The paper puts forward a method on controlling the AM-OLED panel to display image with high gray scale levels. It also gives an ASIC design sample to implement this method. A twenty sub-fields scan scheme has been tak...The paper puts forward a method on controlling the AM-OLED panel to display image with high gray scale levels. It also gives an ASIC design sample to implement this method. A twenty sub-fields scan scheme has been taken into use in the chip to display 256 gray scale levels on a QVGA resolution AM-OLED display screen. The functions of image scaling and rotating have also been implemented for multiply application. The simulation and chip test result show that the chip design has met the design requirements.展开更多
Thresholding is a popular image segmentation method that often requires as a preliminary and indis- pensable stage in the computer aided image process, particularly in the analysis of X-ray welding images. In this pap...Thresholding is a popular image segmentation method that often requires as a preliminary and indis- pensable stage in the computer aided image process, particularly in the analysis of X-ray welding images. In this paper, a modified gray level difference-based transition region extraction and thresholding algorithm is presented for segmentation of the images that have been corrupted by intensity inhomogeneities or noise. Classical gray level difference algorithm is improved by selective output of the result of the maximum or the minimum of the gray level with the pixels in the surrounding, and multi-structuring of neighborhood window is used to represent the essence of transition region. The proposed algorithm could robustly measure the gray level changes, and accurately extract transition region of an image. Comparisons with other approaches demonstrate the superior performance of the proposed algorithm. K展开更多
The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material ...The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present,the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution,and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix(GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties.展开更多
Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation...Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation of experienced pathologists. However, it is difficult to separate the favor benign from borderline types. Thus, this paper presents a classification approach based on 3D nuclei model to classify favor benign and borderline types of follicular thyroid adenoma (FTA) in cytological specimens. The proposed method utilized 3D gray level co-occurrence matrix (GLCM) and random forest classifier. It was applied to 22 data sets of FN images. Furthermore, the use of 3D GLCM was compared with 2D GLCM to evaluate the classification results. From experimental results, the proposed system achieved 95.45% of the classification. The use of 3D GLCM was better than 2D GLCM according to the accuracy of classification. Consequently, the proposed method probably helps a pathologist as a prescreening tool.展开更多
A novel algorithm to voxelize 3D mesh models with gray levels is presented in this paper.The key innovation of our method is to decide the gray level of a voxel according to the total area of all surfaces contained by...A novel algorithm to voxelize 3D mesh models with gray levels is presented in this paper.The key innovation of our method is to decide the gray level of a voxel according to the total area of all surfaces contained by it.During the preprocessing stage,a set of voxels in the extended bounding box of each triangle is established.Then we travel each triangle and compute the areas between it and its set of voxels one by one.Finally,each voxel is arranged a discrete gray level from 0 to 255.Experiments show that our algorithm gets a comparatively perfect result compared with the prevenient ones and approaches the original models in a more accurate way.展开更多
Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by joi...Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by jointly using Gray Level Co-occurrence Probability(GLCP) and BP neural network techniques.First, up to 8 GLCP-associated texture feature parameters are defined and computed, and these consequent parameters next serve as the inputs feeding to the BP neural network to calculate the similarity to any of given aggregate texture type.A finite number of aggregate images of 3 kinds, with each containing specific type of mineral particles, are put to the identification test, experimentally proving the feasibility and robustness of the proposed method.展开更多
Based on the "Grayscales average distribution" method which equally distributes the input gray levels to output gray levels, three improved methods named: "Reduce the gray range expressed by the less si...Based on the "Grayscales average distribution" method which equally distributes the input gray levels to output gray levels, three improved methods named: "Reduce the gray range expressed by the less significant subfields", "Low levels preset" and "Modify the exponent of inverse-gamma function" are proposed in this paper. Using these methods, the inverse-gamma relation subfields code can be obtained easily which can improve the low level expressions of AC-PDP. And a program, "gray scales distribution validate program", which can enhance the expressions of the demanded gray levels range, is also proposed in this paper.展开更多
Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ...Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery.展开更多
Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when tradit...Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.展开更多
The annual laminae gray level variations in the stalagmite TS9501 of Shihua Cave, Beijing are studied in detail. The environmental factors influencing the laminae gray level are also analyzed. The following conditions...The annual laminae gray level variations in the stalagmite TS9501 of Shihua Cave, Beijing are studied in detail. The environmental factors influencing the laminae gray level are also analyzed. The following conditions may be necessary to the study on the lamina gray level. A) The seasonal differences of climate in the studied area are strong. B) The cave has a rapid and simple hydrological connection with the surface, such that the gray level variation is great; therefore, climatic changes can be more clearly recorded in a stalagmite. C) No water from other sources due to lateral flow adds to the seepage over the cave. D) There are more organic impurities than inorganic ones, whose content changes distinctly with time in the sample. By comparison with the modern instrumental climate records, it was found that the gray level of laminae is mainly related to the air temperature, especially the summer mean temperature. Therefore, the gray level can be used as a proxy of the air temperature. The variation of the lamina gray level also represents the oscillation of Indian summer monsoon as identified in the modern climate records. The variability of the temperature in Beijing area over the last 1 ka is reconstructed. The results show that there are several cold periods corresponding to historical records. An important phenomenon is noticed that the climatic pattern before about 1400AD is different from that after about 1400AD. In Beijing area, before about 1400AD, low amplitude and high frequency temperature oscillations dominated the signal. The climate pattern is warm-dry and cold-wet. After about 1400AD, both the temperature and rainfall varied synchronously, temperature oscillated strongly and the Little Ice Age occurred. The climate pattern is cold-dry and warm-wet. This transition of the climate pattern is also observed in other worldwide paleoclimatic records, demonstrating that there was a global climate event at about 1400AD.展开更多
Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence...Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.展开更多
Abnormal crowd behaviors in high density situations can pose great danger to public safety. Despite the extensive installation of closed-circuit television(CCTV) cameras, it is still difficult to achieve real-time ale...Abnormal crowd behaviors in high density situations can pose great danger to public safety. Despite the extensive installation of closed-circuit television(CCTV) cameras, it is still difficult to achieve real-time alerts and automated responses from current systems. Two major breakthroughs have been reported in this research. Firstly, a spatial-temporal texture extraction algorithm is developed. This algorithm is able to effectively extract video textures with abundant crowd motion details. It is through adopting Gaborfiltered textures with the highest information entropy values. Secondly, a novel scheme for defining crowd motion patterns(signatures)is devised to identify abnormal behaviors in the crowd by employing an enhanced gray level co-occurrence matrix model. In the experiments, various classic classifiers are utilized to benchmark the performance of the proposed method. The results obtained exhibit detection and accuracy rates which are, overall, superior to other techniques.展开更多
Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi...Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.展开更多
With the development of satellite technology,the satellite imagery of the earth’s surface and the whole surface makes it possible to survey surface resources and master the dynamic changes of the earth with high effi...With the development of satellite technology,the satellite imagery of the earth’s surface and the whole surface makes it possible to survey surface resources and master the dynamic changes of the earth with high efficiency and low consumption.As an important tool for satellite remote sensing image processing,remote sensing image classification has become a hot topic.According to the natural texture characteristics of remote sensing images,this paper combines different texture features with the Extreme Learning Machine,and proposes a new remote sensing image classification algorithm.The experimental tests are carried out through the standard test dataset SAT-4 and SAT-6.Our results show that the proposed method is a simpler and more efficient remote sensing image classification algorithm.It also achieves 99.434%recognition accuracy on SAT-4,which is 1.5%higher than the 97.95%accuracy achieved by DeepSat.At the same time,the recognition accuracy of SAT-6 reaches 99.5728%,which is 5.6%higher than DeepSat’s 93.9%.展开更多
基金Project supported by the Science and Technology Commission of Shanghai Municipality(Grant No.09530708600)the Shanghai AM Foundation(Grant No.09700714000)
文摘The paper puts forward a method on controlling the AM-OLED panel to display image with high gray scale levels. It also gives an ASIC design sample to implement this method. A twenty sub-fields scan scheme has been taken into use in the chip to display 256 gray scale levels on a QVGA resolution AM-OLED display screen. The functions of image scaling and rotating have also been implemented for multiply application. The simulation and chip test result show that the chip design has met the design requirements.
文摘Thresholding is a popular image segmentation method that often requires as a preliminary and indis- pensable stage in the computer aided image process, particularly in the analysis of X-ray welding images. In this paper, a modified gray level difference-based transition region extraction and thresholding algorithm is presented for segmentation of the images that have been corrupted by intensity inhomogeneities or noise. Classical gray level difference algorithm is improved by selective output of the result of the maximum or the minimum of the gray level with the pixels in the surrounding, and multi-structuring of neighborhood window is used to represent the essence of transition region. The proposed algorithm could robustly measure the gray level changes, and accurately extract transition region of an image. Comparisons with other approaches demonstrate the superior performance of the proposed algorithm. K
基金Project supported by the National Natural Science Foundation of China(Grant Nos.5147113 and 51505037)the Fundamental Research Funds for the Central Universities of Ministry of Education of China(Grant Nos.3102017zy029,310832163402,and 310832163403)
文摘The mechanical properties of materials greatly depend on the microstructure morphology. The quantitative characterization of material microstructures is essential for the performance prediction and hence the material design. At present,the quantitative characterization methods mainly rely on the microstructure characterization of shape, size, distribution,and volume fraction, which related to the mechanical properties. These traditional methods have been applied for several decades and the subjectivity of human factors induces unavoidable errors. In this paper, we try to bypass the traditional operations and identify the relationship between the microstructures and the material properties by the texture of image itself directly. The statistical approach is based on gray level Co-occurrence matrix(GLCM), allowing an objective and repeatable study on material microstructures. We first present how to identify GLCM with the optimal parameters, and then apply the method on three systems with different microstructures. The results show that GLCM can reveal the interface information and microstructures complexity with less human impact. Naturally, there is a good correlation between GLCM and the mechanical properties.
文摘Since the efficiency of treatment of thyroid disorder depends on the risk of malignancy, indeterminate follicular neoplasm (FN) images should be classified. The diagnosis process has been done by visual interpretation of experienced pathologists. However, it is difficult to separate the favor benign from borderline types. Thus, this paper presents a classification approach based on 3D nuclei model to classify favor benign and borderline types of follicular thyroid adenoma (FTA) in cytological specimens. The proposed method utilized 3D gray level co-occurrence matrix (GLCM) and random forest classifier. It was applied to 22 data sets of FN images. Furthermore, the use of 3D GLCM was compared with 2D GLCM to evaluate the classification results. From experimental results, the proposed system achieved 95.45% of the classification. The use of 3D GLCM was better than 2D GLCM according to the accuracy of classification. Consequently, the proposed method probably helps a pathologist as a prescreening tool.
基金the National Natural Science Foundation of China (60903111)
文摘A novel algorithm to voxelize 3D mesh models with gray levels is presented in this paper.The key innovation of our method is to decide the gray level of a voxel according to the total area of all surfaces contained by it.During the preprocessing stage,a set of voxels in the extended bounding box of each triangle is established.Then we travel each triangle and compute the areas between it and its set of voxels one by one.Finally,each voxel is arranged a discrete gray level from 0 to 255.Experiments show that our algorithm gets a comparatively perfect result compared with the prevenient ones and approaches the original models in a more accurate way.
基金Funded by Ningbo Natural Science Foundation (No.2006A610016)
文摘Classifying the texture of granules in 2D images has aroused manifold research atten-tion for its technical challenges in image processing areas.This letter presents an aggregate texture identification approach by jointly using Gray Level Co-occurrence Probability(GLCP) and BP neural network techniques.First, up to 8 GLCP-associated texture feature parameters are defined and computed, and these consequent parameters next serve as the inputs feeding to the BP neural network to calculate the similarity to any of given aggregate texture type.A finite number of aggregate images of 3 kinds, with each containing specific type of mineral particles, are put to the identification test, experimentally proving the feasibility and robustness of the proposed method.
文摘Based on the "Grayscales average distribution" method which equally distributes the input gray levels to output gray levels, three improved methods named: "Reduce the gray range expressed by the less significant subfields", "Low levels preset" and "Modify the exponent of inverse-gamma function" are proposed in this paper. Using these methods, the inverse-gamma relation subfields code can be obtained easily which can improve the low level expressions of AC-PDP. And a program, "gray scales distribution validate program", which can enhance the expressions of the demanded gray levels range, is also proposed in this paper.
基金This paper is supported by the National Natural Science Foundation of China (NSFC) under Grant No.50775083
文摘Based on an in-depth study of wavelet gray moment, we proposed a concept of a time-division scale level moment and gave the specific definition; ulteriorly, we discussed the factors which affected the fault diagnosis ability of a time-division scale level moment. The analysis results in the caculation of six typical fault signals show that the time-division scale level moment can be used to display the detailed information of a wavelet gray level image, extract the signal's characteristics effectively, and distinguish the vibration fault. Compared to the method of a wave gray moment vector, the method mentioned in this paper can provide higher calculation speed and higher capacity of fault identification, so it is more suitable for online fault diagnosis for rotating machinery.
基金supported by the Scientific Research Staring Foundation of University of Electronic Science and Technology of China(No.ZYGX2015KYQD049)
文摘Seismic texture attributes are closely related to seismic facies and reservoir characteristics and are thus widely used in seismic data interpretation.However,information is mislaid in the stacking process when traditional texture attributes are extracted from poststack data,which is detrimental to complex reservoir description.In this study,pre-stack texture attributes are introduced,these attributes can not only capable of precisely depicting the lateral continuity of waveforms between different reflection points but also reflect amplitude versus offset,anisotropy,and heterogeneity in the medium.Due to its strong ability to represent stratigraphies,a pre-stack-data-based seismic facies analysis method is proposed using the selforganizing map algorithm.This method is tested on wide azimuth seismic data from China,and the advantages of pre-stack texture attributes in the description of stratum lateral changes are verified,in addition to the method's ability to reveal anisotropy and heterogeneity characteristics.The pre-stack texture classification results effectively distinguish different seismic reflection patterns,thereby providing reliable evidence for use in seismic facies analysis.
文摘The annual laminae gray level variations in the stalagmite TS9501 of Shihua Cave, Beijing are studied in detail. The environmental factors influencing the laminae gray level are also analyzed. The following conditions may be necessary to the study on the lamina gray level. A) The seasonal differences of climate in the studied area are strong. B) The cave has a rapid and simple hydrological connection with the surface, such that the gray level variation is great; therefore, climatic changes can be more clearly recorded in a stalagmite. C) No water from other sources due to lateral flow adds to the seepage over the cave. D) There are more organic impurities than inorganic ones, whose content changes distinctly with time in the sample. By comparison with the modern instrumental climate records, it was found that the gray level of laminae is mainly related to the air temperature, especially the summer mean temperature. Therefore, the gray level can be used as a proxy of the air temperature. The variation of the lamina gray level also represents the oscillation of Indian summer monsoon as identified in the modern climate records. The variability of the temperature in Beijing area over the last 1 ka is reconstructed. The results show that there are several cold periods corresponding to historical records. An important phenomenon is noticed that the climatic pattern before about 1400AD is different from that after about 1400AD. In Beijing area, before about 1400AD, low amplitude and high frequency temperature oscillations dominated the signal. The climate pattern is warm-dry and cold-wet. After about 1400AD, both the temperature and rainfall varied synchronously, temperature oscillated strongly and the Little Ice Age occurred. The climate pattern is cold-dry and warm-wet. This transition of the climate pattern is also observed in other worldwide paleoclimatic records, demonstrating that there was a global climate event at about 1400AD.
基金the National Natural Science Foundation of China(No.51134024/E0422)for the financial support
文摘Based on the stability and inequality of texture features between coal and rock,this study used the digital image analysis technique to propose a coal–rock interface detection method.By using gray level co-occurrence matrix,twenty-two texture features were extracted from the images of coal and rock.Data dimension of the feature space reduced to four by feature selection,which was according to a separability criterion based on inter-class mean difference and within-class scatter.The experimental results show that the optimized features were effective in improving the separability of the samples and reducing the time complexity of the algorithm.In the optimized low-dimensional feature space,the coal–rock classifer was set up using the fsher discriminant method.Using the 10-fold cross-validation technique,the performance of the classifer was evaluated,and an average recognition rate of 94.12%was obtained.The results of comparative experiments show that the identifcation performance of the proposed method was superior to the texture description method based on gray histogram and gradient histogram.
基金funded by Chinese National Natural Science Foundation (No. 61671377)Shaanxi Smart City Technology Project of Xianyang (No. 2017k01-25-5)
文摘Abnormal crowd behaviors in high density situations can pose great danger to public safety. Despite the extensive installation of closed-circuit television(CCTV) cameras, it is still difficult to achieve real-time alerts and automated responses from current systems. Two major breakthroughs have been reported in this research. Firstly, a spatial-temporal texture extraction algorithm is developed. This algorithm is able to effectively extract video textures with abundant crowd motion details. It is through adopting Gaborfiltered textures with the highest information entropy values. Secondly, a novel scheme for defining crowd motion patterns(signatures)is devised to identify abnormal behaviors in the crowd by employing an enhanced gray level co-occurrence matrix model. In the experiments, various classic classifiers are utilized to benchmark the performance of the proposed method. The results obtained exhibit detection and accuracy rates which are, overall, superior to other techniques.
基金supported by National Nature Science Foundation of China (Nos. 61462046 and 61762052)Natural Science Foundation of Jiangxi Province (Nos. 20161BAB202049 and 20161BAB204172)+2 种基金the Bidding Project of the Key Laboratory of Watershed Ecology and Geographical Environment Monitoring, NASG (Nos. WE2016003, WE2016013 and WE2016015)the Science and Technology Research Projects of Jiangxi Province Education Department (Nos. GJJ160741, GJJ170632 and GJJ170633)the Art Planning Project of Jiangxi Province (Nos. YG2016250 and YG2017381)
文摘Image registration is an indispensable component in multi-source remote sensing image processing. In this paper, we put forward a remote sensing image registration method by including an improved multi-scale and multi-direction Harris algorithm and a novel compound feature. Multi-scale circle Gaussian combined invariant moments and multi-direction gray level co-occurrence matrix are extracted as features for image matching. The proposed algorithm is evaluated on numerous multi-source remote sensor images with noise and illumination changes. Extensive experimental studies prove that our proposed method is capable of receiving stable and even distribution of key points as well as obtaining robust and accurate correspondence matches. It is a promising scheme in multi-source remote sensing image registration.
基金This work was supported in part by national science foundation project of P.R.China under Grant No.61701554State Language Commission Key Project(ZDl135-39)+1 种基金First class courses(Digital Image Processing:KC2066)MUC 111 Project,Ministry of Education Collaborative Education Project(201901056009,201901160059,201901238038).
文摘With the development of satellite technology,the satellite imagery of the earth’s surface and the whole surface makes it possible to survey surface resources and master the dynamic changes of the earth with high efficiency and low consumption.As an important tool for satellite remote sensing image processing,remote sensing image classification has become a hot topic.According to the natural texture characteristics of remote sensing images,this paper combines different texture features with the Extreme Learning Machine,and proposes a new remote sensing image classification algorithm.The experimental tests are carried out through the standard test dataset SAT-4 and SAT-6.Our results show that the proposed method is a simpler and more efficient remote sensing image classification algorithm.It also achieves 99.434%recognition accuracy on SAT-4,which is 1.5%higher than the 97.95%accuracy achieved by DeepSat.At the same time,the recognition accuracy of SAT-6 reaches 99.5728%,which is 5.6%higher than DeepSat’s 93.9%.