期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Self-scheduled direct thrust control for gas turbine engine based on EME approach with bounded parameter variation
1
作者 Kehuan WANG Xiaofeng LIU Genchang WANG 《Chinese Journal of Aeronautics》 2025年第6期414-426,共13页
Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic c... Direct Thrust Control(DTC) is effective in dealing with the mismatch between thrust and rotor speed in traditional engine control. Among the DTC architecture, model-based thrust estimation method has less arithmetic consumption and better real-time performance. In this paper,a direct thrust controller design approach for gas turbine engine based on parameter dependent model is proposed. In order to ensure the stability of DTC control system based on parameter dependent model, there are usually conservatism detects. For the purpose of reducing the conservatism in the solution process of filter and controller, an Equilibrium Manifold Expansion(EME) model with bounded parameter variation of engine is established. The design conditions of Kalman filter for discrete-time EME system are introduced, and the proposed conditions have a certain suppression effect on the input noise of the system with bounded parameter variation.The engine thrust estimator stability and H∞filtering problems are solved by the polytopic quadratic Lyapunov function based on the Linear Matrix Inequalities(LMIs). To meet the performance requirements of thrust control, the Grey Wolf Optimization(GWO) algorithm is applied to optimize the PID control parameters. The proposed method is verified on a Hardware-in-Loop(HIL) platform. The simulation results demonstrate that the DTC framework can ensure the stability of engine closed-loop system in large range deviation tests. The filter and controller solution method considering the parameter variation boundary can obtain a solution that makes the system have better performance parameters. Moreover, the proposed filter has better thrust estimation performance than the traditional Kalman filter under the condition of sensor noise. Compared with Augmented Linear Quadratic Regulator(ALQR) controller, the PID controller optimized by GWO has a faster response in simulation. 展开更多
关键词 Gas turbines Direct thrust control Bounded parameter variation Linear matrix inequalities greywolf optimization
原文传递
基于GWO-VMD-LSSVM的滚动轴承故障诊断 被引量:5
2
作者 曾耀传 《自动化技术与应用》 2024年第11期24-28,共5页
针对滚动轴承故障类型及损伤程度难以识别的问题,提出一种灰狼优化算法(GWO)优化变分模态分解(VMD)及最小二乘支持向量机(LSSVM)的滚动轴承故障诊断方法。首先,该方法通过GWO-VMD算法对滚动轴承原始信号进行参数寻优及分解,减少噪声成... 针对滚动轴承故障类型及损伤程度难以识别的问题,提出一种灰狼优化算法(GWO)优化变分模态分解(VMD)及最小二乘支持向量机(LSSVM)的滚动轴承故障诊断方法。首先,该方法通过GWO-VMD算法对滚动轴承原始信号进行参数寻优及分解,减少噪声成分的干扰;其次,提取分量的奇异值及排列熵,并与原始信号的时域特征共同组成输入特征向量;最后采用GWO-LSSVM方法进行故障模式识别。实验分析结果表明,所提方法拥有比BP网络及GWO-SVM方法更好的故障识别精度,能够较好地实现滚动轴承故障类型及损伤程度的判别。 展开更多
关键词 故障诊断 滚动轴承 灰狼优化算法 变分模态分解 最小二乘支持向量机
在线阅读 下载PDF
改进GWO优化SVM的云计算资源负载短期预测研究 被引量:34
3
作者 徐达宇 丁帅 《计算机工程与应用》 CSCD 北大核心 2017年第7期68-73,共6页
云计算资源负载短期预测是云计算平台实现资源高效管理和系统安全、稳定运行的重要前提和保障措施之一。为了其提高负载短期预测的预测精度,提出一种改进灰狼搜索算法优化支持向量机的短期云计算资源负载预测模型(EGWO-SVM)。首先介绍... 云计算资源负载短期预测是云计算平台实现资源高效管理和系统安全、稳定运行的重要前提和保障措施之一。为了其提高负载短期预测的预测精度,提出一种改进灰狼搜索算法优化支持向量机的短期云计算资源负载预测模型(EGWO-SVM)。首先介绍灰狼搜索算法(GWO)的基本原理;然后提出基于极值优化的改进GWO模型;最后根据最优参数建立短期资源负载预测模型,并通过仿真实验对EGWO-SVM的性能进行测试。实验结果表明,相对于参比模型,EGWO-SVM能更加准确地刻画云计算短期资源负载的复杂变化趋势,从而有效提升云计算资源负载短期预测的精度。 展开更多
关键词 云计算 灰狼优化算法 支持向量机 极值优化 预测
在线阅读 下载PDF
Heterogeneous Ensemble Feature Selection Model(HEFSM)for Big Data Analytics
4
作者 M.Priyadharsini K.Karuppasamy 《Computer Systems Science & Engineering》 SCIE EI 2023年第5期2187-2205,共19页
Big Data applications face different types of complexities in classifications.Cleaning and purifying data by eliminating irrelevant or redundant data for big data applications becomes a complex operation while attempt... Big Data applications face different types of complexities in classifications.Cleaning and purifying data by eliminating irrelevant or redundant data for big data applications becomes a complex operation while attempting to maintain discriminative features in processed data.The existing scheme has many disadvantages including continuity in training,more samples and training time in feature selections and increased classification execution times.Recently ensemble methods have made a mark in classification tasks as combine multiple results into a single representation.When comparing to a single model,this technique offers for improved prediction.Ensemble based feature selections parallel multiple expert’s judgments on a single topic.The major goal of this research is to suggest HEFSM(Heterogeneous Ensemble Feature Selection Model),a hybrid approach that combines multiple algorithms.The major goal of this research is to suggest HEFSM(Heterogeneous Ensemble Feature Selection Model),a hybrid approach that combines multiple algorithms.Further,individual outputs produced by methods producing subsets of features or rankings or voting are also combined in this work.KNN(K-Nearest Neighbor)classifier is used to classify the big dataset obtained from the ensemble learning approach.The results found of the study have been good,proving the proposed model’s efficiency in classifications in terms of the performance metrics like precision,recall,F-measure and accuracy used. 展开更多
关键词 PSO(Particle Swarm Optimization) GWO(greywolf Optimization) EHO(Elephant Herding Optimization) data mining big data analytics feature selection HEFSM classifier
在线阅读 下载PDF
基于改进变分模态分解与流形学习的滚动轴承故障诊断 被引量:8
5
作者 孙康 岳敏楠 +1 位作者 金江涛 李春 《热能动力工程》 CAS CSCD 北大核心 2022年第3期176-185,共10页
滚动轴承早期损伤信号特征量缺失且易被环境噪声掩盖,根据分形理论,结合灰狼优化算法(GWO)提出改进变分模态分解方法(Improved Variational Mode Decomposition,IVMD),求解各模态多种非线性特征量,并采用随机近邻嵌入理论(t-distributed... 滚动轴承早期损伤信号特征量缺失且易被环境噪声掩盖,根据分形理论,结合灰狼优化算法(GWO)提出改进变分模态分解方法(Improved Variational Mode Decomposition,IVMD),求解各模态多种非线性特征量,并采用随机近邻嵌入理论(t-distributed Stochastic Neighbor Embedding,t-SNE)进行降维分类,以实现无监督故障诊断。基于轴承损伤实验数据,验证所提方法的可靠性。结果表明:采用IVMD所获模态与多种非线性值构建的特征矩阵更具代表性,可诊断轴承微弱故障;与现有方法相比,所提方法聚类表现更清晰,分类准确率更高,且具有良好的鲁棒性。 展开更多
关键词 变分模态分解 灰狼算法 轴承 分形 随机近邻嵌入 故障诊断
原文传递
基于特征选择和GWO-KELM的鸟声识别算法 被引量:5
6
作者 李大鹏 周晓彦 +2 位作者 叶如 夏煜 徐华南 《声学技术》 CSCD 北大核心 2022年第5期782-788,共7页
针对鸟声识别算法中提取特征单一、分类准确率低等问题,提出一种基于混合特征选择和灰狼算法优化核极限学习机的鸟声识别方法。首先从鸟声数据中提取大规模声学特征集ComParE,其次计算每个特征的Fscore并进行排序,然后以广义顺序向前浮... 针对鸟声识别算法中提取特征单一、分类准确率低等问题,提出一种基于混合特征选择和灰狼算法优化核极限学习机的鸟声识别方法。首先从鸟声数据中提取大规模声学特征集ComParE,其次计算每个特征的Fscore并进行排序,然后以广义顺序向前浮动搜索(Generalized Sequential Forward Floating Search,GSFFS)为搜索策略,特征子集在核极限学习机(Kernel Limit Learning Machine,KELM)上十折交叉验证的正确率,作为特征选择标准进行特征选择,得到适用于鸟声识别的特征子集,最后通过灰狼算法(Grey Wolf Optimizer,GWO)选择最优KELM参数识别鸟声。在柏林自然科学博物馆鸟声数据库中进行实验,该方法在60类鸟声识别平均正确率和F1-score达到94.45%和92.29%。结果表明,该方法相较于传统自行设计提取的单一特征集具有更高的识别精度,GWO-KELM模型比网格搜索方式更易找到全局最优值。 展开更多
关键词 核极限学习机 特征选择 鸟声识别 灰狼算法
在线阅读 下载PDF
基于GWO-SVM算法的工业互联AI入侵检测方法研究 被引量:5
7
作者 高增亮 詹鑫毅 《自动化技术与应用》 2022年第8期1-4,共4页
由于传统工业互联网络入侵检测方法未进行寻优控制而导致检测性能低,因此,提出一种新型工业互联AI入侵检测方法以提高检测性能。首先构建工业互联AI入侵的大数据融合模型,采用背包决策的方法构造目标函数,结合多维尺度分解建立数据特征... 由于传统工业互联网络入侵检测方法未进行寻优控制而导致检测性能低,因此,提出一种新型工业互联AI入侵检测方法以提高检测性能。首先构建工业互联AI入侵的大数据融合模型,采用背包决策的方法构造目标函数,结合多维尺度分解建立数据特征辨识模型,通过特征分析融合,在支持向量机下进行特征寻优控制,通过GWO-SVM算法,完成工业互联网络AI入侵检测系统构建。仿真结果表明,本文方法进行入侵检测的检测率高达97.8%,虚警率低至0.42%,检测时间开销较少,总体性能较优越。 展开更多
关键词 GWO-SVM算法 工业互联网 灰狼优化算法 入侵检测 支持向量机
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部