovascular disease is one of the biggest medical difficulties in recent years.Coronary cardiovascular(CHD)is a kind of heart and blood vascular disease.Predicting this sort of cardiac illness leads to more precise decisions for cardiac disorders.Implementing Grid Search Optimization(GSO)machine training models is therefore a useful way to forecast the sickness as soon as possible.The state-of-the-art work is the tuning of the hyperparameter together with the selection of the feature by utilizing the model search to minimize the false-negative rate.Three models with a cross-validation approach do the required task.Feature Selection based on the use of statistical and correlation matrices for multivariate analysis.For Random Search and Grid Search models,extensive comparison findings are produced utilizing retrieval,F1 score,and precision measurements.The models are evaluated using the metrics and kappa statistics that illustrate the three models’comparability.The study effort focuses on optimizing function selection,tweaking hyperparameters to improve model accuracy and the prediction of heart disease by examining Framingham datasets using random forestry classification.Tuning the hyperparameter in the model of grid search thus decreases the erroneous rate achieves global optimization. 展开更多
关键词 grid search coronary heart disease(CHD) machine learning feature selection hyperparameter tuning
在线阅读 下载PDF
Study on Joint Method of 3D Acoustic Emission Source Localization Simplex and Grid Search Scanning 被引量:1
4
作者 Liu Wei-jian Wang Hao-nan +4 位作者 Xiao Yang Hou Meng-jie Dong Sen-sen Zhang Zhi-zeng Lu Gao-ming 《Applied Geophysics》 SCIE CSCD 2024年第3期456-467,617,共13页
Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-... Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-dimensional(3D)AE source localization simplex method and grid search scanning.Using the concept of the geometry of simplexes,tetrahedral iterations were first conducted to narrow down the suspected source region.This is followed by a process of meshing the region and node searching to scan for optimal solutions,until the source location is determined.The resulting algorithm was tested using the artificial excitation source localization and uniaxial compression tests,after which the localization results were compared with the simplex and exhaustive methods.The results revealed that the localization obtained using the proposed method is more stable and can be effectively avoided compared with the simplex localization method.Furthermore,compared with the global scanning method,the proposed method is more efficient,with an average time of 10%–20%of the global scanning localization algorithm.Thus,the proposed algorithm is of great significance for laboratory research focused on locating rupture damages sustained by large-sized rock masses or test blocks. 展开更多
关键词 acoustic emission simplex form grid search scan locating the epicenter
在线阅读 下载PDF
A Robust Tuned Random Forest Classifier Using Randomized Grid Search to Predict Coronary Artery Diseases
5
作者 Sameh Abd El-Ghany A.A.Abd El-Aziz 《Computers, Materials & Continua》 SCIE EI 2023年第5期4633-4648,共16页
Coronary artery disease(CAD)is one of themost authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue.The breakdown of coronary cardiovascular disease is one of the principal sources ... Coronary artery disease(CAD)is one of themost authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue.The breakdown of coronary cardiovascular disease is one of the principal sources of death all over theworld.Cardiovascular deterioration is a challenge,especially in youthful and rural countries where there is an absence of humantrained professionals.Since heart diseases happen without apparent signs,high-level detection is desirable.This paper proposed a robust and tuned random forest model using the randomized grid search technique to predictCAD.The proposed framework increases the ability of CADpredictions by tracking down risk pointers and learning the confusing joint efforts between them.Nowadays,the healthcare industry has a lot of data but needs to gain more knowledge.Our proposed framework is used for extracting knowledge from data stores and using that knowledge to help doctors accurately and effectively diagnose heart disease(HD).We evaluated the proposed framework over two public databases,Cleveland and Framingham datasets.The datasets were preprocessed by using a cleaning technique,a normalization technique,and an outlier detection technique.Secondly,the principal component analysis(PCA)algorithm was utilized to lessen the feature dimensionality of the two datasets.Finally,we used a hyperparameter tuning technique,randomized grid search,to tune a random forest(RF)machine learning(ML)model.The randomized grid search selected the best parameters and got the ideal CAD analysis.The proposed framework was evaluated and compared with traditional classifiers.Our proposed framework’s accuracy,sensitivity,precision,specificity,and f1-score were 100%.The evaluation of the proposed framework showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing frameworks. 展开更多
关键词 Coronary artery disease tuned random forest randomized grid search CLASSIFIER
在线阅读 下载PDF
基于Grid-Search_PSO优化SVM回归预测矿井涌水量 被引量:14
6
作者 刘佳 施龙青 +1 位作者 韩进 滕超 《煤炭技术》 CAS 北大核心 2015年第8期184-186,共3页
为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预... 为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预测值与实测值之间的偏差比ARIMA时间序列法要小很多。可见在影响矿井涌水量各种因素值具备的情况下,SVM非线性回归预测所建立的模型能够更准确地预测矿井的涌水量,在矿井安全生产中具有很大的应用价值。 展开更多
关键词 支持向量机 网格搜索法 粒子群优化算法 矿井涌水量 非线性回归预测 大海则煤矿
原文传递
A Rapid Grid Search Method for Solving Dynamic Programming Problems in Economics
7
作者 Hui He Hao Zhang 《Frontiers of Economics in China-Selected Publications from Chinese Universities》 2013年第2期260-271,共12页
We introduce a rapid grid search method in solving dynamic program- ming problems in economics. Compared to mainstream grid search methods, by us- ing local information of the Bellman equation, this method can signifi... We introduce a rapid grid search method in solving dynamic program- ming problems in economics. Compared to mainstream grid search methods, by us- ing local information of the Bellman equation, this method can significantly increase the efficiency in solving dynamic programming problems by reducing the grid points searched in the control space. 展开更多
关键词 dynamic programming Bellman equation grid search CONCAVITY search-ing efficiency
原文传递
Grid-Search和PSO优化的SVM在Shibor回归预测中的应用研究 被引量:1
8
作者 张剑 王波 《经济数学》 2017年第2期84-88,共5页
作为一种动态和非稳定时间序列,Shibor发展变化是随机波动的,难以准确预测Shibor的波动性.支持向量机(SVM)在回归预测非线性时间序列方面有很好地预测效果,SVM的预测精度和泛化能力的核心是参数的优化选择,分别用网格搜索法(Grid-Search... 作为一种动态和非稳定时间序列,Shibor发展变化是随机波动的,难以准确预测Shibor的波动性.支持向量机(SVM)在回归预测非线性时间序列方面有很好地预测效果,SVM的预测精度和泛化能力的核心是参数的优化选择,分别用网格搜索法(Grid-Search)和粒子群(PSO)算法来优化SVM的参数c和g.从而将参数优化后的SVM非线性回归预测法与基于传统ARIMA时间序列预测结果进行对比分析.实验表明,优化后的SVM回归预测方法比ARIMA时间序列方法更精确,在实际中具有很大的应用价值. 展开更多
关键词 机器学习 非线性回归预测 支持向量机 网格搜索法 粒子群算法 SHIBOR
在线阅读 下载PDF
基于Gridsearch-SVM梯形区域极点分类的故障诊断
9
作者 杜紫薇 姚波 王福忠 《井冈山大学学报(自然科学版)》 2023年第1期8-13,共6页
针对一类线性定常系统,基于梯形区域极点配置,给出了执行器部件故障诊断的一种方法。首先,利用极点观测器,通过测量系统的状态,得到极点的动态信息;其次,根据模拟各通道执行器故障,实时采集闭环系统的极点信息,形成极点分类数据库;最后... 针对一类线性定常系统,基于梯形区域极点配置,给出了执行器部件故障诊断的一种方法。首先,利用极点观测器,通过测量系统的状态,得到极点的动态信息;其次,根据模拟各通道执行器故障,实时采集闭环系统的极点信息,形成极点分类数据库;最后,利用支持向量机算法(Support Vector Machine,SVM)根据不同通道发生故障时极点所处位置不同,设计极点分类器,对极点进行分类,实现对系统的故障诊断。针对SVM中惩罚因子和核宽度系数需要依靠先验知识的缺陷,采用Grid search优化其参数,缩小寻优范围。仿真结果表明设计方案的可行性以及故障诊断的有效性。 展开更多
关键词 极点观测器 极点分类器 支持向量机 网格搜索法 区域极点配置 故障诊断
在线阅读 下载PDF
METADATA EXPANDED SEMANTICALLY BASED RESOURCE SEARCH IN EDUCATION GRID
10
作者 孙霞 郑庆华 《Journal of Pharmaceutical Analysis》 SCIE CAS 2005年第2期33-36,共4页
With the rapid increase of educational resources, how to search for necessary educational resource quickly is one of most important issues. Educational resources have the characters of distribution and heterogeneity, ... With the rapid increase of educational resources, how to search for necessary educational resource quickly is one of most important issues. Educational resources have the characters of distribution and heterogeneity, which are the same as the characters of Grid resources. Therefore, the technology of Grid resources search was adopted to implement the educational resources search. Motivated by the insufficiency of currently resources search methods based on metadata, a method of extracting semantic relations between words constituting metadata is proposed. We mainly focus on acquiring synonymy, hyponymy, hypernymy and parataxis relations. In our schema, we extract texts related to metadata that will be expanded from text spatial through text extraction templates. Next, metadata will be obtained through metadata extraction templates. Finally, we compute semantic similarity to eliminate false relations and construct a semantic expansion knowledge base. The proposed method in this paper has been applied on the education grid. 展开更多
关键词 METADATA education grid resource search
在线阅读 下载PDF
Nearest neighbor search algorithm based on multiple background grids for fluid simulation 被引量:2
11
作者 郑德群 武频 +1 位作者 尚伟烈 曹啸鹏 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期405-408,共4页
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth... The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy. 展开更多
关键词 multiple background grids smoothed particle hydrodynamics (SPH) nearest neighbor search algorithm parallel computing
在线阅读 下载PDF
Managing of Smart Micro-Grid Connected Scheme Using Group Search Optimization
12
作者 S. Bhagawath S. Edward Rajan 《Circuits and Systems》 2016年第10期3095-3111,共17页
This article introduces a group search optimization (GSO) based tuning model for modelling and managing Smart Micro-Grids connected system. In existing systems, typically tuned PID controllers are engaged to point out... This article introduces a group search optimization (GSO) based tuning model for modelling and managing Smart Micro-Grids connected system. In existing systems, typically tuned PID controllers are engaged to point out the load frequency control (LFC) problems through different tuning techniques. Though, inappropriately tuned PID controller may reveal pitiable dynamical reply and also incorrect option of integral gain may even undermine the complete system. This research is used to explain about an optimized energy management system through Group Search Optimization (GSO) for building incorporation in smart micro-grids (MGs) with zero grid-impact. The essential for this technique is to develop the MG effectiveness, when the complete PI controller requires to be tuned. Consequently, we proposed that the proposed GSO based algorithm with appropriate explanation or member representation, derivation of fitness function, producer process, scrounger process, and ranger process. An entire and adaptable design of MATLAB/SIMULINK also proposed. The related solutions and practical test verifications are given. This paper verified that the proposed method was effective in Micro-Grid (MG) applications. The comparison results demonstrate the advantage of the proposed technique and confirm its potential to solve the problem. 展开更多
关键词 MICRO-grid PI Controller Energy Management Group search Optimization Distributed Generation
在线阅读 下载PDF
Grid和P2P混合环境中一种基于信任的资源搜索机制 被引量:2
13
作者 周金洋 杨寿保 +1 位作者 郭磊涛 王莉苹 《计算机科学》 CSCD 北大核心 2005年第11期27-30,共4页
Grid和P2P两种分布式计算模式中的资源搜索算法均假设节点提供可靠的资源,但Grid和P2P混合计算环境的动态、异构、自组织等特点使得一些节点存在冒名和提供虚假服务等行为。本文对基于经验和最好邻居搜索机制进行改进,引入信任因子,提... Grid和P2P两种分布式计算模式中的资源搜索算法均假设节点提供可靠的资源,但Grid和P2P混合计算环境的动态、异构、自组织等特点使得一些节点存在冒名和提供虚假服务等行为。本文对基于经验和最好邻居搜索机制进行改进,引入信任因子,提出了基于信任的资源搜索机制。该机制有效抑制了欺骗行为,提高了资源搜索的可靠性和安全性。 展开更多
关键词 资源搜索 网格 对等网络 信任 信任值 搜索机制 grid 计算环境 P2P 混合
在线阅读 下载PDF
基于Grid-GSA算法的植保无人机路径规划方法 被引量:31
14
作者 王宇 陈海涛 +1 位作者 李煜 李海川 《农业机械学报》 EI CAS CSCD 北大核心 2017年第7期29-37,共9页
为了提高植保无人机的作业效率,研究了一种路径规划方法。运用栅格法构建环境模型,根据实际的作业区域规模、形状等环境信息和无人机航向,为相应栅格赋予概率,无人机优先选择概率高的栅格行进。基于上述机制实现了在形状不规则的作业区... 为了提高植保无人机的作业效率,研究了一种路径规划方法。运用栅格法构建环境模型,根据实际的作业区域规模、形状等环境信息和无人机航向,为相应栅格赋予概率,无人机优先选择概率高的栅格行进。基于上述机制实现了在形状不规则的作业区域内进行往复回转式全覆盖路径规划;以每次植保作业距离为变量,根据仿真算法得出返航点数量与位置来确定寻优模型中的变量维数范围,以往返飞行、电池更换与药剂装填等非植保作业耗费时间最短为目标函数,通过采用引力搜索算法,实现对返航点数量与位置的寻优;为无人机设置必要的路径纠偏与光顺机制,使无人机能够按既定路线与速度飞行。对提出的路径规划方法进行了实例检验,结果显示,相比于简单规划与未规划的情况,运用Grid-GSA规划方法得出的结果中往返飞行距离总和分别减少了14%与68%,非植保作业时间分别减少了21%与36%,其它各项指标也均有不同程度的提高。在验证测试试验中,实际的往返距离总和减少了322 m,实际路径与规划路径存在较小偏差。验证了路径规划方法具有合理性、可行性以及一定的实用性。 展开更多
关键词 植保无人机 路径规划 栅格法 返航点 引力搜索算法
在线阅读 下载PDF
一种改进的Tabu Search算法及其在区域电网无功优化中的应用 被引量:4
15
作者 李益华 林文南 《电力科学与技术学报》 CAS 2008年第2期60-65,共6页
提出将改进的Tabu(禁忌)搜索算法用于区域电网无功电压优化控制问题的求解.首先根据已知的实际电网的历史数据获得可行的初始解,然后对区域电网采用改进的禁忌搜索方法进行无功优化.在求解的过程中,由于对Tabu表中所记录的"移动&qu... 提出将改进的Tabu(禁忌)搜索算法用于区域电网无功电压优化控制问题的求解.首先根据已知的实际电网的历史数据获得可行的初始解,然后对区域电网采用改进的禁忌搜索方法进行无功优化.在求解的过程中,由于对Tabu表中所记录的"移动"采取"有条件地释放Tabu表中的记录"这一策略,可以使搜索有效地跳出局部极小值点,更好地找到最优解.通过IEEE-14节点算例验证了该算法的有效性. 展开更多
关键词 无功优化 区域电网 改进Tabu搜索算法
在线阅读 下载PDF
P-Grid:一种高效的自组织P2P系统 被引量:2
16
作者 张洪军 《计算机工程与设计》 CSCD 北大核心 2006年第24期4767-4769,共3页
P2P(peertopeer)技术在分布计算时代发挥着越来越重要的作用,但在数据管理方面,P2P的应用表现出较大的局限性。作为一种快速高效的P2P信息系统P-Grid,它能够极大地减少其它P2P系统所需要的网络带宽。P-Grid系统的构造和维护严格依照本... P2P(peertopeer)技术在分布计算时代发挥着越来越重要的作用,但在数据管理方面,P2P的应用表现出较大的局限性。作为一种快速高效的P2P信息系统P-Grid,它能够极大地减少其它P2P系统所需要的网络带宽。P-Grid系统的构造和维护严格依照本地交互的随机算法,即使在不可靠的节点也能提供可靠的访问,并且能够较好地衡量存取和通信代价。 展开更多
关键词 P2P P-grid 节点 搜索 模型
在线阅读 下载PDF
基于GridSim ToolKits的网格仿真环境设计与实现 被引量:7
17
作者 刘宴兵 杨茜慧 王文斌 《计算机科学》 CSCD 北大核心 2008年第6期83-85,共3页
本文在研究GridSim的基础上,设计并实现一种基于GridSim ToolKits的网格仿真环境MendSim,该网格仿真环境可以对各种高级调度算法进行模拟并实现对各种网格发布规则和调度算法的研究。
关键词 网格仿真环境 发布规则 禁忌搜索算法 SPRs
在线阅读 下载PDF
Research on Low Voltage Series Arc Fault Prediction Method Based on Multidimensional Time-Frequency Domain Characteristics
18
作者 Feiyan Zhou HuiYin +4 位作者 Chen Luo Haixin Tong KunYu Zewen Li Xiangjun Zeng 《Energy Engineering》 EI 2023年第9期1979-1990,共12页
The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sus... The load types in low-voltage distribution systems are diverse.Some loads have current signals that are similar to series fault arcs,making it difficult to effectively detect fault arcs during their occurrence and sustained combustion,which can easily lead to serious electrical fire accidents.To address this issue,this paper establishes a fault arc prototype experimental platform,selects multiple commonly used loads for fault arc experiments,and collects data in both normal and fault states.By analyzing waveform characteristics and selecting fault discrimination feature indicators,corresponding feature values are extracted for qualitative analysis to explore changes in timefrequency characteristics of current before and after faults.Multiple features are then selected to form a multidimensional feature vector space to effectively reduce arc misjudgments and construct a fault discrimination feature database.Based on this,a fault arc hazard prediction model is built using random forests.The model’s multiple hyperparameters are simultaneously optimized through grid search,aiming tominimize node information entropy and complete model training,thereby enhancing model robustness and generalization ability.Through experimental verification,the proposed method accurately predicts and classifies fault arcs of different load types,with an average accuracy at least 1%higher than that of the commonly used fault predictionmethods compared in the paper. 展开更多
关键词 Low voltage distribution systems series fault arcing grid search time-frequency characteristics
在线阅读 下载PDF
电动汽车回路串联故障电弧特征提取与检测
19
作者 崔诗淼 王金龙 刘乙雁 《电力电子技术》 2026年第1期149-157,共9页
受道路颠簸、绝缘老化、接触不良等原因影响,电动汽车可能产生串联型电弧故障。基于干路电流的故障电弧检测方法会对电动汽车变速等工况产生误判。为准确地检测出电动汽车串联电弧故障,搭建了电动汽车串联型故障电弧实验平台,采集了不... 受道路颠簸、绝缘老化、接触不良等原因影响,电动汽车可能产生串联型电弧故障。基于干路电流的故障电弧检测方法会对电动汽车变速等工况产生误判。为准确地检测出电动汽车串联电弧故障,搭建了电动汽车串联型故障电弧实验平台,采集了不同速度、不同负载类型下的干路电流信号。通过变分模态分解(VMD)将干路电流信号分解为8个本征模态函数;其次,对电流信号进行了快速傅里叶变换(FFT),结合VMD的结果选择故障特征分量IMF1;对IMF1进行标准化处理,最后将处理后的IMF1分量输入支持向量机网格搜索(GS-SVM)模型进行故障电弧检测,使用十折交叉验证(CV)对模型进行准确率分析。开展了抗干扰实验,结果表明该模型抗干扰性较好,为研发电动汽车的故障电弧检测装置提供了一定的技术支持。 展开更多
关键词 串联故障电弧 电动汽车 变分模态分解 支持向量机网格搜索
在线阅读 下载PDF
网格搜索引擎SE4SEE及GridIR
20
作者 卜世波 《图书馆学研究》 CSSCI 北大核心 2009年第4期64-67,共4页
网格是一种新型的分布式计算技术,被称为继传统因特网、万维网之后的第三代因特网应用。当前的网格技术标准经过了长期的演变正一步步趋近成熟。网格技术将利用其自身的体系来发展一系列的信息检索网格服务。文章介绍了两个国外基于网... 网格是一种新型的分布式计算技术,被称为继传统因特网、万维网之后的第三代因特网应用。当前的网格技术标准经过了长期的演变正一步步趋近成熟。网格技术将利用其自身的体系来发展一系列的信息检索网格服务。文章介绍了两个国外基于网格技术的搜索引擎——SE4SEE和GridIR,分析了它们的架构、特性,并与传统搜索引擎作了比较。 展开更多
关键词 搜索引擎 网格 SE4SEE gridIR
在线阅读 下载PDF
上一页 1 2 43 下一页 到第
使用帮助 返回顶部