To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The...To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.展开更多
The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,wh...The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs.展开更多
The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-...The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-OCESE,which stands for Genetic Algorithm-based Optimization Configuration for Energy Storage in Electric Networks.This is one of the methods suggested in this study,which aims to enhance the sizing,positioning,and operational characteristics of structured ESS under dynamic grid conditions.Particularly,the aim is to maximize efficiency.A multiobjective genetic algorithm,the GA-OCESE framework,considers all these factors simultaneously.Besides considering cost-efficiency,response time,and energy use,the system also considers all these elements simultaneously.This enables it to effectively react to load uncertainty and variations in inputs connected to renewable sources.Results of an experimental assessment conducted on a standardized grid simulation platform indicate that by increasing energy use efficiency by 17.6%and reducing peak-load effects by 22.3%,GA-OCESE outperforms previous heuristic-based methods.This was found by contrasting the outcomes of the assessment with those of the evaluation.The results of the assessment helped to reveal this.The proposed approach will provide utility operators and energy planners with a decision-making tool that is both scalable and adaptable.This technology is particularly well-suited for smart grids,microgrid systems,and power infrastructures that heavily rely on renewable energy.Every technical component has been carefully recorded to ensure accuracy,reproducibility,and relevance across all power systems engineering software uses.This was done to ensure the program’s relevance.展开更多
An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorith...An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths.展开更多
By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help s...By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help smart grid end-users decrease power payment and usage unhappiness,this article suggests a decision system based on reinforcement learning to aid with electricity price plan selection.An enhanced state-based Markov decision process(MDP)without transition probabilities simulates the decision issue.A Kernel approximate-integrated batch Q-learning approach is used to tackle the given issue.Several adjustments to the sampling and data representation are made to increase the computational and prediction performance.Using a continuous high-dimensional state space,the suggested approach can uncover the underlying characteristics of time-varying pricing schemes.Without knowing anything regarding the market environment in advance,the best decision-making policy may be learned via case studies that use data from actual historical price plans.Experiments show that the suggested decision approach may reduce cost and energy usage dissatisfaction by using user data to build an accurate prediction strategy.In this research,we look at how smart city energy planners rely on precise load forecasts.It presents a hybrid method that extracts associated characteristics to improve accuracy in residential power consumption forecasts using machine learning(ML).It is possible to measure the precision of forecasts with the use of loss functions with the RMSE.This research presents a methodology for estimating smart home energy usage in response to the growing interest in explainable artificial intelligence(XAI).Using Shapley Additive explanations(SHAP)approaches,this strategy makes it easy for consumers to comprehend their energy use trends.To predict future energy use,the study employs gradient boosting in conjunction with long short-term memory neural networks.展开更多
To improve the fault diagnosis accuracy of a PV grid-connected inverter,a PV grid-connected inverter data diagnosis method based on MPA-VMD-PSO-BiLSTM is proposed.Firstly,unlike the traditional VMD algorithm which rel...To improve the fault diagnosis accuracy of a PV grid-connected inverter,a PV grid-connected inverter data diagnosis method based on MPA-VMD-PSO-BiLSTM is proposed.Firstly,unlike the traditional VMD algorithm which relies on manual experience to set parameters(e.g.,noise tolerance,penalty parameter,number of decompositions),this paper achieves adaptive optimization of parameters through MPA algorithmto avoid the problemof feature information loss caused by manual parameter tuning,and adopts the improved VMD algorithm for feature extraction of DC-side voltage data signals of PV-grid-connected inverters;and then,adopts the PSO algorithm for theThen,the PSO algorithm is used to optimize the optimal batch size,the number of nodes in the hidden layer and the learning rate of the BiLSTM network,which significantly improves the model’s ability to capture the long-term dependent features of the PV inverter’s timing signals,to construct the PV grid-connected inverter prediction model of PSO-BiLSTM,and predict the capacitance value of the PVgrid-connected inverter.Finally,diagnostic experiments are carried out based on the expected capacitance value and the capacitance failure criterion.The results showthat compared with the traditional VMD algorithm,the MPA-optimised VMD improves the signal-to-noise ratio(SNR)of the signal decomposition from 28.5 to 33.2 dB(16.5%improvement).After combining with the PSO-BiLSTM model,the mean absolute percentage error(MAPE)of the fault diagnosis is reduced to 1.31%,and the coefficient of determination(R2)is up to 0.99.It is concluded that the present method has excellent diagnostic performance of PV grid-connected inverter data signals and effectively improves the accuracy of PV grid-connected inverter diagnosis.展开更多
To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a...To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.展开更多
Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it mus...Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions.We cast the offloading problem as aMarkov Decision Process(MDP)and solve it with Deep Reinforcement Learning(DRL).Specifically,we present a three-tier architecture—end devices,edge nodes,and a cloud server—and enhance Proximal Policy Optimization(PPO)to learn adaptive,energy-aware policies.A Convolutional Neural Network(CNN)extracts high-level features from system states,enabling the agent to respond continually to changing conditions.Extensive simulations show that the proposed method reduces task latency and energy consumption far more than several baseline algorithms,thereby improving overall system performance.These results demonstrate the effectiveness and robustness of the framework for real-time task offloading in dynamic smart-grid environments.展开更多
In the current era of intelligent technologies,comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring,emergency rescue,and agricultural plant protection.Owing ...In the current era of intelligent technologies,comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring,emergency rescue,and agricultural plant protection.Owing to their exceptional flexibility and rapid deployment capabilities,unmanned aerial vehicles(UAVs)have emerged as the ideal platforms for accomplishing these tasks.This study proposes a swarm A^(*)-guided Deep Q-Network(SADQN)algorithm to address the coverage path planning(CPP)problem for UAV swarms in complex environments.Firstly,to overcome the dependency of traditional modeling methods on regular terrain environments,this study proposes an improved cellular decomposition method for map discretization.Simultaneously,a distributed UAV swarm system architecture is adopted,which,through the integration of multi-scale maps,addresses the issues of redundant operations and flight conflicts inmulti-UAV cooperative coverage.Secondly,the heuristic mechanism of the A^(*)algorithmis combinedwith full-coverage path planning,and this approach is incorporated at the initial stage ofDeep Q-Network(DQN)algorithm training to provide effective guidance in action selection,thereby accelerating convergence.Additionally,a prioritized experience replay mechanism is introduced to further enhance the coverage performance of the algorithm.To evaluate the efficacy of the proposed algorithm,simulation experiments were conducted in several irregular environments and compared with several popular algorithms.Simulation results show that the SADQNalgorithmoutperforms othermethods,achieving performance comparable to that of the baseline prior algorithm,with an average coverage efficiency exceeding 2.6 and fewer turning maneuvers.In addition,the algorithm demonstrates excellent generalization ability,enabling it to adapt to different environments.展开更多
Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of...Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry.展开更多
The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying...The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying on static models and heuristic rules exhibit limitations in addressing dynamic fault propagation and multimodal data fusion.This study proposes a Transformer-enhanced intelligent microgrid self-healing framework that synergizes large languagemodels(LLMs)with adaptive optimization,achieving three key innovations:(1)Ahierarchical attention mechanism incorporating grid impedance characteristics for spatiotemporal feature extraction,(2)Dynamic covariance estimation Kalman filtering with wavelet packet energy entropy thresholds(Daubechies-4 basis,6-level decomposition),and(3)A grouping-stratified ant colony optimization algorithm featuring penalty-based pheromone updating.Validated on IEEE 33/100-node systems,our framework demonstrates 96.7%fault localization accuracy(23%improvement over STGCN)and 0.82-s protection delay,outperforming MILP-basedmethods by 37%in reconfiguration speed.The system maintains 98.4%self-healing success rate under cascading faults,resolving 89.3%of phase-toground faults within 500 ms through adaptive impedance matching.Field tests on 220 kV substations with 45%renewable penetration show 99.1%voltage stability(±5%deviation threshold)and 40%communication efficiency gains via compressed GOOSE message parsing.Comparative analysis reveals 12.6×faster convergence than conventional ACO in 1000-node networks,with 95.2%robustness against±25%load fluctuations.These advancements provide a scalable solution for real-time fault recovery in renewable-dense grids,reducing outage duration by 63%inmulti-agent simulations compared to centralized architectures.展开更多
Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulner...Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications.展开更多
Aimed at the problems of a traditional ant colony algorithm,such as the path search direction and field of view,an inability to find the shortest path,a propensity toward deadlock and an unsmooth path,an ant colony al...Aimed at the problems of a traditional ant colony algorithm,such as the path search direction and field of view,an inability to find the shortest path,a propensity toward deadlock and an unsmooth path,an ant colony algorithm for use in a new environment is proposed.First,the feature points of an obstacle are extracted to preprocess the grid map environment,which can avoid entering a trap and solve the deadlock problem.Second,these feature points are used as pathfinding access nodes to reduce the node access,with more moving directions to be selected,and the locations of the feature points to be selected determine the range of the pathfinding field of view.Then,based on the feature points,an unequal distribution of pheromones and a two-way parallel path search are used to improve the construction efficiency of the solution,an improved heuristic function is used to enhance the guiding role of the path search,and the pheromone volatilization coefficient is dynamically adjusted to avoid a premature convergence of the algorithm.Third,a Bezier curve is used to smooth the shortest path obtained.Finally,using grid maps with a different complexity and different scales,a simulation comparing the results of the proposed algorithm with those of traditional and other improved ant colony algorithms verifies its feasibility and superiority.展开更多
This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new str...This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new strategy is designed to constrain the direction of threading and the resulting contour bears more meaningful information.展开更多
This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analy...This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analyze data about energy usage and power quality from customer premises.From the communication perspective,the AMI consists of smart meters,Home Area Network(HAN) gateways and data concentrators;in particular,the redundancy optimization problem focus on deciding which data concentrator needs redundancy.In order to solve the problem,we first develop a quantitative analysis model for the network economic loss caused by the data concentrator failures.Then,we establish a complete redundancy optimization model,which comprehensively consider the factors of reliability and economy.Finally,an advanced redundancy deployment method based on genetic algorithm(GA) is developed to solve the proposed problem.The simulation results testify that the proposed redundancy optimization method is capable to build a reliable and economic smart grid communication network.展开更多
文摘To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks.
基金Supported by the EDD of China(No.80912020104)the Science and Technology Commission of Shanghai Municipality(No.22ZR1427700 and No.23692106900).
文摘The traditional A^(*)algorithm exhibits a low efficiency in the path planning of unmanned surface vehicles(USVs).In addition,the path planned presents numerous redundant inflection waypoints,and the security is low,which is not conducive to the control of USV and also affects navigation safety.In this paper,these problems were addressed through the following improvements.First,the path search angle and security were comprehensively considered,and a security expansion strategy of nodes based on the 5×5 neighborhood was proposed.The A^(*)algorithm search neighborhood was expanded from 3×3 to 5×5,and safe nodes were screened out for extension via the node security expansion strategy.This algorithm can also optimize path search angles while improving path security.Second,the distance from the current node to the target node was introduced into the heuristic function.The efficiency of the A^(*)algorithm was improved,and the path was smoothed using the Floyd algorithm.For the dynamic adjustment of the weight to improve the efficiency of DWA,the distance from the USV to the target point was introduced into the evaluation function of the dynamic-window approach(DWA)algorithm.Finally,combined with the local target point selection strategy,the optimized DWA algorithm was performed for local path planning.The experimental results show the smooth and safe path planned by the fusion algorithm,which can successfully avoid dynamic obstacles and is effective and feasible in path planning for USVs.
文摘The process of including renewable energy sources in power networks is moving quickly,so the need for innovative configuration solutions for grid-side ESS has grown.Among the new methods presented in this paper is GA-OCESE,which stands for Genetic Algorithm-based Optimization Configuration for Energy Storage in Electric Networks.This is one of the methods suggested in this study,which aims to enhance the sizing,positioning,and operational characteristics of structured ESS under dynamic grid conditions.Particularly,the aim is to maximize efficiency.A multiobjective genetic algorithm,the GA-OCESE framework,considers all these factors simultaneously.Besides considering cost-efficiency,response time,and energy use,the system also considers all these elements simultaneously.This enables it to effectively react to load uncertainty and variations in inputs connected to renewable sources.Results of an experimental assessment conducted on a standardized grid simulation platform indicate that by increasing energy use efficiency by 17.6%and reducing peak-load effects by 22.3%,GA-OCESE outperforms previous heuristic-based methods.This was found by contrasting the outcomes of the assessment with those of the evaluation.The results of the assessment helped to reveal this.The proposed approach will provide utility operators and energy planners with a decision-making tool that is both scalable and adaptable.This technology is particularly well-suited for smart grids,microgrid systems,and power infrastructures that heavily rely on renewable energy.Every technical component has been carefully recorded to ensure accuracy,reproducibility,and relevance across all power systems engineering software uses.This was done to ensure the program’s relevance.
基金Supported by the Tianjin University of Technology Graduate R esearch Innovation Project(YJ2281).
文摘An improved version of the sparse A^(*)algorithm is proposed to address the common issue of excessive expansion of nodes and failure to consider current ship status and parameters in traditional path planning algorithms.This algorithm considers factors such as initial position and orientation of the ship,safety range,and ship draft to determine the optimal obstacle-avoiding route from the current to the destination point for ship planning.A coordinate transformation algorithm is also applied to convert commonly used latitude and longitude coordinates of ship travel paths to easily utilized and analyzed Cartesian coordinates.The algorithm incorporates a hierarchical chart processing algorithm to handle multilayered chart data.Furthermore,the algorithm considers the impact of ship length on grid size and density when implementing chart gridification,adjusting the grid size and density accordingly based on ship length.Simulation results show that compared to traditional path planning algorithms,the sparse A^(*)algorithm reduces the average number of path points by 25%,decreases the average maximum storage node number by 17%,and raises the average path turning angle by approximately 10°,effectively improving the safety of ship planning paths.
文摘By comparing price plans offered by several retail energy firms,end users with smart meters and controllers may optimize their energy use cost portfolios,due to the growth of deregulated retail power markets.To help smart grid end-users decrease power payment and usage unhappiness,this article suggests a decision system based on reinforcement learning to aid with electricity price plan selection.An enhanced state-based Markov decision process(MDP)without transition probabilities simulates the decision issue.A Kernel approximate-integrated batch Q-learning approach is used to tackle the given issue.Several adjustments to the sampling and data representation are made to increase the computational and prediction performance.Using a continuous high-dimensional state space,the suggested approach can uncover the underlying characteristics of time-varying pricing schemes.Without knowing anything regarding the market environment in advance,the best decision-making policy may be learned via case studies that use data from actual historical price plans.Experiments show that the suggested decision approach may reduce cost and energy usage dissatisfaction by using user data to build an accurate prediction strategy.In this research,we look at how smart city energy planners rely on precise load forecasts.It presents a hybrid method that extracts associated characteristics to improve accuracy in residential power consumption forecasts using machine learning(ML).It is possible to measure the precision of forecasts with the use of loss functions with the RMSE.This research presents a methodology for estimating smart home energy usage in response to the growing interest in explainable artificial intelligence(XAI).Using Shapley Additive explanations(SHAP)approaches,this strategy makes it easy for consumers to comprehend their energy use trends.To predict future energy use,the study employs gradient boosting in conjunction with long short-term memory neural networks.
基金supported by Science and Technology Projects of Jiangsu Province(No.BE2022003)Science and Technology Projects of Jiangsu Province(No.BE2022003-5).
文摘To improve the fault diagnosis accuracy of a PV grid-connected inverter,a PV grid-connected inverter data diagnosis method based on MPA-VMD-PSO-BiLSTM is proposed.Firstly,unlike the traditional VMD algorithm which relies on manual experience to set parameters(e.g.,noise tolerance,penalty parameter,number of decompositions),this paper achieves adaptive optimization of parameters through MPA algorithmto avoid the problemof feature information loss caused by manual parameter tuning,and adopts the improved VMD algorithm for feature extraction of DC-side voltage data signals of PV-grid-connected inverters;and then,adopts the PSO algorithm for theThen,the PSO algorithm is used to optimize the optimal batch size,the number of nodes in the hidden layer and the learning rate of the BiLSTM network,which significantly improves the model’s ability to capture the long-term dependent features of the PV inverter’s timing signals,to construct the PV grid-connected inverter prediction model of PSO-BiLSTM,and predict the capacitance value of the PVgrid-connected inverter.Finally,diagnostic experiments are carried out based on the expected capacitance value and the capacitance failure criterion.The results showthat compared with the traditional VMD algorithm,the MPA-optimised VMD improves the signal-to-noise ratio(SNR)of the signal decomposition from 28.5 to 33.2 dB(16.5%improvement).After combining with the PSO-BiLSTM model,the mean absolute percentage error(MAPE)of the fault diagnosis is reduced to 1.31%,and the coefficient of determination(R2)is up to 0.99.It is concluded that the present method has excellent diagnostic performance of PV grid-connected inverter data signals and effectively improves the accuracy of PV grid-connected inverter diagnosis.
基金The National Natural Science Foundation of China(No.62272239,62303214)Jiangsu Agricultural Science and Tech-nology Independent Innovation Fund(No.SJ222051).
文摘To tackle the path planning problem,this study introduced a novel algorithm called two-stage parameter adjustment-based differential evolution(TPADE).This algorithm draws inspiration from group behavior to implement a two-stage scaling factor variation strategy.In the initial phase,it adapts according to environmental complexity.In the following phase,it combines individual and global experiences to fine-tune the orientation factor,effectively improving its global search capability.Furthermore,this study developed a new population update method,ensuring that well-adapted individuals are retained,which enhances population diversity.In benchmark function tests across different dimensions,the proposed algorithm consistently demonstrates superior convergence accuracy and speed.This study also tested the TPADE algorithm in path planning simulations.The experimental results reveal that the TPADE algorithm outperforms existing algorithms by achieving path lengths of 28.527138 and 31.963990 in simple and complex map environments,respectively.These findings indicate that the proposed algorithm is more adaptive and efficient in path planning.
基金supported by the National Natural Science Foundation of China(Grant No.62103349)the Henan Province Science and Technology Research Project(Grant No.232102210104).
文摘Edge computing has transformed smart grids by lowering latency,reducing network congestion,and enabling real-time decision-making.Nevertheless,devising an optimal task-offloading strategy remains challenging,as it must jointly minimise energy consumption and response time under fluctuating workloads and volatile network conditions.We cast the offloading problem as aMarkov Decision Process(MDP)and solve it with Deep Reinforcement Learning(DRL).Specifically,we present a three-tier architecture—end devices,edge nodes,and a cloud server—and enhance Proximal Policy Optimization(PPO)to learn adaptive,energy-aware policies.A Convolutional Neural Network(CNN)extracts high-level features from system states,enabling the agent to respond continually to changing conditions.Extensive simulations show that the proposed method reduces task latency and energy consumption far more than several baseline algorithms,thereby improving overall system performance.These results demonstrate the effectiveness and robustness of the framework for real-time task offloading in dynamic smart-grid environments.
文摘In the current era of intelligent technologies,comprehensive and precise regional coverage path planning is critical for tasks such as environmental monitoring,emergency rescue,and agricultural plant protection.Owing to their exceptional flexibility and rapid deployment capabilities,unmanned aerial vehicles(UAVs)have emerged as the ideal platforms for accomplishing these tasks.This study proposes a swarm A^(*)-guided Deep Q-Network(SADQN)algorithm to address the coverage path planning(CPP)problem for UAV swarms in complex environments.Firstly,to overcome the dependency of traditional modeling methods on regular terrain environments,this study proposes an improved cellular decomposition method for map discretization.Simultaneously,a distributed UAV swarm system architecture is adopted,which,through the integration of multi-scale maps,addresses the issues of redundant operations and flight conflicts inmulti-UAV cooperative coverage.Secondly,the heuristic mechanism of the A^(*)algorithmis combinedwith full-coverage path planning,and this approach is incorporated at the initial stage ofDeep Q-Network(DQN)algorithm training to provide effective guidance in action selection,thereby accelerating convergence.Additionally,a prioritized experience replay mechanism is introduced to further enhance the coverage performance of the algorithm.To evaluate the efficacy of the proposed algorithm,simulation experiments were conducted in several irregular environments and compared with several popular algorithms.Simulation results show that the SADQNalgorithmoutperforms othermethods,achieving performance comparable to that of the baseline prior algorithm,with an average coverage efficiency exceeding 2.6 and fewer turning maneuvers.In addition,the algorithm demonstrates excellent generalization ability,enabling it to adapt to different environments.
文摘Non-technical losses(NTL)of electric power are a serious problem for electric distribution companies.The solution determines the cost,stability,reliability,and quality of the supplied electricity.The widespread use of advanced metering infrastructure(AMI)and Smart Grid allows all participants in the distribution grid to store and track electricity consumption.During the research,a machine learning model is developed that allows analyzing and predicting the probability of NTL for each consumer of the distribution grid based on daily electricity consumption readings.This model is an ensemble meta-algorithm(stacking)that generalizes the algorithms of random forest,LightGBM,and a homogeneous ensemble of artificial neural networks.The best accuracy of the proposed meta-algorithm in comparison to basic classifiers is experimentally confirmed on the test sample.Such a model,due to good accuracy indicators(ROC-AUC-0.88),can be used as a methodological basis for a decision support system,the purpose of which is to form a sample of suspected NTL sources.The use of such a sample will allow the top management of electric distribution companies to increase the efficiency of raids by performers,making them targeted and accurate,which should contribute to the fight against NTL and the sustainable development of the electric power industry.
基金the project“Research on Power SafetyDecision Support SystemBased on Large Language Models”(Science and Technology Project of Huaian Hongneng Group Co.,Ltd.)under Contract No.SGTYHT/23-JS-001.
文摘The rapid proliferation of renewable energy integration and escalating grid operational complexity have intensified demands for resilient self-healing mechanisms in modern power systems.Conventional approaches relying on static models and heuristic rules exhibit limitations in addressing dynamic fault propagation and multimodal data fusion.This study proposes a Transformer-enhanced intelligent microgrid self-healing framework that synergizes large languagemodels(LLMs)with adaptive optimization,achieving three key innovations:(1)Ahierarchical attention mechanism incorporating grid impedance characteristics for spatiotemporal feature extraction,(2)Dynamic covariance estimation Kalman filtering with wavelet packet energy entropy thresholds(Daubechies-4 basis,6-level decomposition),and(3)A grouping-stratified ant colony optimization algorithm featuring penalty-based pheromone updating.Validated on IEEE 33/100-node systems,our framework demonstrates 96.7%fault localization accuracy(23%improvement over STGCN)and 0.82-s protection delay,outperforming MILP-basedmethods by 37%in reconfiguration speed.The system maintains 98.4%self-healing success rate under cascading faults,resolving 89.3%of phase-toground faults within 500 ms through adaptive impedance matching.Field tests on 220 kV substations with 45%renewable penetration show 99.1%voltage stability(±5%deviation threshold)and 40%communication efficiency gains via compressed GOOSE message parsing.Comparative analysis reveals 12.6×faster convergence than conventional ACO in 1000-node networks,with 95.2%robustness against±25%load fluctuations.These advancements provide a scalable solution for real-time fault recovery in renewable-dense grids,reducing outage duration by 63%inmulti-agent simulations compared to centralized architectures.
基金supported by the fundings from 2024 Young Talents Program for Science and Technology Thinking Tanks(No.XMSB20240711041)2024 Student Research Program on Dynamic Simulation and Force-on-Force Exercise of Nuclear Security in 3D Interactive Environment Using Reinforcement Learning,Natural Science Foundation of Top Talent of SZTU(No.GDRC202407)+2 种基金Shenzhen Science and Technology Program(No.KCXFZ20240903092603005)Shenzhen Science and Technology Program(No.JCYJ20241202124703004)Shenzhen Science and Technology Program(No.KJZD20230923114117032)。
文摘Vulnerability assessment is a systematic process to identify security gaps in the design and evaluation of physical protection systems.Adversarial path planning is a widely used method for identifying potential vulnerabilities and threats to the security and resilience of critical infrastructures.However,achieving efficient path optimization in complex large-scale three-dimensional(3D)scenes remains a significant challenge for vulnerability assessment.This paper introduces a novel A^(*)-algorithmic framework for 3D security modeling and vulnerability assessment.Within this framework,the 3D facility models were first developed in 3ds Max and then incorporated into Unity for A^(*)heuristic pathfinding.The A^(*)-heuristic pathfinding algorithm was implemented with a geometric probability model to refine the detection and distance fields and achieve a rational approximation of the cost to reach the goal.An admissible heuristic is ensured by incorporating the minimum probability of detection(P_(D)^(min))and diagonal distance to estimate the heuristic function.The 3D A^(*)heuristic search was demonstrated using a hypothetical laboratory facility,where a comparison was also carried out between the A^(*)and Dijkstra algorithms for optimal path identification.Comparative results indicate that the proposed A^(*)-heuristic algorithm effectively identifies the most vulnerable adversarial pathfinding with high efficiency.Finally,the paper discusses hidden phenomena and open issues in efficient 3D pathfinding for security applications.
基金the National Natural Science Founda-tion(Nos.62063019 and 61763026)the Gansu Nat-ural Science Foundation Project(No.20JR10RA152)the Gansu Provincial Department of Educa-tion:Excellent Graduate“Innovation Star”Project(No.2021CXZX-507)。
文摘Aimed at the problems of a traditional ant colony algorithm,such as the path search direction and field of view,an inability to find the shortest path,a propensity toward deadlock and an unsmooth path,an ant colony algorithm for use in a new environment is proposed.First,the feature points of an obstacle are extracted to preprocess the grid map environment,which can avoid entering a trap and solve the deadlock problem.Second,these feature points are used as pathfinding access nodes to reduce the node access,with more moving directions to be selected,and the locations of the feature points to be selected determine the range of the pathfinding field of view.Then,based on the feature points,an unequal distribution of pheromones and a two-way parallel path search are used to improve the construction efficiency of the solution,an improved heuristic function is used to enhance the guiding role of the path search,and the pheromone volatilization coefficient is dynamically adjusted to avoid a premature convergence of the algorithm.Third,a Bezier curve is used to smooth the shortest path obtained.Finally,using grid maps with a different complexity and different scales,a simulation comparing the results of the proposed algorithm with those of traditional and other improved ant colony algorithms verifies its feasibility and superiority.
基金Grant from LIESMARS (No.WKL(06)0302)the Basic Research Grant of CASM(No.G7721)
文摘This paper proposes a new algorithm for determining the starting points of contour lines. The new algorithm is based on the interval tree. The result improves the algorithm's efficiency remarkably. Further, a new strategy is designed to constrain the direction of threading and the resulting contour bears more meaningful information.
基金supported by the National HighTech ResearchDevelopment Program of China (863) under Grant No.2012AA050801
文摘This paper proposes a redundancy optimization method for smart grid Advanced Metering Infrastructure(AMI) to realize economy and reliability targets.AMI is a crucial part of the smart grid to measure,collect,and analyze data about energy usage and power quality from customer premises.From the communication perspective,the AMI consists of smart meters,Home Area Network(HAN) gateways and data concentrators;in particular,the redundancy optimization problem focus on deciding which data concentrator needs redundancy.In order to solve the problem,we first develop a quantitative analysis model for the network economic loss caused by the data concentrator failures.Then,we establish a complete redundancy optimization model,which comprehensively consider the factors of reliability and economy.Finally,an advanced redundancy deployment method based on genetic algorithm(GA) is developed to solve the proposed problem.The simulation results testify that the proposed redundancy optimization method is capable to build a reliable and economic smart grid communication network.