The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o...The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.展开更多
This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injecti...This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injection-molded parts.At its core,the framework employs a greedy algorithm that generates runner systems based on adjacency and shortest path principles,leading to improvements in both mechanical strength and material efficiency.The design optimization is validated through a series of rigorous experimental tests,including three-point bending and torsion tests performed on key-socket frames,ensuring that the optimized designs meet practical performance requirements.A critical innovation of the framework is the development of the Adjacent Element Temperature-Driven Prestress Algorithm(AETDPA),which refines the prediction of mechanical failure and strength fitting.This algorithm has been shown to deliver mesh-independent accuracy,thereby enhancing the reliability of simulation results across various design iterations.The framework’s adaptability is further demonstrated by its ability to adjust optimization methods based on the unique geometry of each part,thus accelerating the overall design process while ensuring struc-tural integrity.In addition to its immediate applications in injection molding,the study explores the potential extension of this framework to metal additive manufacturing,opening new avenues for its use in advanced manufacturing technologies.Numerical simulations,including finite element analysis,support the experimental findings and confirm that the optimized designs provide a balanced combination of strength,durability,and efficiency.Furthermore,the integration challenges with existing injection molding practices are addressed,underscoring the framework’s scalability and industrial relevance.Overall,this hybrid topology optimization framework offers a computationally efficient and robust solution for advanced manufacturing applications,promising significant improvements in design efficiency,cost-effectiveness,and product performance.Future work will focus on further enhancing algorithm robustness and exploring additional applications across diverse manufacturing processes.展开更多
The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data ro...The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data routing for communication between UAVs faces numerous challenges,such as low link quality,data loss,and routing path failure.This work proposes greedy perimeter stateless routing(GPSR)based design and implementation of a new adaptive communication routing protocol technique for UAVs,allowing multiple UAVs to communicate more effectively with each other in a group.Close imitation of the real environment is accomplished by considering UAVs’three-dimensional(3D)mobility in the simulations.The performance of the proposed intelligent greedy perimeter stateless routing(IGPSR)scheme has been evaluated based on end-to-end(E2E)delay,network throughput,and data loss ratio.The adapted scheme displayed on average 40%better results.The scenario has been implemented holistically on the network simulator software NS-3.展开更多
Mobile edge computing (MEC) is a novel technique that can reduce mobiles' com- putational burden by tasks offioading, which emerges as a promising paradigm to provide computing capabilities in close proximity to mo...Mobile edge computing (MEC) is a novel technique that can reduce mobiles' com- putational burden by tasks offioading, which emerges as a promising paradigm to provide computing capabilities in close proximity to mobile users. In this paper, we will study the scenario where multiple mobiles upload tasks to a MEC server in a sing cell, and allocating the limited server resources and wireless chan- nels between mobiles becomes a challenge. We formulate the optimization problem for the energy saved on mobiles with the tasks being dividable, and utilize a greedy choice to solve the problem. A Select Maximum Saved Energy First (SMSEF) algorithm is proposed to realize the solving process. We examined the saved energy at different number of nodes and channels, and the results show that the proposed scheme can effectively help mobiles to save energy in the MEC system.展开更多
The flexible job shop scheduling problem(FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are ca...The flexible job shop scheduling problem(FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are categorized as metaheuristic methods. Some of these methods normally consume more CPU time and some other methods are more complicated which make them di cult to code and not easy to reproduce. This paper proposes a modified iterated greedy(IG) algorithm to deal with FJSP problem in order to provide a simpler metaheuristic, which is easier to code and to reproduce than some other much more complex methods. This is done by separating the classical IG into two phases. Each phase is used to solve a sub-problem of the FJSP: sequencing and routing sub-problems. A set of dispatching rules are employed in the proposed algorithm for the sequencing and machine selection in the construction phase of the solution. To evaluate the performance of proposed algorithm, some experiments including some famous FJSP benchmarks have been conducted. By compared with other algorithms, the experimental results show that the presented algorithm is competitive and able to find global optimum for most instances. The simplicity of the proposed IG provides an e ective method that is also easy to apply and consumes less CPU time in solving the FJSP problem.展开更多
Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags...Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algo- rithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% com- putational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.展开更多
By considering the eigenratio of the Laplacian matrix as the synchronizability measure, this paper presents an efficient method to enhance the synchronizability of undirected and unweighted networks via rewiring. The ...By considering the eigenratio of the Laplacian matrix as the synchronizability measure, this paper presents an efficient method to enhance the synchronizability of undirected and unweighted networks via rewiring. The rewiring method combines the use of tabu search and a local greedy algorithm so that an effective search of solutions can be achieved. As demonstrated in the simulation results, the performance of the proposed approach outperforms the existing methods for a large variety of initial networks, both in terms of speed and quality of solutions.展开更多
The density-based clustering algorithm presented is different from the classical Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), and has the following advantages: first, Gree...The density-based clustering algorithm presented is different from the classical Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), and has the following advantages: first, Greedy algorithm substitutes for R*-tree (Bechmann et al., 1990) in DBSCAN to index the clustering space so that the clustering time cost is decreased to great extent and I/O memory load is reduced as well; second, the merging condition to approach to arbitrary-shaped clusters is designed carefully so that a single threshold can distinguish correctly all clusters in a large spatial dataset though some density-skewed clusters live in it. Finally, authors investigate a robotic navigation and test two artificial datasets by the proposed algorithm to verify its effectiveness and efficiency.展开更多
With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path...With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path finding(MAPF) algorithm is urgently needed to ensure the efficiency and realizability of the whole system. The complex terrain of outdoor scenarios is fully considered by using different values of passage cost to quantify different terrain types. The objective of the MAPF problem is to minimize the cost of passage while the Manhattan distance of paths and the time of passage are also evaluated for a comprehensive comparison. The pre-path-planning and real-time-conflict based greedy(PRG) algorithm is proposed as the solution. Simulation is conducted and the proposed PRG algorithm is compared with waiting-stop A^(*) and conflict based search(CBS) algorithms. Results show that the PRG algorithm outperforms the waiting-stop A^(*) algorithm in all three performance indicators,and it is more applicable than the CBS algorithm when a large number of AGVs are working collaboratively with frequent collisions.展开更多
Greedy propagation policy for unstructured P2P worms employs the neighboring node list of each node in peer-to-peer (P2P) network to speed up the propagation of P2P worms. After describing the technique background o...Greedy propagation policy for unstructured P2P worms employs the neighboring node list of each node in peer-to-peer (P2P) network to speed up the propagation of P2P worms. After describing the technique background of P2P worms, the algorithm of greedy propagation is addressed. Simulating design for this novel propagation policy is also described. Then, the effects of the greedy propagation policy on spreading speed, convergence speed, and attacking traffic in static P2P worms are simulated and discussed. The primary experimental results show that the greedy propagation is harmful and can bring severe damages to P2P network.展开更多
Currently,the top-rank-k has been widely applied to mine frequent patterns with a rank not exceeding k.In the existing algorithms,although a level-wise-search could fully mine the target patterns,it usually leads to t...Currently,the top-rank-k has been widely applied to mine frequent patterns with a rank not exceeding k.In the existing algorithms,although a level-wise-search could fully mine the target patterns,it usually leads to the delay of high rank patterns generation,resulting in the slow growth of the support threshold and the mining efficiency.Aiming at this problem,a greedy-strategy-based top-rank-k frequent patterns hybrid mining algorithm(GTK)is proposed in this paper.In this algorithm,top-rank-k patterns are stored in a static doubly linked list called RSL,and the patterns are divided into short patterns and long patterns.The short patterns generated by a rank-first-search always joins the two patterns of the highest rank in RSL that have not yet been joined.On the basis of the short patterns satisfying specific conditions,the long patterns are extracted through level-wise-search.To reduce redundancy,GTK improves the generation method of subsume index and designs the new pruning strategies of candidates.This algorithm also takes the use of reasonable pruning strategies to reduce the amount of computation to improve the computational speed.Real datasets and synthetic datasets are adopted in experiments to evaluate the proposed algorithm.The experimental results show the obvious advantages in both time efficiency and space efficiency of GTK.展开更多
基金supported in part by the National Key Research and Development Program of China under Grant No.2021YFF0901300in part by the National Natural Science Foundation of China under Grant Nos.62173076 and 72271048.
文摘The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling.
文摘This study presents a novel hybrid topology optimization and mold design framework that integrates process fitting,runner system optimization,and structural analysis to significantly enhance the performance of injection-molded parts.At its core,the framework employs a greedy algorithm that generates runner systems based on adjacency and shortest path principles,leading to improvements in both mechanical strength and material efficiency.The design optimization is validated through a series of rigorous experimental tests,including three-point bending and torsion tests performed on key-socket frames,ensuring that the optimized designs meet practical performance requirements.A critical innovation of the framework is the development of the Adjacent Element Temperature-Driven Prestress Algorithm(AETDPA),which refines the prediction of mechanical failure and strength fitting.This algorithm has been shown to deliver mesh-independent accuracy,thereby enhancing the reliability of simulation results across various design iterations.The framework’s adaptability is further demonstrated by its ability to adjust optimization methods based on the unique geometry of each part,thus accelerating the overall design process while ensuring struc-tural integrity.In addition to its immediate applications in injection molding,the study explores the potential extension of this framework to metal additive manufacturing,opening new avenues for its use in advanced manufacturing technologies.Numerical simulations,including finite element analysis,support the experimental findings and confirm that the optimized designs provide a balanced combination of strength,durability,and efficiency.Furthermore,the integration challenges with existing injection molding practices are addressed,underscoring the framework’s scalability and industrial relevance.Overall,this hybrid topology optimization framework offers a computationally efficient and robust solution for advanced manufacturing applications,promising significant improvements in design efficiency,cost-effectiveness,and product performance.Future work will focus on further enhancing algorithm robustness and exploring additional applications across diverse manufacturing processes.
基金Shanghai Summit Discipline in Design,ChinaSpecial Project Funding for the Shanghai Municipal Commission of Economy and Information Civil-Military Inosculation Project,China(No.JMRH-2018-1042)。
文摘The dynamic behavior,rapid mobility,abrupt changes in network topology,and numerous other flying constraints in unmanned aerial vehicle(UAV)networks make the design of a routing protocol a challenging task.The data routing for communication between UAVs faces numerous challenges,such as low link quality,data loss,and routing path failure.This work proposes greedy perimeter stateless routing(GPSR)based design and implementation of a new adaptive communication routing protocol technique for UAVs,allowing multiple UAVs to communicate more effectively with each other in a group.Close imitation of the real environment is accomplished by considering UAVs’three-dimensional(3D)mobility in the simulations.The performance of the proposed intelligent greedy perimeter stateless routing(IGPSR)scheme has been evaluated based on end-to-end(E2E)delay,network throughput,and data loss ratio.The adapted scheme displayed on average 40%better results.The scenario has been implemented holistically on the network simulator software NS-3.
基金supported by NSFC(No. 61571055)fund of SKL of MMW (No. K201815)Important National Science & Technology Specific Projects(2017ZX03001028)
文摘Mobile edge computing (MEC) is a novel technique that can reduce mobiles' com- putational burden by tasks offioading, which emerges as a promising paradigm to provide computing capabilities in close proximity to mobile users. In this paper, we will study the scenario where multiple mobiles upload tasks to a MEC server in a sing cell, and allocating the limited server resources and wireless chan- nels between mobiles becomes a challenge. We formulate the optimization problem for the energy saved on mobiles with the tasks being dividable, and utilize a greedy choice to solve the problem. A Select Maximum Saved Energy First (SMSEF) algorithm is proposed to realize the solving process. We examined the saved energy at different number of nodes and channels, and the results show that the proposed scheme can effectively help mobiles to save energy in the MEC system.
基金Supported by National Natural Science Foundation of China(Grant Nos.51825502,51775216)Hubei Provincial Natural Science Foundation of China(Grant No.2018CFA078)Program for HUST Academic Frontier Youth Team
文摘The flexible job shop scheduling problem(FJSP) is considered as an important problem in the modern manufacturing system. It is known to be an NP-hard problem. Most of the algorithms used in solving FJSP problem are categorized as metaheuristic methods. Some of these methods normally consume more CPU time and some other methods are more complicated which make them di cult to code and not easy to reproduce. This paper proposes a modified iterated greedy(IG) algorithm to deal with FJSP problem in order to provide a simpler metaheuristic, which is easier to code and to reproduce than some other much more complex methods. This is done by separating the classical IG into two phases. Each phase is used to solve a sub-problem of the FJSP: sequencing and routing sub-problems. A set of dispatching rules are employed in the proposed algorithm for the sequencing and machine selection in the construction phase of the solution. To evaluate the performance of proposed algorithm, some experiments including some famous FJSP benchmarks have been conducted. By compared with other algorithms, the experimental results show that the presented algorithm is competitive and able to find global optimum for most instances. The simplicity of the proposed IG provides an e ective method that is also easy to apply and consumes less CPU time in solving the FJSP problem.
基金Supported by National Natural Science Foundation of China(Grant No.71301008)Beijing Municipal Natural Science Foundation of China(Grant No.9144030)
文摘Flow shop scheduling problem with time lags is a practical scheduling problem and attracts many studies. Permutation problem(PFSP with time lags) is concentrated but non-permutation problem(non-PFSP with time lags) seems to be neglected. With the aim to minimize the makespan and satisfy time lag constraints, efficient algo- rithms corresponding to PFSP and non-PFSP problems are proposed, which consist of iterated greedy algorithm for permutation(IGTLP) and iterated greedy algorithm for non-permutation (IGTLNP). The proposed algorithms are verified using well-known simple and complex instances of permutation and non-permutation problems with various time lag ranges. The permutation results indicate that the proposed IGTLP can reach near optimal solution within nearly 11% computational time of traditional GA approach. The non-permutation results indicate that the proposed IG can reach nearly same solution within less than 1% com- putational time compared with traditional GA approach. The proposed research combines PFSP and non-PFSP together with minimal and maximal time lag consideration, which provides an interesting viewpoint for industrial implementation.
基金Project supported by the grant from City University of Hong Kong (Grant No. 7008105)
文摘By considering the eigenratio of the Laplacian matrix as the synchronizability measure, this paper presents an efficient method to enhance the synchronizability of undirected and unweighted networks via rewiring. The rewiring method combines the use of tabu search and a local greedy algorithm so that an effective search of solutions can be achieved. As demonstrated in the simulation results, the performance of the proposed approach outperforms the existing methods for a large variety of initial networks, both in terms of speed and quality of solutions.
文摘The density-based clustering algorithm presented is different from the classical Density-Based Spatial Clustering of Applications with Noise (DBSCAN) (Ester et al., 1996), and has the following advantages: first, Greedy algorithm substitutes for R*-tree (Bechmann et al., 1990) in DBSCAN to index the clustering space so that the clustering time cost is decreased to great extent and I/O memory load is reduced as well; second, the merging condition to approach to arbitrary-shaped clusters is designed carefully so that a single threshold can distinguish correctly all clusters in a large spatial dataset though some density-skewed clusters live in it. Finally, authors investigate a robotic navigation and test two artificial datasets by the proposed algorithm to verify its effectiveness and efficiency.
基金Supported by the National Key Research and Development Program of China(No.2020YFC1807904).
文摘With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path finding(MAPF) algorithm is urgently needed to ensure the efficiency and realizability of the whole system. The complex terrain of outdoor scenarios is fully considered by using different values of passage cost to quantify different terrain types. The objective of the MAPF problem is to minimize the cost of passage while the Manhattan distance of paths and the time of passage are also evaluated for a comprehensive comparison. The pre-path-planning and real-time-conflict based greedy(PRG) algorithm is proposed as the solution. Simulation is conducted and the proposed PRG algorithm is compared with waiting-stop A^(*) and conflict based search(CBS) algorithms. Results show that the PRG algorithm outperforms the waiting-stop A^(*) algorithm in all three performance indicators,and it is more applicable than the CBS algorithm when a large number of AGVs are working collaboratively with frequent collisions.
基金supported by the National Natural Science Foundation of China under Grant No. 60873075
文摘Greedy propagation policy for unstructured P2P worms employs the neighboring node list of each node in peer-to-peer (P2P) network to speed up the propagation of P2P worms. After describing the technique background of P2P worms, the algorithm of greedy propagation is addressed. Simulating design for this novel propagation policy is also described. Then, the effects of the greedy propagation policy on spreading speed, convergence speed, and attacking traffic in static P2P worms are simulated and discussed. The primary experimental results show that the greedy propagation is harmful and can bring severe damages to P2P network.
基金This research was supported in part by the Hunan Province’s Strategic and Emerging Industrial Projects under Grant 2018GK4035in part by the Hunan Province’s Changsha Zhuzhou Xiangtan National Independent Innovation Demonstration Zone projects under Grant 2017XK2058+1 种基金in part by the National Natural Science Foundation of China under Grant 61602171in part by the Scientific Research Fund of Hunan Provincial Education Department under Grant 17C0960 and 18B037.
文摘Currently,the top-rank-k has been widely applied to mine frequent patterns with a rank not exceeding k.In the existing algorithms,although a level-wise-search could fully mine the target patterns,it usually leads to the delay of high rank patterns generation,resulting in the slow growth of the support threshold and the mining efficiency.Aiming at this problem,a greedy-strategy-based top-rank-k frequent patterns hybrid mining algorithm(GTK)is proposed in this paper.In this algorithm,top-rank-k patterns are stored in a static doubly linked list called RSL,and the patterns are divided into short patterns and long patterns.The short patterns generated by a rank-first-search always joins the two patterns of the highest rank in RSL that have not yet been joined.On the basis of the short patterns satisfying specific conditions,the long patterns are extracted through level-wise-search.To reduce redundancy,GTK improves the generation method of subsume index and designs the new pruning strategies of candidates.This algorithm also takes the use of reasonable pruning strategies to reduce the amount of computation to improve the computational speed.Real datasets and synthetic datasets are adopted in experiments to evaluate the proposed algorithm.The experimental results show the obvious advantages in both time efficiency and space efficiency of GTK.