期刊文献+
共找到19篇文章
< 1 >
每页显示 20 50 100
5DGWO-GAN:A Novel Five-Dimensional Gray Wolf Optimizer for Generative Adversarial Network-Enabled Intrusion Detection in IoT Systems
1
作者 Sarvenaz Sadat Khatami Mehrdad Shoeibi +2 位作者 Anita Ershadi Oskouei Diego Martín Maral Keramat Dashliboroun 《Computers, Materials & Continua》 SCIE EI 2025年第1期881-911,共31页
The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by... The Internet of Things(IoT)is integral to modern infrastructure,enabling connectivity among a wide range of devices from home automation to industrial control systems.With the exponential increase in data generated by these interconnected devices,robust anomaly detection mechanisms are essential.Anomaly detection in this dynamic environment necessitates methods that can accurately distinguish between normal and anomalous behavior by learning intricate patterns.This paper presents a novel approach utilizing generative adversarial networks(GANs)for anomaly detection in IoT systems.However,optimizing GANs involves tuning hyper-parameters such as learning rate,batch size,and optimization algorithms,which can be challenging due to the non-convex nature of GAN loss functions.To address this,we propose a five-dimensional Gray wolf optimizer(5DGWO)to optimize GAN hyper-parameters.The 5DGWO introduces two new types of wolves:gamma(γ)for improved exploitation and convergence,and theta(θ)for enhanced exploration and escaping local minima.The proposed system framework comprises four key stages:1)preprocessing,2)generative model training,3)autoencoder(AE)training,and 4)predictive model training.The generative models are utilized to assist the AE training,and the final predictive models(including convolutional neural network(CNN),deep belief network(DBN),recurrent neural network(RNN),random forest(RF),and extreme gradient boosting(XGBoost))are trained using the generated data and AE-encoded features.We evaluated the system on three benchmark datasets:NSL-KDD,UNSW-NB15,and IoT-23.Experiments conducted on diverse IoT datasets show that our method outperforms existing anomaly detection strategies and significantly reduces false positives.The 5DGWO-GAN-CNNAE exhibits superior performance in various metrics,including accuracy,recall,precision,root mean square error(RMSE),and convergence trend.The proposed 5DGWO-GAN-CNNAE achieved the lowest RMSE values across the NSL-KDD,UNSW-NB15,and IoT-23 datasets,with values of 0.24,1.10,and 0.09,respectively.Additionally,it attained the highest accuracy,ranging from 94%to 100%.These results suggest a promising direction for future IoT security frameworks,offering a scalable and efficient solution to safeguard against evolving cyber threats. 展开更多
关键词 Internet of things intrusion detection generative adversarial networks five-dimensional binary gray wolf optimizer deep learning
在线阅读 下载PDF
Improved gray wolf optimizer for distributed flexible job shop scheduling problem 被引量:15
2
作者 LI XinYu XIE Jin +2 位作者 MA QingJi GAO Liang LI PeiGen 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2022年第9期2105-2115,共11页
The distributed flexible job shop scheduling problem(DFJSP),which is an extension of the flexible job shop scheduling problem,is a famous NP-complete combinatorial optimization problem.This problem is widespread in th... The distributed flexible job shop scheduling problem(DFJSP),which is an extension of the flexible job shop scheduling problem,is a famous NP-complete combinatorial optimization problem.This problem is widespread in the manufacturing industries and comprises the following three subproblems:the assignment of jobs to factories,the scheduling of operations to machines,and the sequence of operations on machines.However,studies on DFJSP are seldom because of its difficulty.This paper proposes an effective improved gray wolf optimizer(IGWO)to solve the aforementioned problem.In this algorithm,new encoding and decoding schemes are designed to represent the three subproblems and transform the encoding into a feasible schedule,respectively.Four crossover operators are developed to expand the search space.A local search strategy with the concept of a critical factory is also proposed to improve the exploitability of IGWO.Effective schedules can be obtained by changing factory assignments and operation sequences in the critical factory.The proposed IGWO algorithm is evaluated on 69 famous benchmark instances and compared with six state-of-the-art algorithms to demonstrate its efficacy considering solution quality and computational efficiency.Experimental results show that the proposed algorithm has achieved good improvement.Particularly,the proposed IGWO updates the new upper bounds of 13 difficult benchmark instances. 展开更多
关键词 distributed and flexible job shop scheduling gray wolf optimizer critical factory
原文传递
Physics-Guided Neural Network with Gini Impurity-Based Structural Optimizer for Prediction of Membrane-Type Acoustic Material Transmission Loss
3
作者 PAN Xinrong LIU Xuewen +1 位作者 ZHU Bo WANG Yingyi 《Journal of Shanghai Jiaotong university(Science)》 2025年第3期612-624,共13页
With the rapid development of machine learning,the prediction of the performance of acoustic meta-materials using neural networks is replacing the traditional experiment-based testing methods.In this paper,a Gini impu... With the rapid development of machine learning,the prediction of the performance of acoustic meta-materials using neural networks is replacing the traditional experiment-based testing methods.In this paper,a Gini impurity-based artificial neural network structural optimizer(GIASO)is proposed to optimize the neural network structure,and the effects of five different initialization algorithms on the model performance and struc-ture optimization are investigated.Two physically guided models with additional resonant frequencies and sound transmission loss formula are achieved to further improve the prediction accuracy of the model.The results show that GIASO utilizing the gray wolf optimizer as the initialization method can significantly improve the prediction performance of the model.Simultaneously,the physical guidance model with additional resonant frequencies has the best performance and can better predict the edge data points.Eventually,the effect of each input parameter on the sound transmission loss is explained by combining sensitivity analysis and theoretical formulation. 展开更多
关键词 membrane-type acoustic metamaterial sound transmission loss eigenfrequency physics-guided neu-ral network architecture search Gini impurity gray wolf optimizer initial methods
原文传递
Efficient Multi-Start Gray Wolf Optimization Algorithm for the Distributed Permutation Flowshop Scheduling Problem with Preventive Maintenance
4
作者 Congcong Sun Hongyan Sang +2 位作者 Leilei Meng Biao Zhang Tao Meng 《Complex System Modeling and Simulation》 2025年第2期107-124,共18页
The distributed permutation flowshop scheduling problem(DPFSP)has received increasing attention in recent years,which always assumes that the machine can process without restrictions.However,in practical production,ma... The distributed permutation flowshop scheduling problem(DPFSP)has received increasing attention in recent years,which always assumes that the machine can process without restrictions.However,in practical production,machine preventive maintenance is required to prevent machine breakdowns.Therefore,this paper studies the DPFSP with preventive maintenance(PM/DPFSP)aiming at minimizing the total flowtime.For solving the problem,a discrete gray wolf optimization algorithm with restart mechanism(DGWO_RM)is proposed.In the initialization phase,a heuristic algorithm that takes into consideration preventive maintenance and idle time is employed to elevate the quality of the initial solution.Next,four local search strategies are proposed for further enhancing the exploitation capability.Furthermore,a restart mechanism is integrated into algorithm to avert the risk of converging prematurely to a suboptimal solution,thereby ensuring a broader exploration of potential solutions.Finally,comprehensive experiments studies are carried out to illustrate the effectiveness of the proposed strategy and to verify the performance of DGWO_RM.The obtained results show that the proposed DGWO_RM significantly outperforms the four state-of-the-art algorithms in solving PM/DPFSP. 展开更多
关键词 distributed permutation flowshop scheduling preventive maintenance total flowtime discrete gray wolf optimizer restart mechanism
原文传递
An Efficient Explainable AI Model for Accurate Brain Tumor Detection Using MRI Images
5
作者 Fatma M.Talaat Mohamed Salem +1 位作者 Mohamed Shehata Warda M.Shaban 《Computer Modeling in Engineering & Sciences》 2025年第8期2325-2358,共34页
The diagnosis of brain tumors is an extended process that significantly depends on the expertise and skills of radiologists.The rise in patient numbers has substantially elevated the data processing volume,making conv... The diagnosis of brain tumors is an extended process that significantly depends on the expertise and skills of radiologists.The rise in patient numbers has substantially elevated the data processing volume,making conventional methods both costly and inefficient.Recently,Artificial Intelligence(AI)has gained prominence for developing automated systems that can accurately diagnose or segment brain tumors in a shorter time frame.Many researchers have examined various algorithms that provide both speed and accuracy in detecting and classifying brain tumors.This paper proposes a newmodel based on AI,called the Brain Tumor Detection(BTD)model,based on brain tumor Magnetic Resonance Images(MRIs).The proposed BTC comprises three main modules:(i)Image Processing Module(IPM),(ii)Patient Detection Module(PDM),and(iii)Explainable AI(XAI).In the first module(i.e.,IPM),the used dataset is preprocessed through two stages:feature extraction and feature selection.At first,the MRI is preprocessed,then the images are converted into a set of features using several feature extraction methods:gray level co-occurrencematrix,histogramof oriented gradient,local binary pattern,and Tamura feature.Next,the most effective features are selected fromthese features separately using ImprovedGrayWolfOptimization(IGWO).IGWOis a hybrid methodology that consists of the Filter Selection Step(FSS)using information gain ratio as an initial selection stage and Binary Gray Wolf Optimization(BGWO)to make the proposed method better at detecting tumors by further optimizing and improving the chosen features.Then,these features are fed to PDM using several classifiers,and the final decision is based on weighted majority voting.Finally,through Local Interpretable Model-agnostic Explanations(LIME)XAI,the interpretability and transparency in decision-making processes are provided.The experiments are performed on a publicly available Brain MRI dataset that consists of 98 normal cases and 154 abnormal cases.During the experiments,the dataset was divided into 70%(177 cases)for training and 30%(75 cases)for testing.The numerical findings demonstrate that the BTD model outperforms its competitors in terms of accuracy,precision,recall,and F-measure.It introduces 98.8%accuracy,97%precision,97.5%recall,and 97.2%F-measure.The results demonstrate the potential of the proposed model to revolutionize brain tumor diagnosis,contribute to better treatment strategies,and improve patient outcomes. 展开更多
关键词 Brain tumor detection MRI images explainable AI(XAI) improved gray wolf optimization(IGWO)
在线阅读 下载PDF
Prediction of high-embankment settlement combining joint denoising technique and enhanced GWO-v-SVR method 被引量:1
6
作者 Qi Zhang Qian Su +2 位作者 Zongyu Zhang Zhixing Deng De Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期317-332,共16页
Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wol... Reliable long-term settlement prediction of a high embankment relates to mountain infrastructure safety.This study developed a novel hybrid model(NHM)that combines a joint denoising technique with an enhanced gray wolf optimizer(EGWO)-n-support vector regression(n-SVR)method.High-embankment field measurements were preprocessed using the joint denoising technique,which in-cludes complete ensemble empirical mode decomposition,singular value decomposition,and wavelet packet transform.Furthermore,high-embankment settlements were predicted using the EGWO-n-SVR method.In this method,the standard gray wolf optimizer(GWO)was improved to obtain the EGWO to better tune the n-SVR model hyperparameters.The proposed NHM was then tested in two case studies.Finally,the influences of the data division ratio and kernel function on the EGWO-n-SVR forecasting performance and prediction efficiency were investigated.The results indicate that the NHM suppresses noise and restores details in high-embankment field measurements.Simultaneously,the NHM out-performs other alternative prediction methods in prediction accuracy and robustness.This demonstrates that the proposed NHM is effective in predicting high-embankment settlements with noisy field mea-surements.Moreover,the appropriate data division ratio and kernel function for EGWO-n-SVR are 7:3 and radial basis function,respectively. 展开更多
关键词 High embankment Settlement prediction Joint denoising technique Enhanced gray wolf optimizer Support vector regression
在线阅读 下载PDF
Research on Grid-Connected Control Strategy of Distributed Generator Based on Improved Linear Active Disturbance Rejection Control 被引量:1
7
作者 Xin Mao Hongsheng Su Jingxiu Li 《Energy Engineering》 EI 2024年第12期3929-3951,共23页
The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional volt... The virtual synchronous generator(VSG)technology has been proposed to address the problem of system frequency and active power oscillation caused by grid-connected new energy power sources.However,the traditional voltage-current double-closed-loop control used in VSG has the disadvantages of poor disturbance immunity and insufficient dynamic response.In light of the issues above,a virtual synchronous generator voltage outer-loop control strategy based on improved linear autonomous disturbance rejection control(ILADRC)is put forth for consideration.Firstly,an improved first-order linear self-immunity control structure is established for the characteristics of the voltage outer loop;then,the effects of two key control parameters-observer bandwidthω_(0)and controller bandwidthω_(c)on the control system are analyzed,and the key parameters of ILADRC are optimally tuned online using improved gray wolf optimizer-radial basis function(IGWO-RBF)neural network.A simulationmodel is developed using MATLAB to simulate,analyze,and compare the method introduced in this paper.Simulations are performed with the traditional control strategy for comparison,and the results demonstrate that the proposed control method offers superior anti-interference performance.It effectively addresses power and frequency oscillation issues and enhances the stability of the VSG during grid-connected operation. 展开更多
关键词 Virtual synchronous generator(VSG) active power improved linear active disturbance rejection control(ILADRC) radial basis function(RBF)neural networks improved gray wolf optimizer(IGWO)
在线阅读 下载PDF
Support vector regression-based operational effectiveness evaluation approach to reconnaissance satellite system 被引量:3
8
作者 HAN Chi XIONG Wei +1 位作者 XIONG Minghui LIU Zhen 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第6期1626-1644,共19页
As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonl... As one of the most important part of weapon system of systems(WSoS),quantitative evaluation of reconnaissance satellite system(RSS)is indispensable during its construction and application.Aiming at the problem of nonlinear effectiveness evaluation under small sample conditions,we propose an evaluation method based on support vector regression(SVR)to effectively address the defects of traditional methods.Considering the performance of SVR is influenced by the penalty factor,kernel type,and other parameters deeply,the improved grey wolf optimizer(IGWO)is employed for parameter optimization.In the proposed IGWO algorithm,the opposition-based learning strategy is adopted to increase the probability of avoiding the local optima,the mutation operator is used to escape from premature convergence and differential convergence factors are applied to increase the rate of convergence.Numerical experiments of 14 test functions validate the applicability of IGWO algorithm dealing with global optimization.The index system and evaluation method are constructed based on the characteristics of RSS.To validate the proposed IGWO-SVR evaluation method,eight benchmark data sets and combat simulation are employed to estimate the evaluation accuracy,convergence performance and computational complexity.According to the experimental results,the proposed method outperforms several prediction based evaluation methods,verifies the superiority and effectiveness in RSS operational effectiveness evaluation. 展开更多
关键词 reconnaissance satellite system(RSS) support vector regression(SVR) gray wolf optimizer opposition-based learning parameter optimization effectiveness evaluation
在线阅读 下载PDF
A Hybrid ANN-GWO Algorithm for Prediction of Heart Disease 被引量:4
9
作者 Hamza Turabieh 《American Journal of Operations Research》 2016年第2期136-146,共11页
The paper investigates the powerful of hybridizing two computational intelligence methods viz., Gray Wolf Optimization (GWO) and Artificial Neural Networks (ANN) for prediction of heart disease. Gray wolf optimization... The paper investigates the powerful of hybridizing two computational intelligence methods viz., Gray Wolf Optimization (GWO) and Artificial Neural Networks (ANN) for prediction of heart disease. Gray wolf optimization is a global search method while gradient-based back propagation method is a local search one. The proposed algorithm implies the ability of ANN to find a relationship between the input and the output variables while the stochastic search ability of GWO is used for finding the initial optimal weights and biases of the ANN to reduce the probability of ANN getting stuck at local minima and slowly converging to global optimum. For evaluation purpose, the performance of hybrid model (ANN-GWO) was compared with standard back-propagation neural network (BPNN) using Root Mean Square Error (RMSE). The results demonstrate that the proposed model increases the convergence speed and the accuracy of prediction. 展开更多
关键词 Artificial Neural Network gray wolf optimizer BACK-PROPAGATION Heart Disease
在线阅读 下载PDF
China futures price forecasting based on online search and information transfer 被引量:1
10
作者 Jingyi Liang Guozhu Jia 《Data Science and Management》 2022年第4期187-198,共12页
The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications.This study combines data from the Baidu index(BDI),Google trends(GT),an... The synchronicity effect between the financial market and online response for time-series forecasting is an important task with wide applications.This study combines data from the Baidu index(BDI),Google trends(GT),and transfer entropy(TE)to forecast a wide range of futures prices with a focus on China.A forecasting model based on a hybrid gray wolf optimizer(GWO),convolutional neural network(CNN),and long short-term memory(LSTM)is developed.First,Baidu and Google dual-platform search data were selected and constructed as Internetbased consumer price index(ICPI)using principal component analysis.Second,TE is used to quantify the information between online behavior and futures markets.Finally,the effective Internet-based consumer price index(ICPI)and TE are introduced into the GWO-CNN-LSTM model to forecast the daily prices of corn,soybean,polyvinyl chloride(PVC),egg,and rebar futures.The results show that the GWO-CNN-LSTM model has a significant improvement in predicting future prices.Internet-based CPI built on Baidu and Google platforms has a high degree of real-time performance and reduces the platform and language bias of the search data.Our proposed framework can provide predictive decision support for government leaders,market investors,and production activities. 展开更多
关键词 Futures price forecasting Baidu index Google trends Transfer entropy Consumer price index gray wolf optimizer Convolutional neural network Long short-term memory
在线阅读 下载PDF
Improved Clamped Diode Based Z-Source Network for Three Phase Induction Motor
11
作者 D.Bensiker Raja Singh R.Suja Mani Malar 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期683-702,共20页
The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems lik... The 3Φinduction motor is a broadly used electric machine in industrial applications,which plays a vital role in industries because of having plenty of beneficial impacts like low cost and easiness but the problems like decrease in motor speed due to load,high consumption of current and high ripple occurrence of ripples have reduced its preferences.The ultimate objective of this study is to control change in motor speed due to load variations.An improved Trans Z Source Inverter(ΓZSI)with a clamping diode is employed to maintain constant input voltage,reduce ripples and voltage overshoot.To operate induction motor at rated speed,different controllers are used.The conventional Proportional-Inte-gral(PI)controller suffers from high settling time and maximum peak overshoot.To overcome these limitations,Fractional Order Proportional Integral Derivative(FOPID)controller optimized by Gray Wolf Optimization(GWO)technique is employed to provide better performance by eliminating maximum peak overshoot pro-blems.The proposed speed controller provides good dynamic response and controls the induction motor more effectively.The complete setup is implemented in MATLAB Simulation to verify the simulation results.The proposed approach provides optimal performance with high torque and speed along with less steady state error. 展开更多
关键词 Three phase induction motor voltage source inverter improvedΓZSI with clamping diode PI controller fractional order PID controller gray wolf optimizer
在线阅读 下载PDF
Automatic Anomaly Monitoring in Public Surveillance Areas
12
作者 Mohammed Alarfaj Mahwish Pervaiz +4 位作者 Yazeed Yasin Ghadi Tamara al Shloul Suliman A.Alsuhibany Ahmad Jalal Jeongmin Park 《Intelligent Automation & Soft Computing》 SCIE 2023年第3期2655-2671,共17页
With the dramatic increase in video surveillance applications and public safety measures,the need for an accurate and effective system for abnormal/sus-picious activity classification also increases.Although it has mul... With the dramatic increase in video surveillance applications and public safety measures,the need for an accurate and effective system for abnormal/sus-picious activity classification also increases.Although it has multiple applications,the problem is very challenging.In this paper,a novel approach for detecting nor-mal/abnormal activity has been proposed.We used the Gaussian Mixture Model(GMM)and Kalmanfilter to detect and track the objects,respectively.After that,we performed shadow removal to segment an object and its shadow.After object segmentation we performed occlusion detection method to detect occlusion between multiple human silhouettes and we implemented a novel method for region shrinking to isolate occluded humans.Fuzzy c-mean is utilized to verify human silhouettes and motion based features including velocity and opticalflow are extracted for each identified silhouettes.Gray Wolf Optimizer(GWO)is used to optimize feature set followed by abnormal event classification that is performed using the XG-Boost classifier.This system is applicable in any surveillance appli-cation used for event detection or anomaly detection.Performance of proposed system is evaluated using University of Minnesota(UMN)dataset and UBI(Uni-versity of Beira Interior)-Fight dataset,each having different type of anomaly.The mean accuracy for the UMN and UBI-Fight datasets is 90.14%and 76.9%respec-tively.These results are more accurate as compared to other existing methods. 展开更多
关键词 Abnormal event classification gray wolf optimizer region shrinking xg-boost classifier
在线阅读 下载PDF
Optimal Operation of Distributed Generations Considering Demand Response in a Microgrid Using GWO Algorithm 被引量:2
13
作者 Hassan Shokouhandeh Mehrdad Ahmadi Kamarposhti +2 位作者 William Holderbaum Ilhami Colak Phatiphat Thounthong 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期809-822,共14页
The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affec... The widespread penetration of distributed energy sources and the use of load response programs,especially in a microgrid,have caused many power system issues,such as control and operation of these networks,to be affected.The control and operation of many small-distributed generation units with different performance characteristics create another challenge for the safe and efficient operation of the microgrid.In this paper,the optimum operation of distributed generation resources and heat and power storage in a microgrid,was performed based on real-time pricing through the proposed gray wolf optimization(GWO)algorithm to reduce the energy supply cost with the microgrid.Distributed generation resources such as solar panels,diesel generators with battery storage,and boiler thermal resources with thermal storage were used in the studied microgrid.Also,a combined heat and power(CHP)unit was used to produce thermal and electrical energy simultaneously.In the simulations,in addition to the gray wolf algorithm,some optimization algorithms have also been used.Then the results of 20 runs for each algorithm confirmed the high accuracy of the proposed GWO algorithm.The results of the simulations indicated that the CHP energy resources must be managed to have a minimum cost of energy supply in the microgrid,considering the demand response program. 展开更多
关键词 MICROGRID demand response program cost reduction gray wolf optimization algorithm
在线阅读 下载PDF
Cascade Optimization Control of Unmanned Vehicle Path Tracking Under Harsh Driving Conditions
14
作者 黄迎港 罗文广 +1 位作者 黄丹 蓝红莉 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第1期114-125,共12页
Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study propose... Under ultra-high-speed and harsh conditions,conventional control methods struggle to ensure the path tracking accuracy and driving stability of unmanned vehicles during the turning process.Therefore,this study proposes a cascade control to solve this problem.Based on the new vehicle error model that considers vehicle tire sideslip and road curvature,the feedforward-parametric adaptive linear quadratic regulator(LQR)and proportional integral control-based speed-keeping controllers are used to compose the path-tracking cascade optimization controller for unmanned vehicles.To improve the adaptability of the unmanned vehicle path-tracking control under harsh driving conditions,the LQR controller parameters are automatically adjusted using a back-propagation neural network,in which the initial weights and thresholds are optimized using the improved grey wolf optimization algorithm according to the driving conditions.The speed-keeping controller reduces the impact on the curve-tracking accuracy under nonlinear vehicle speed variations.Finally,a joint model of MATLAB/Simulink and CarSim was established,and simulations show that the proposed control method can achieve stable entry and exit curves at ultra-high speeds for unmanned vehicles.Under strong wind and ice road conditions,the method exhibits a higher tracking accuracy and is more adaptive and robust to external interference in driving and variable curvature roads than methods such as the feedforward-LQR,preview and pure pursuit controls. 展开更多
关键词 unmanned vehicles path tracking harsh driving conditions cascade control improved gray wolf optimization algorithm backpropagation neural network
原文传递
Hybrid gray wolf optimization-cuckoo search algorithm for RFID network planning
15
作者 Quan Yixuan Zheng Jiali +2 位作者 Xie Xiaode Lin Zihan Luo Wencong 《The Journal of China Universities of Posts and Telecommunications》 EI CSCD 2021年第6期91-102,共12页
In recent years,with the rapid development of Internet of things(IoT)technology,radio frequency identification(RFID)technology as the core of IoT technology has been paid more and more attention,and RFID network plann... In recent years,with the rapid development of Internet of things(IoT)technology,radio frequency identification(RFID)technology as the core of IoT technology has been paid more and more attention,and RFID network planning(RNP)has become the primary concern.Compared with the traditional methods,meta-heuristic method is widely used in RNP.Aiming at the target requirements of RFID,such as fewer readers,covering more tags,reducing the interference between readers and saving costs,this paper proposes a hybrid gray wolf optimization-cuckoo search(GWO-CS)algorithm.This method uses the input representation based on random gray wolf search and evaluates the tag density and location to determine the combination performance of the reader's propagation area.Compared with particle swarm optimization(PSO)algorithm,cuckoo search(CS)algorithm and gray wolf optimization(GWO)algorithm under the same experimental conditions,the coverage of GWO-CS is 9.306%higher than that of PSO algorithm,6.963%higher than that of CS algorithm,and 3.488%higher than that of GWO algorithm.The results show that the GWO-CS algorithm cannot only improve the global search range,but also improve the local search depth. 展开更多
关键词 radio frequency identification(RFID) gray wolf optimization(GWO)algorithm cuckoo search(CS)algorithm dynamic adjustment of discovery probability directional mutation
原文传递
Tuning of FOPID parameters combined with swarm intelligent algorithm
16
作者 Minghao Lou 《Advances in Engineering Innovation》 2025年第1期40-44,共5页
This paper delves into the parameter tuning of fractional-order PID(FOPID)controllers.FOPID controllers,with additional integral and derivative orders compared to traditional PID controllers,possess enhanced capabilit... This paper delves into the parameter tuning of fractional-order PID(FOPID)controllers.FOPID controllers,with additional integral and derivative orders compared to traditional PID controllers,possess enhanced capabilities in handling complex systems.However,effective tuning of its five parameters is challenging.To address this,multiple intelligent algorithms are investigated.The improved sparrow search algorithm(ISSA)utilizes Chebyshev chaotic mapping initialization,adaptive t-distribution,and the firefly algorithm to overcome the limitations of the basic algorithm,showing high accuracy,speed,and robustness in multi-modal problems.The grey wolf optimizer(GWO),inspired by the hunting behavior of grey wolves,has procedures for encircling,hunting,and attacking but may encounter local optima,and several improvement methods have been proposed.The genetic algorithm,based on the survival of the fittest principle,involves encoding,decoding,and other operations.Taking vehicle ABS control as an example,the genetic algorithm-based FOPID controller outperforms the traditional PID controller.In conclusion,different algorithms have their own advantages in FOPID parameter tuning,and the selection depends on system characteristics and control requirements.Future research can focus on further algorithm improvement and hybrid methods to achieve better control performance,providing a valuable reference for FOPID applications in industry. 展开更多
关键词 FOPID Controller Improved gray wolf Optimization Algorithm improved sparrow search algorithm genetic algorithm
在线阅读 下载PDF
Short-term Load Forecasting of Regional Distribution Network Based on Generalized Regression Neural Network Optimized by Grey Wolf Optimization Algorithm 被引量:14
17
作者 Leijiao Ge Yiming Xian +3 位作者 Zhongguan Wang Bo Gao Fujian Chi Kuo Sun 《CSEE Journal of Power and Energy Systems》 SCIE CSCD 2021年第5期1093-1101,共9页
Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity... Short-term load forecasting of regional distribution network is the key to the economic operation of smart distribution systems,which not only requires high accuracy and fast calculation speed,but also has a diversity of influential factors and strong randomness.This paper proposes a short-term load forecasting model for regional distribution network combining the maximum information coefficient,factor analysis,gray wolf optimization,and generalized regression neural network(MIC-FA-GWO-GRNN).To screen and decrease the dimension of the multiple-input features of the short-term load forecasting model,MIC is first used to quantify the non-linear correlation between the load and input features,and to eliminate the ineffective features,and then FA is used to reduce the dimension of the screened input features on the premise of preserving the main information of input features.After that the high-precision short-term丨oad forecasting based on GWO-GRNN model is realized.GRNN is used to regressively analyze the input features after screening and dimension reduction,and the parameter of GRNN is optimized by using the GWO,which has strong global searching ability and fast convergence.Finally a case study of a regional distribution network in Tianjin,China verifies the accuracy and applicability of the proposed forecasting model. 展开更多
关键词 Factor analysis generalized regression neural network gray wolf optimization maximum information coefficient short-term load forecasting
原文传递
Abnormal State Detection of OLTC Based on Improved Fuzzy C-means Clustering 被引量:1
18
作者 Hongwei Li Lilong Dou +3 位作者 Shuaibing Li Yongqiang Kang Xingzu Yang Haiying Dong 《Chinese Journal of Electrical Engineering》 CSCD 2023年第1期129-141,共13页
An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method f... An accurate extraction of vibration signal characteristics of an on-load tap changer(OLTC)during contact switching can effectively help detect its abnormal state.Therefore,an improved fuzzy C-means clustering method for abnormal state detection of the OLTC contact is proposed.First,the wavelet packet and singular spectrum analysis are used to denoise the vibration signal generated by the moving and static contacts of the OLTC.Then,the Hilbert-Huang transform that is optimized by the ensemble empirical mode decomposition(EEMD)is used to decompose the vibration signal and extract the boundary spectrum features.Finally,the gray wolf algorithm-based fuzzy C-means clustering is used to denoise the signal and determine the abnormal states of the OLTC contact.An analysis of the experimental data shows that the proposed secondary denoising method has a better denoising effect compared to the single denoising method.The EEMD can improve the modal aliasing effect,and the improved fuzzy C-means clustering can effectively identify the abnormal state of the OLTC contacts.The analysis results of field measured data further verify the effectiveness of the proposed method and provide a reference for the abnormal state detection of the OLTC. 展开更多
关键词 On-load tap changer singular spectrum analysis Hilbert-Huang transform gray wolf optimization algorithm fuzzy C-means clustering
原文传递
Enhancing the efficiency of cabin heaters in emergency shelters after earthquakes through an optimized fuzzy controller
19
作者 Erkan Duman Dila Seckin 《Building Simulation》 SCIE EI CSCD 2023年第9期1759-1776,共18页
In just one and half minutes,more than fifty thousand died due to the 7.7 and 7.6 magnitude earthquakes that struck Turkey’s southeast on February 6,2023;thousands of families who barely escaped struggled to survive ... In just one and half minutes,more than fifty thousand died due to the 7.7 and 7.6 magnitude earthquakes that struck Turkey’s southeast on February 6,2023;thousands of families who barely escaped struggled to survive in the freezing weather.A warm shelter was the most basic requirement of these families.Container buildings are a rapid and easy solution to this issue.However,there is a need for a more effective and safe heating option than a wood fire for these buildings.In this study,cabin heaters,which allow truck drivers to warm up when they park their vehicles to sleep,are specially optimized for emergency shelters after an earthquake.An optimized fuzzy controller was developed to use in such buildings,which allows an air–fuel ratio in the combustion chamber of the cabin heater to be controlled adaptively based on system dynamics to get lower carbon emissions and fuel consumption.The TRNSYS software was used to establish the transient simulation model of a cabin heater with a capacity of 4 kW for a typical 21 m^(2) shelter building in Turkey’s cold regions.The developed fuzzy controller carried out the heating process of this shelter from the 15th of November to the 15th of March.Instead of using expert knowledge,the Gray Wolf Optimization(GWO)method was applied to optimize the fuzzy controller parameters developed for the cabin heater.With the optimized fuzzy controller,the fuel consumption at the end of the heating season was reduced by an average of 0.2 L/h,and the cabin heater’s efficiency increased by more than 13%.Our simulation results show that the intelligent controller we developed could improve diesel fuel combustion efficiency by up to 85%. 展开更多
关键词 parking heater cabin heater emergency shelters fuzzy controller gray wolf optimization TRNSYS simulation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部