期刊文献+
共找到835篇文章
< 1 2 42 >
每页显示 20 50 100
Prediction of Shear Bond Strength of Asphalt Concrete Pavement Using Machine Learning Models and Grid Search Optimization Technique
1
作者 Quynh-Anh Thi Bui Dam Duc Nguyen +2 位作者 Hiep Van Le Indra Prakash Binh Thai Pham 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期691-712,共22页
Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Ext... Determination of Shear Bond strength(SBS)at interlayer of double-layer asphalt concrete is crucial in flexible pavement structures.The study used three Machine Learning(ML)models,including K-Nearest Neighbors(KNN),Extra Trees(ET),and Light Gradient Boosting Machine(LGBM),to predict SBS based on easily determinable input parameters.Also,the Grid Search technique was employed for hyper-parameter tuning of the ML models,and cross-validation and learning curve analysis were used for training the models.The models were built on a database of 240 experimental results and three input variables:temperature,normal pressure,and tack coat rate.Model validation was performed using three statistical criteria:the coefficient of determination(R2),the Root Mean Square Error(RMSE),and the mean absolute error(MAE).Additionally,SHAP analysis was also used to validate the importance of the input variables in the prediction of the SBS.Results show that these models accurately predict SBS,with LGBM providing outstanding performance.SHAP(Shapley Additive explanation)analysis for LGBM indicates that temperature is the most influential factor on SBS.Consequently,the proposed ML models can quickly and accurately predict SBS between two layers of asphalt concrete,serving practical applications in flexible pavement structure design. 展开更多
关键词 Shear bond asphalt pavement grid search OPTIMIZATION machine learning
在线阅读 下载PDF
Study on Joint Method of 3D Acoustic Emission Source Localization Simplex and Grid Search Scanning 被引量:1
2
作者 Liu Wei-jian Wang Hao-nan +4 位作者 Xiao Yang Hou Meng-jie Dong Sen-sen Zhang Zhi-zeng Lu Gao-ming 《Applied Geophysics》 SCIE CSCD 2024年第3期456-467,617,共13页
Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-... Acoustic emission(AE)source localization is a fundamental element of rock fracture damage imaging.To improve the efficiency and accuracy of AE source localization,this paper proposes a joint method comprising a three-dimensional(3D)AE source localization simplex method and grid search scanning.Using the concept of the geometry of simplexes,tetrahedral iterations were first conducted to narrow down the suspected source region.This is followed by a process of meshing the region and node searching to scan for optimal solutions,until the source location is determined.The resulting algorithm was tested using the artificial excitation source localization and uniaxial compression tests,after which the localization results were compared with the simplex and exhaustive methods.The results revealed that the localization obtained using the proposed method is more stable and can be effectively avoided compared with the simplex localization method.Furthermore,compared with the global scanning method,the proposed method is more efficient,with an average time of 10%–20%of the global scanning localization algorithm.Thus,the proposed algorithm is of great significance for laboratory research focused on locating rupture damages sustained by large-sized rock masses or test blocks. 展开更多
关键词 acoustic emission simplex form grid search scan locating the epicenter
在线阅读 下载PDF
The Grid Search Algorithm of Tectonic Stress Tensor Based on Focal Mechanism Data and Its Application in the Boundary Zone of China, Vietnam and Laos 被引量:66
3
作者 Yongge Wan Shuzhong Sheng +2 位作者 Jichao Huang Xiang Li Xin Chen 《Journal of Earth Science》 SCIE CAS CSCD 2016年第5期777-785,共9页
Stress field plays a key role in geodynamics. In this study, an algorithm to determine the stress tensor and its confidence range from focal mechanism data by using grid search method was proposed. The experiment uses... Stress field plays a key role in geodynamics. In this study, an algorithm to determine the stress tensor and its confidence range from focal mechanism data by using grid search method was proposed. The experiment uses artificial focal mechanism data which were generated by extensional, compression and strike-slip stress regime and different level of noise, shows that the precision of the estimated stress tensor based on this algorithm is greatly improved compared with traditional algorithms. This algorithm has three advantages:(1) The global optimal solution of the stress tensor is determined by fine grid search of 1o×1o×1o×0.01 and local minimum value is avoided; (2) precision of focal mechanism data can be considered, i.e., different weight of the focal mechanism data contributes differently to the process of determining stress tensor; (3) the confidence range of the determined stress tensor can be obtained by using F-test. We apply this algorithm in the boundary zone of China, Vietnam and Laos, and obtain the stress field with SSE-NNW compressive stress direction and NEE-SWW extensional stress direction. The stress ratio is 0.6, which shows that the eigen values of the stress tensor are nearly in arithmetic sequence. The stress field in this region is consistent with the left-lateral strike slip of the Dienbien-Lauangphrabang arc fault. The result will be helpful in studying the geological dynamic process in this region. 展开更多
关键词 stress tensor grid search focal mechanism uncertainty.
原文传递
Grid Search for Predicting Coronary Heart Disease by Tuning Hyper-Parameters 被引量:2
4
作者 S.Prabu B.Thiyaneswaran +2 位作者 M.Sujatha C.Nalini Sujatha Rajkumar 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期737-749,共13页
Diagnosing the cardiovascular disease is one of the biggest medical difficulties in recent years.Coronary cardiovascular(CHD)is a kind of heart and blood vascular disease.Predicting this sort of cardiac illness leads ... Diagnosing the cardiovascular disease is one of the biggest medical difficulties in recent years.Coronary cardiovascular(CHD)is a kind of heart and blood vascular disease.Predicting this sort of cardiac illness leads to more precise decisions for cardiac disorders.Implementing Grid Search Optimization(GSO)machine training models is therefore a useful way to forecast the sickness as soon as possible.The state-of-the-art work is the tuning of the hyperparameter together with the selection of the feature by utilizing the model search to minimize the false-negative rate.Three models with a cross-validation approach do the required task.Feature Selection based on the use of statistical and correlation matrices for multivariate analysis.For Random Search and Grid Search models,extensive comparison findings are produced utilizing retrieval,F1 score,and precision measurements.The models are evaluated using the metrics and kappa statistics that illustrate the three models’comparability.The study effort focuses on optimizing function selection,tweaking hyperparameters to improve model accuracy and the prediction of heart disease by examining Framingham datasets using random forestry classification.Tuning the hyperparameter in the model of grid search thus decreases the erroneous rate achieves global optimization. 展开更多
关键词 grid search coronary heart disease(CHD) machine learning feature selection hyperparameter tuning
在线阅读 下载PDF
A Robust Tuned Random Forest Classifier Using Randomized Grid Search to Predict Coronary Artery Diseases
5
作者 Sameh Abd El-Ghany A.A.Abd El-Aziz 《Computers, Materials & Continua》 SCIE EI 2023年第5期4633-4648,共16页
Coronary artery disease(CAD)is one of themost authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue.The breakdown of coronary cardiovascular disease is one of the principal sources ... Coronary artery disease(CAD)is one of themost authentic cardiovascular afflictions because it is an uncommonly overwhelming heart issue.The breakdown of coronary cardiovascular disease is one of the principal sources of death all over theworld.Cardiovascular deterioration is a challenge,especially in youthful and rural countries where there is an absence of humantrained professionals.Since heart diseases happen without apparent signs,high-level detection is desirable.This paper proposed a robust and tuned random forest model using the randomized grid search technique to predictCAD.The proposed framework increases the ability of CADpredictions by tracking down risk pointers and learning the confusing joint efforts between them.Nowadays,the healthcare industry has a lot of data but needs to gain more knowledge.Our proposed framework is used for extracting knowledge from data stores and using that knowledge to help doctors accurately and effectively diagnose heart disease(HD).We evaluated the proposed framework over two public databases,Cleveland and Framingham datasets.The datasets were preprocessed by using a cleaning technique,a normalization technique,and an outlier detection technique.Secondly,the principal component analysis(PCA)algorithm was utilized to lessen the feature dimensionality of the two datasets.Finally,we used a hyperparameter tuning technique,randomized grid search,to tune a random forest(RF)machine learning(ML)model.The randomized grid search selected the best parameters and got the ideal CAD analysis.The proposed framework was evaluated and compared with traditional classifiers.Our proposed framework’s accuracy,sensitivity,precision,specificity,and f1-score were 100%.The evaluation of the proposed framework showed that it is an unrivaled perceptive outcome with tuning as opposed to other ongoing existing frameworks. 展开更多
关键词 Coronary artery disease tuned random forest randomized grid search CLASSIFIER
在线阅读 下载PDF
基于Grid-Search_PSO优化SVM回归预测矿井涌水量 被引量:14
6
作者 刘佳 施龙青 +1 位作者 韩进 滕超 《煤炭技术》 CAS 北大核心 2015年第8期184-186,共3页
为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预... 为了解决矿井涌水量预测难题,在Grid-Search_PSO优化SVM参数的基础上,采用SVM非线性回归预测法,对大海则煤矿1999~2008年7月份的矿井涌水量进行了预测。分析对比SVM回归预测法和ARIMA时间序列预测法预测结果的数据误差,发现SVM回归法预测值与实测值之间的偏差比ARIMA时间序列法要小很多。可见在影响矿井涌水量各种因素值具备的情况下,SVM非线性回归预测所建立的模型能够更准确地预测矿井的涌水量,在矿井安全生产中具有很大的应用价值。 展开更多
关键词 支持向量机 网格搜索法 粒子群优化算法 矿井涌水量 非线性回归预测 大海则煤矿
原文传递
A Rapid Grid Search Method for Solving Dynamic Programming Problems in Economics
7
作者 Hui He Hao Zhang 《Frontiers of Economics in China-Selected Publications from Chinese Universities》 2013年第2期260-271,共12页
We introduce a rapid grid search method in solving dynamic program- ming problems in economics. Compared to mainstream grid search methods, by us- ing local information of the Bellman equation, this method can signifi... We introduce a rapid grid search method in solving dynamic program- ming problems in economics. Compared to mainstream grid search methods, by us- ing local information of the Bellman equation, this method can significantly increase the efficiency in solving dynamic programming problems by reducing the grid points searched in the control space. 展开更多
关键词 dynamic programming Bellman equation grid search CONCAVITY search-ing efficiency
原文传递
Grid-Search和PSO优化的SVM在Shibor回归预测中的应用研究 被引量:1
8
作者 张剑 王波 《经济数学》 2017年第2期84-88,共5页
作为一种动态和非稳定时间序列,Shibor发展变化是随机波动的,难以准确预测Shibor的波动性.支持向量机(SVM)在回归预测非线性时间序列方面有很好地预测效果,SVM的预测精度和泛化能力的核心是参数的优化选择,分别用网格搜索法(Grid-Search... 作为一种动态和非稳定时间序列,Shibor发展变化是随机波动的,难以准确预测Shibor的波动性.支持向量机(SVM)在回归预测非线性时间序列方面有很好地预测效果,SVM的预测精度和泛化能力的核心是参数的优化选择,分别用网格搜索法(Grid-Search)和粒子群(PSO)算法来优化SVM的参数c和g.从而将参数优化后的SVM非线性回归预测法与基于传统ARIMA时间序列预测结果进行对比分析.实验表明,优化后的SVM回归预测方法比ARIMA时间序列方法更精确,在实际中具有很大的应用价值. 展开更多
关键词 机器学习 非线性回归预测 支持向量机 网格搜索法 粒子群算法 SHIBOR
在线阅读 下载PDF
基于Gridsearch-SVM梯形区域极点分类的故障诊断
9
作者 杜紫薇 姚波 王福忠 《井冈山大学学报(自然科学版)》 2023年第1期8-13,共6页
针对一类线性定常系统,基于梯形区域极点配置,给出了执行器部件故障诊断的一种方法。首先,利用极点观测器,通过测量系统的状态,得到极点的动态信息;其次,根据模拟各通道执行器故障,实时采集闭环系统的极点信息,形成极点分类数据库;最后... 针对一类线性定常系统,基于梯形区域极点配置,给出了执行器部件故障诊断的一种方法。首先,利用极点观测器,通过测量系统的状态,得到极点的动态信息;其次,根据模拟各通道执行器故障,实时采集闭环系统的极点信息,形成极点分类数据库;最后,利用支持向量机算法(Support Vector Machine,SVM)根据不同通道发生故障时极点所处位置不同,设计极点分类器,对极点进行分类,实现对系统的故障诊断。针对SVM中惩罚因子和核宽度系数需要依靠先验知识的缺陷,采用Grid search优化其参数,缩小寻优范围。仿真结果表明设计方案的可行性以及故障诊断的有效性。 展开更多
关键词 极点观测器 极点分类器 支持向量机 网格搜索法 区域极点配置 故障诊断
在线阅读 下载PDF
METADATA EXPANDED SEMANTICALLY BASED RESOURCE SEARCH IN EDUCATION GRID
10
作者 孙霞 郑庆华 《Journal of Pharmaceutical Analysis》 SCIE CAS 2005年第2期33-36,共4页
With the rapid increase of educational resources, how to search for necessary educational resource quickly is one of most important issues. Educational resources have the characters of distribution and heterogeneity, ... With the rapid increase of educational resources, how to search for necessary educational resource quickly is one of most important issues. Educational resources have the characters of distribution and heterogeneity, which are the same as the characters of Grid resources. Therefore, the technology of Grid resources search was adopted to implement the educational resources search. Motivated by the insufficiency of currently resources search methods based on metadata, a method of extracting semantic relations between words constituting metadata is proposed. We mainly focus on acquiring synonymy, hyponymy, hypernymy and parataxis relations. In our schema, we extract texts related to metadata that will be expanded from text spatial through text extraction templates. Next, metadata will be obtained through metadata extraction templates. Finally, we compute semantic similarity to eliminate false relations and construct a semantic expansion knowledge base. The proposed method in this paper has been applied on the education grid. 展开更多
关键词 METADATA education grid resource search
在线阅读 下载PDF
Nearest neighbor search algorithm based on multiple background grids for fluid simulation 被引量:2
11
作者 郑德群 武频 +1 位作者 尚伟烈 曹啸鹏 《Journal of Shanghai University(English Edition)》 CAS 2011年第5期405-408,共4页
The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth... The core of smoothed particle hydrodynamics (SPH) is the nearest neighbor search subroutine. In this paper, a nearest neighbor search algorithm which is based on multiple background grids and support variable smooth length is introduced. Through tested on lid driven cavity flow, it is clear that this method can provide high accuracy. Analysis and experiments have been made on its parallelism, and the results show that this method has better parallelism and with adding processors its accuracy become higher, thus it achieves that efficiency grows in pace with accuracy. 展开更多
关键词 multiple background grids smoothed particle hydrodynamics (SPH) nearest neighbor search algorithm parallel computing
在线阅读 下载PDF
浅析震源位置准确度及其影响因素 被引量:3
12
作者 张风雪 李昱 陈泆平 《地球与行星物理论评(中英文)》 2025年第2期182-192,共11页
地震定位是地震学研究的基础,然而地震定位和地震学研究之间存在“供给”矛盾.不同研究对地震位置准确度级别的要求不尽相同,震源机制和壳幔结构研究要求震源位置的准确度为千米级别,工业生产活动和诱发地震研究要求震源位置的准确度为... 地震定位是地震学研究的基础,然而地震定位和地震学研究之间存在“供给”矛盾.不同研究对地震位置准确度级别的要求不尽相同,震源机制和壳幔结构研究要求震源位置的准确度为千米级别,工业生产活动和诱发地震研究要求震源位置的准确度为百米级别.然而,地震监测台网给出的地震位置准确度仅为数千米.诸多地震定位方法从不同方面对地震定位过程进行优化和改进,但它们的侧重点不尽相同.总体而言,已有的定位方法对地震位置的准确度关注程度尚显不足.在大量的地震定位实践中,前人获得了用于优化地震位置准确度的若干经验法则,这些经验法则不但存在地区差异,而且还有一定的适用条件,经验法则仍需要被进一步地优化和修正.本文简要分析地震定位准确度的多方面影响因素,有针对性地开展研究,在地震定位算法和控制观测数据质量方面获得一定的研究进展;在地震定位耦合关系方面补充了定位速度模型、发震位置和发震时刻三者之间的制约关系;在地震定位流程方面提出了使用逐步消元定位的建议. 展开更多
关键词 地震定位 震源位置准确度 网格搜索定位 观测数据质量 定位耦合关系
在线阅读 下载PDF
结合ICA与GS-SVM的电池健康状态估计 被引量:1
13
作者 董静 金帅 《重庆理工大学学报(自然科学)》 北大核心 2025年第4期17-26,共10页
数据驱动法极其依赖特征参数的质量,为了选取优质的特征参数,提高电池SOH的估计精度,提出了一种基于增量容量分析(ICA)和数据驱动的融合估计方法。利用高斯滤波对原始增量容量曲线进行平滑处理,根据IC曲线与电池退化特性之间的联系选择... 数据驱动法极其依赖特征参数的质量,为了选取优质的特征参数,提高电池SOH的估计精度,提出了一种基于增量容量分析(ICA)和数据驱动的融合估计方法。利用高斯滤波对原始增量容量曲线进行平滑处理,根据IC曲线与电池退化特性之间的联系选择5个特征参数;利用相关性分析方法提取与容量衰减关联度最高的3个特征作为数据驱动模型的输入参数,建立针对电池容量进行估计的支持向量机(SVM)回归预测模型,并利用网格搜索算法(GS)调整SVM的参数;利用公开数据集验证了该方法的有效性,并与长短期记忆神经网络(LSTM)、卷积神经网络(CNN)以及随机森林算法(RF)等数据驱动方法进行了比较。结果表明,所提方法在精度与泛化性方面均优于其他数据驱动方法。 展开更多
关键词 锂离子电池 健康状态 增量容量分析 高斯滤波 支持向量机 网格搜索
在线阅读 下载PDF
基于熵权法与网格搜索优化的水稻延迟型冷害指标构建
14
作者 武晋雯 纪瑞鹏 +5 位作者 孙龙彧 冯锐 姜丽霞 于成龙 于文颖 陈妮娜 《农业工程学报》 北大核心 2025年第14期91-101,共11页
鉴于传统指标难以有效捕捉短期低温的累积效应及准确刻画冷害的动态演变过程,该研究提出了一种结合数据驱动方法与超参数调优的水稻延迟型低温冷害评价指标。基于热量指数和30a滚动平均值动态计算逐日距平值,以累积负距平值和负距平最... 鉴于传统指标难以有效捕捉短期低温的累积效应及准确刻画冷害的动态演变过程,该研究提出了一种结合数据驱动方法与超参数调优的水稻延迟型低温冷害评价指标。基于热量指数和30a滚动平均值动态计算逐日距平值,以累积负距平值和负距平最长连续日数为核心变量,采用熵权法构建低温综合强度指数,并通过粗细粒网格搜索优化冷害等级的划分阈值,进一步分析冷害发生频率的时空变化。结果表明:该指标在冷害等级划分中与历史灾情记录完全一致的准确率为80.77%;重度冷害集中于黑龙江北部和吉林东部,1960S~2010S水稻冷害发生频率整体呈下降趋势,1970S为冷害高发期,尽管重度冷害发生明显减少,但部分年份和区域仍存在集中爆发的可能,极端冷害潜在风险不可忽视。该指标对低温冷害发生、强度和持续时间的识别具有更高的敏感性,为低温冷害的精准评估及东北三省的水稻生产提供科学依据。 展开更多
关键词 水稻 延迟型冷害 熵权法 网格搜索 冷害等级 冷害频率 时空分布
在线阅读 下载PDF
基于改进随机森林模型的地铁客流量预测 被引量:1
15
作者 张丽莉 宁亚琴 《公路工程》 2025年第2期226-232,共7页
地铁站点周边用地类型对客流量有一定的影响。通过将用地类型和随机森林模型(Random Forest,RF)相结合来预测客流量,首先获取地铁站刷卡数据和站点周边POI数量;然后将POI数量和时间作为随机森林模型中特征变量,出站客流量作为目标变量,... 地铁站点周边用地类型对客流量有一定的影响。通过将用地类型和随机森林模型(Random Forest,RF)相结合来预测客流量,首先获取地铁站刷卡数据和站点周边POI数量;然后将POI数量和时间作为随机森林模型中特征变量,出站客流量作为目标变量,利用网格搜索法(Gird Search,GS)选取随机森林模型中最佳参数,以北京市商务型-复兴门站、交通枢纽型-北京站、景点型-什刹海站、居住型-天通苑站、混合型-鼓楼大街站这5个不同类型站点为例,基于改进的随机森林模型与网格搜索法融合(GS-RF)模型进行预测,得到预测结果;与单一随机森林模型预测评价结果对比,得到GS-RF模型预测精度更高。 展开更多
关键词 用地类型 随机森林 网格搜索 客流预测
在线阅读 下载PDF
煤层顶板水平井分段水力压裂微震监测与评价
16
作者 李全贵 彭淑悦 +5 位作者 梁运培 李文禧 钱亚楠 程春晖 余长君 湛金飞 《煤田地质与勘探》 北大核心 2025年第4期46-57,共12页
【背景】微震监测作为一种无损监测技术被广泛用于煤层水力压裂效果评价,但由于建立层状波速模型时缺乏对同层介质中垂向波速梯度的考虑,导致走时计算和震源定位精度有待提高,影响了煤层水力压裂评价的准确性。【目的和方法】以安徽某... 【背景】微震监测作为一种无损监测技术被广泛用于煤层水力压裂效果评价,但由于建立层状波速模型时缺乏对同层介质中垂向波速梯度的考虑,导致走时计算和震源定位精度有待提高,影响了煤层水力压裂评价的准确性。【目的和方法】以安徽某矿煤层分段水力压裂工程为背景,提出了一种基于泛克里金插值法改进的波速模型。结合各向异性因子约束,在声波测井波速模型的基础上,对同层介质中网格波速数值进行插值计算,表征其各向异性特征,并以此修正弹性波传播路径。通过已知位置射孔事件的震源定位精度对比,验证了改进波速模型的有效性。基于该模型,进一步计算了储层渗透率和储层改造体积(stimulated reservoir volume,SRV),实现了对煤层水力压裂效果的综合评价。【结果与结论】结果表明,泛克里金波速插值相比于线性插值能够有效提升震源定位精度,对于同一射孔点,插值后模型定位误差较初始层状模型最高降低了7.22 m。水力压裂效果评价中,波速插值后的震源定位结果得到改善,微震事件在垂向方向离散性得到有效约束,各压裂段有效影响半径约90 m。煤层区域内微震事件分布密度与渗透率存在差异,各段井筒附近压后渗透率较高。储层改造体积总计为1.977×10~7 m^(3),改造体积及水力裂缝长度与注入总液量正相关,基于微震评价的压裂改造效果与预期设计相符。 展开更多
关键词 水力压裂 微震监测 各向异性 泛克里金插值法 波速模型 网格搜索
在线阅读 下载PDF
Managing of Smart Micro-Grid Connected Scheme Using Group Search Optimization
17
作者 S. Bhagawath S. Edward Rajan 《Circuits and Systems》 2016年第10期3095-3111,共17页
This article introduces a group search optimization (GSO) based tuning model for modelling and managing Smart Micro-Grids connected system. In existing systems, typically tuned PID controllers are engaged to point out... This article introduces a group search optimization (GSO) based tuning model for modelling and managing Smart Micro-Grids connected system. In existing systems, typically tuned PID controllers are engaged to point out the load frequency control (LFC) problems through different tuning techniques. Though, inappropriately tuned PID controller may reveal pitiable dynamical reply and also incorrect option of integral gain may even undermine the complete system. This research is used to explain about an optimized energy management system through Group Search Optimization (GSO) for building incorporation in smart micro-grids (MGs) with zero grid-impact. The essential for this technique is to develop the MG effectiveness, when the complete PI controller requires to be tuned. Consequently, we proposed that the proposed GSO based algorithm with appropriate explanation or member representation, derivation of fitness function, producer process, scrounger process, and ranger process. An entire and adaptable design of MATLAB/SIMULINK also proposed. The related solutions and practical test verifications are given. This paper verified that the proposed method was effective in Micro-Grid (MG) applications. The comparison results demonstrate the advantage of the proposed technique and confirm its potential to solve the problem. 展开更多
关键词 MICRO-grid PI Controller Energy Management Group search Optimization Distributed Generation
在线阅读 下载PDF
故障冲击增强与双通道融合的自适应轴承故障诊断
18
作者 刘斌 曹丽君 +3 位作者 武欣雅 段云凤 杨栋辉 谢秀梅 《振动与冲击》 北大核心 2025年第17期313-324,342,共13页
针对传统轴承故障诊断方法中存在的依赖专家经验、特征提取困难、准确率不高等问题,提出一种结合故障冲击增强与双通道融合的自适应神经网络诊断方法。首先,将振动信号通过最大相关峭度解卷积转换为故障冲击增强的信号。其次,将网格搜... 针对传统轴承故障诊断方法中存在的依赖专家经验、特征提取困难、准确率不高等问题,提出一种结合故障冲击增强与双通道融合的自适应神经网络诊断方法。首先,将振动信号通过最大相关峭度解卷积转换为故障冲击增强的信号。其次,将网格搜索算法引入卷积神经网络(convolutional neural network,CNN)-Transformer-双向长短期记忆网络(bidirectional long short-term memory network,BiLSTM)中,双通道CNN-Transformer用来提取信号的局部和全局特征信息,BiLSTM则用来提取双通道特征融合的时序信息,从而自适应识别轴承的故障状态。最后,通过全连接层输出故障分类诊断结果。试验表明,本方法自适应识别多工况轴承故障,展现了较强的鲁棒性与泛化能力。 展开更多
关键词 多工况故障诊断 故障冲击增强 自适应特征提取 网格搜索算法 最大相关峭度解卷积
在线阅读 下载PDF
基于机器学习的标准单元延迟预测
19
作者 王永 潘洋 《中国集成电路》 2025年第1期75-80,共6页
随着半导体技术的快速发展和设计复杂性的增加,传统延迟计算方法越来越难以满足精确度和效率的需求,标准单元延迟预测在集成电路设计中就愈发重要。本文提出了一种基于机器学习的延迟预测方法,采用LightGBM算法对标准单元库中提取的数... 随着半导体技术的快速发展和设计复杂性的增加,传统延迟计算方法越来越难以满足精确度和效率的需求,标准单元延迟预测在集成电路设计中就愈发重要。本文提出了一种基于机器学习的延迟预测方法,采用LightGBM算法对标准单元库中提取的数据进行建模。通过特征选择和优化,构建了能够有效捕捉延迟特性的预测模型。实验结果显示,与传统模型相比,基于LightGBM的方法在预测准确性和计算效率上展现出突出优势。该方法将机器学习算法与标准单元库设计相结合,利用机器学习模型,建立了延迟特性与电压、温度、输入传输延迟时间及输出负载等因素之间的映射关系,提供了一种快速、准确的标准单元延迟预测方案。此方法不仅提高了预测精度,还减少了计算时间,为标准单元延迟分析提供了一种创新解决方案,有望在实际芯片设计流程中发挥重要作用。 展开更多
关键词 机器学习 标准单元延迟预测 静态时序分析 LightGBM 网格搜索优化
在线阅读 下载PDF
基于障碍密度优先策略改进A^(*)算法的AGV路径规划 被引量:1
20
作者 陈一馨 段宇轩 +2 位作者 刘豪 谭世界 郑天乐 《郑州大学学报(工学版)》 北大核心 2025年第2期26-34,共9页
针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,... 针对传统A^(*)算法在障碍物较多的实际场景下进行AGV路径规划时,存在路径拐点多、路径冗余节点过多以及易陷入局部最优解等问题,提出一种改进A^(*)算法,采用栅格法进行环境建模。首先,在启发函数中引入障碍物密度函数K(n)改进代价函数,用于更准确地估计当前节点到目标节点的实际代价;其次,采用动态邻域搜索策略提高算法的搜索效率和运行效率;最后,通过冗余节点处理策略减少路径拐点和删除冗余节点,得到只包含起点、转折点以及终点的路径。采用不同尺寸和复杂度的栅格环境地图进行仿真实验,结果表明:所提改进A^(*)算法与传统A^(*)算法以及其他改进的A^(*)算法相比,路径长度分别缩短了4.71%和2.07%,路径拐点数量分别减少了45.45%和20.54%,路径存在节点分别减少了82.24%和62.45%。 展开更多
关键词 路径规划 栅格地图 改进A^(*)算法 启发函数 动态邻域搜索 冗余节点优化
在线阅读 下载PDF
上一页 1 2 42 下一页 到第
使用帮助 返回顶部