A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem o...A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem of scalar wave equations and the two additionalvector differential operations.All the dyadic Green’s functions got by eigenfunction expansionof the dyadic Green’s function can be got by this method easily and some of the dyadic Green’sfunctions for complex systems which are very difficult to get by the ordinary method have beengot by this new method.The dyadic Green’s function for a dielectric loaded cavity is one of thegiven examples.展开更多
Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of...Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.展开更多
The generalized 2-D problem of a half-infinite interfacial electrode layer between two arbitrary piezoelectric half-spaces is studied. Based on the Stroh formalism, exact expressions for the (Green's) functions of...The generalized 2-D problem of a half-infinite interfacial electrode layer between two arbitrary piezoelectric half-spaces is studied. Based on the Stroh formalism, exact expressions for the (Green's) functions of a line force, a line charge and a line electric dipole applied at an arbitrary point near the electrode edge,were presented, respectively. The corresponding solutions for the intensity factors of fields were also obtained in an explicit form. These results can be used as the foundational solutions in boundary element method (BEM) to solve more complicated fracture problems of piezoelectric composites.展开更多
A new method of formulating dyadic (Green's) functions in lossless,reciprocal and unbounded chiral medium was presented.Based on Helmholtz theorem and the non-divergence and irrotational splitting of dyadic Dirac ...A new method of formulating dyadic (Green's) functions in lossless,reciprocal and unbounded chiral medium was presented.Based on Helmholtz theorem and the non-divergence and irrotational splitting of dyadic Dirac delta-function was this method, the electrical vector dyadic (Green's) function equation was first decomposed into the non-divergence electrical vector dyadic (Green's) function equation and irrotational electrical vector dyadic (Green's) function equation,and then (Fourier's) transformation was used to derive the expressions of the non-divergence and irrotational component of the spectral domain electrical dyadic (Green's) function in chiral media.It can avoid having to use the wavefield decomposition method and dyadic (Green's) function eigenfunction expansion technique that this method is used to derive the dyadic (Green's) functions in chiral media.展开更多
基金This project is supported by the National Science Fundation of China
文摘A new method for solving electromagnetic field boundary value problem is given.Byusing this method,the boundary value problem of the vector wave equation can be transformedinto the independent boundary value problem of scalar wave equations and the two additionalvector differential operations.All the dyadic Green’s functions got by eigenfunction expansionof the dyadic Green’s function can be got by this method easily and some of the dyadic Green’sfunctions for complex systems which are very difficult to get by the ordinary method have beengot by this new method.The dyadic Green’s function for a dielectric loaded cavity is one of thegiven examples.
文摘Half-space Green's function due to a spatially harmonic line load has been expressed as a sum of the full-space Green's functions and a 2-D integral representation of the reflected waves by the free surface of the half-space.By using the obtained half-space Green's function,an integral rep- resentation of the scattered waves by a cylindrical obstacle is then derived.Finally,by analyzing the far-zone behavior of the integrands of the integral representation.the far-field pattern of the scattered waves in a half-space obtained.
文摘The generalized 2-D problem of a half-infinite interfacial electrode layer between two arbitrary piezoelectric half-spaces is studied. Based on the Stroh formalism, exact expressions for the (Green's) functions of a line force, a line charge and a line electric dipole applied at an arbitrary point near the electrode edge,were presented, respectively. The corresponding solutions for the intensity factors of fields were also obtained in an explicit form. These results can be used as the foundational solutions in boundary element method (BEM) to solve more complicated fracture problems of piezoelectric composites.
文摘A new method of formulating dyadic (Green's) functions in lossless,reciprocal and unbounded chiral medium was presented.Based on Helmholtz theorem and the non-divergence and irrotational splitting of dyadic Dirac delta-function was this method, the electrical vector dyadic (Green's) function equation was first decomposed into the non-divergence electrical vector dyadic (Green's) function equation and irrotational electrical vector dyadic (Green's) function equation,and then (Fourier's) transformation was used to derive the expressions of the non-divergence and irrotational component of the spectral domain electrical dyadic (Green's) function in chiral media.It can avoid having to use the wavefield decomposition method and dyadic (Green's) function eigenfunction expansion technique that this method is used to derive the dyadic (Green's) functions in chiral media.