期刊文献+
共找到195篇文章
< 1 2 10 >
每页显示 20 50 100
Symmetrical porous graphitized carbon fabric electrodes for ultra-cryogenic and dendrite-free Zn-ion hybrid supercapacitors
1
作者 Baolong Sun Ni Wang +4 位作者 Xingchen Xie Li Zhong Lixiang He Sridhar Komarneni Wencheng Hu 《Journal of Materials Science & Technology》 2025年第6期251-261,共11页
Zinc-ion hybrid supercapacitors(ZHSCs)have enormous potential for future applications in electric vehi-cles,portable/wearable electronic gadgets,etc.However,to accelerate ZHSC technology towards market applications,it... Zinc-ion hybrid supercapacitors(ZHSCs)have enormous potential for future applications in electric vehi-cles,portable/wearable electronic gadgets,etc.However,to accelerate ZHSC technology towards market applications,it is necessary to overcome research challenges such as Zn dendrites,low Zn utilization,and all-climate adaptability,as well as to streamline the device assembly process.In this study,we propose a new strategy for the facile construction of ZHSC via two porous carbon fabrics and a Zn plating solution.The cathode and current collector of the device are both porous graphitized carbon fabric(PGCF)pre-pared by high-temperature activation of K2 FeO_(4),and the Li_(2)ZnCl_(4)·9H_(2)O electrolyte is verified to possess excellent Zn plating/stripping efficiency and inhibition of Zn dendrite growth in a Zn-Zn symmetric cell model.As a result,the assembled ZHSC has the maximum energy density of 2.02 mWh cm^(−2)and the highest power density of 11.47 mW cm^(−2),and it can operate for 30,000 cycles without capacity degrada-tion.Furthermore,the destruction of the hydrogen bonding network by the high concentration of Cl−at low temperatures endows it with low freezing point properties and excellent ionic activity at low tem-peratures.The device also operated reliably at-60℃,with a maximum areal capacity of 1.15 mAh cm^(−2).This research offers new findings and insights for the development of high-performance ultra-cryogenic ZHSC devices. 展开更多
关键词 Zn-ion hybrid supercapacitor Porous graphitized carbon fabric Li_(2)ZnCl_(4)·9H_(2)O Low-temperature
原文传递
Highly Dispersed Cobalt Nanoparticles Embedded in Nitrogen-Doped Graphitized Carbon for Fast and Durable Potassium Storage 被引量:7
2
作者 Xiaodong Shi Zhenming Xu +5 位作者 Cheng Han Runze Shi Xianwen Wu Bingan Lu Jiang Zhou Shuquan Liang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第2期1-12,共12页
Potassium-ion batteries(KIBs)have great potential for applications in large-scale energy storage devices.However,the larger radius of K+leads to sluggish kinetics and inferior cycling performance,severely restricting ... Potassium-ion batteries(KIBs)have great potential for applications in large-scale energy storage devices.However,the larger radius of K+leads to sluggish kinetics and inferior cycling performance,severely restricting its practical applicability.Herein,we propose a rational strategy involving a Prussian blue analogue-derived graphitized carbon anode with fast and durable potassium storage capability,which is constructed by encapsulating cobalt nanoparticles in nitrogen-doped graphitized carbon(Co-NC).Both experimental and theoretical results show that N-doping effectively promotes the uniform dispersion of cobalt nanoparticles in the carbon matrix through Co-N bonds.Moreover,the cobalt nanoparticles and strong Co-N bonds synergistically form a threedimensional conductive network,increase the number of adsorption sites,and reduce the diffusion energy barrier,thereby facilitating the adsorption and the diffusion kinetics.These multiple effects lead to enhanced reversible capacities of 305 and 208.6 mAh g^−1 after 100 and 300 cycles at 0.05 and 0.1 A g^−1,respectively,demonstrating the applicability of the Co-NC anode for KIBs. 展开更多
关键词 Cobalt nanoparticles Nitrogen-doped graphitized carbon Co-N bonds Cycling stability Potassium-ion batteries
在线阅读 下载PDF
FeCo alloy@N-doped graphitized carbon as an efficient cocatalyst for enhanced photocatalytic H2 evolution by inducing accelerated charge transfer 被引量:6
3
作者 Sibo Chen Yun Hau Ng +6 位作者 Jihai Liao Qiongzhi Gao Siyuan Yang Feng Peng Xinhua Zhong Yueping Fang Shengsen Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第1期92-101,I0004,共11页
Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as p... Cocatalysts play important roles in improving the activity and stability of most photocatalysts.It is of great significance to develop economical,efficient and stable cocatalysts.Herein,using Na2CoFe(CN)6 complex as precursor,a novel noble-metal-free FeCo@NGC cocatalyst(nano-FeCo alloy@N-doped graphitized carbon) is fabricated by a simple pyrolysis method.Coupling with g-C3 N4, the optimal FeCo@NGC/g-C3N4 receives a boosted visible light driven photocatalytic H2 evolution rate of 42.2 μmol h-1, which is even higher than that of 1.0 wt% Pt modified g-C3N4 photocatalyst.Based on the results of density functional theory(DFT) calculations and practical experiment measurements,such outstanding photocatalytic performance of FeCo@NGC/g-C3N4 is mainly attributed to two aspects.One is the accelerated charge transfer behavior,induced by a photogene rated electrons secondary transfer performance on the surface of FeCo alloy nanoparticles.The other is related to the adjustment of H adsorption energy(approaching the standard hydrogen electrode potential) by the presence of external NGC thin layer.Both factors play key roles in the H2 evolution reaction.Such outstanding performance highlights an enormous potential of developing noble-metal-free bimetallic nano-alloy as inexpensive and efficient cocatalysts for solar applications. 展开更多
关键词 FeCo alloy nanoparticles COCATALYST N-doped graphitized carbon g-C3N4 Visible light Hydrogen evolution
在线阅读 下载PDF
Encapsulation of bimetallic phosphides into graphitized carbon for pH-universal hydrogen evolution reaction 被引量:1
4
作者 Jian Zhou Yibo Dou +3 位作者 Tao He Xiang-Jing Kong Lin-Hua Xie Jian-Rong Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期253-261,I0005,共10页
Exploring nonprecious electrocatalysts for water splitting with high efficiency and durability is critically important.Herein,bimetallic phosphides are encapsulated into graphitized carbon to construct a C@NiCoP compo... Exploring nonprecious electrocatalysts for water splitting with high efficiency and durability is critically important.Herein,bimetallic phosphides are encapsulated into graphitized carbon to construct a C@NiCoP composite nanoarray using bimetallic metal-organic framework(MOF) as a self-sacrificial template.The resulting C@NiCoP exhibits superior performance for pH-universal electrocatalytic hydrogen evolution reaction(HER),particularly representing a low overpotential of 46.3 mV at 10 mA cm^(-2) and Tafel slope of 44.1 mV dec^(-1) in alkaline media.The structural characterizations combined with theoretical calculation demonstrate that tailored electronic structure from bimetal atoms and the synergistic effect with graphitized carbon layer could jointly optimize the adsorption ability of hydrogen on active sites in HER process,and enhance the electrical conductivity as well.In addition,the carbon layer served as a protecting shell also prevents highly dispersed NiCoP components from agglomeration and/or loss in harsh media,finally improving the durability.This work thus provides a new insight into optimizing activity and stability of pH-universal electrocatalysts by the nanostructural design and electronic structure modulation. 展开更多
关键词 Bimetallic phosphides graphitized carbon Hydrogen evolution reaction MOF template Electronic structure
在线阅读 下载PDF
In-situ carbonizing of coal pitch on the surface of silica sphere as quasi-graphitized carbon stationary phase for liquid chromatography
5
作者 Sen Xu Zhihua Zhong +2 位作者 Yu Wang Lingyi Zhang Weibing Zhang 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第7期219-221,共3页
A novel chromatography stationary phase with a quasi-graphitized carbon modified shell has been developed. Coal pitch was directly carbonized on the surface of porous silica with in-situ carbonization. The carbonized ... A novel chromatography stationary phase with a quasi-graphitized carbon modified shell has been developed. Coal pitch was directly carbonized on the surface of porous silica with in-situ carbonization. The carbonized coal pitch coating exhibits some degree of graphitization with a 78 nm-thick layer on the surface of silica and a 0.5 nm-thick layer on the inner surface of the mesopores. Based on the special structure of the graphitized carbon coating, the novel stationary phase can provide multiple interactions such as hydrophobic interaction, π-π interaction and dipole-dipole interaction. The novel composite material exhibited unique separation selectivity and excellent separation efficiency for polar compounds, including imidazoles, nucleosides and pesticides. Besides, the packed column also exhibited great repeatability with the RSDs of the retention time of nucleosides between 0.07%-0.50%(n = 5). Finally, satisfied result was achieved in the separation of fullerenes on the new column, suggesting the great potential in the industrial-scale purification of fullerenes. 展开更多
关键词 graphitized carbon Coal pitch High performance liquid chromatography Chromatographic separation FULLERENES
原文传递
Preparation of lithium-ion battery anode materials from graphitized spent carbon cathode derived from aluminum electrolysis 被引量:1
6
作者 Zhihao Zheng Mingzhuang Xie +5 位作者 Guoqing Yu Zegang Wu Jingjing Zhong Yi Wang Hongliang Zhao Fengqin Liu 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第11期2466-2475,共10页
Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and th... Graphitized spent carbon cathode(SCC)is a hazardous solid waste generated in the aluminum electrolysis process.In this study,a flotation-acid leaching process is proposed for the purification of graphitized SCC,and the use of the purified SCC as an anode material for lithium-ion batteries is explored.The flotation and acid leaching processes were separately optimized through one-way experiments.The maximum SCC carbon content(93wt%)was achieved at a 90%proportion of−200-mesh flotation particle size,a slurry concentration of 10wt%,a rotation speed of 1600 r/min,and an inflatable capacity of 0.2 m^(3)/h(referred to as FSCC).In the subsequent acid leaching process,the SCC carbon content reached 99.58wt%at a leaching concentration of 5 mol/L,a leaching time of 100 min,a leaching temperature of 85°C,and an HCl/FSCC volume ratio of 5:1.The purified graphitized SCC(referred to as FSCC-CL)was utilized as an anode material,and it exhibited an initial capacity of 348.2 mAh/g at 0.1 C and a reversible capacity of 347.8 mAh/g after 100 cycles.Moreover,compared with commercial graphite,FSCC-CL exhibited better reversibility and cycle stability.Thus,purified SCC is an important candidate for anode material,and the flotation-acid leaching purification method is suitable for the resourceful recycling of SCC. 展开更多
关键词 graphitized spent carbon cathode hazardous solid waste flotation acid leaching lithium-ion batteries
在线阅读 下载PDF
Stable Cu(Ⅰ)single copper atoms supported on porous carbon nitride nanosheets for efficient photocatalytic degradation of antibiotics 被引量:1
7
作者 Xiao-Ye Xu Xiu-Hang Liu +7 位作者 Hui-Hui Gan Ding-Nan Lu Xiao-Meng Jiang Meng-Fei Yu Shuo Pan Jia-Yue Luo Hong-Li Sun Xue-Hua Zhang 《Rare Metals》 2025年第3期1756-1766,共11页
Exploration of stable metal single-site supported porous graphitic carbon nitride(PCN)nanostructures and the development of maximum atom utilization for enhanced photocatalytic oxidation of antibiotics remains a chall... Exploration of stable metal single-site supported porous graphitic carbon nitride(PCN)nanostructures and the development of maximum atom utilization for enhanced photocatalytic oxidation of antibiotics remains a challenge in current research.This work proposed a one-step thermal copolymerization to obtain Cu(Ⅰ)doping porous carbon nitride(CUCN)through a spontaneously reducing atmosphere by urea in a covered crucible.The obtained CUCN had crumpled ultrathin nanosheets and mesoporous structures,which possessed higher specific surface areas than PCN.From X-ray absorption near edge structure(XANES)and Fourier transform extended X-ray absorption fine structure(FT-EXAFS)spectra analysis,the Cu doping existed in the oxidation state of Cu(Ⅰ)as single atoms anchored on the 2D layers of CN through two N neighbors,thereby facilitating efficient pathways for the transfer of photoexcited charge carriers.Furthermore,the photoluminescence(PL)spectra,electrochemical impedance spectra(EIS)and transient photocurrent response test proved the improved separation and transfer of photoexcited charge carriers for Cu(Ⅰ)introduction.Consequently,the photocatalytic activity of CUCN was much better than that of PCN for antibiotics norfloxacin(NOR),with 4.7-fold higher degradation reaction rate constants.From species-trapping experiments and density function theory(DFT)calculations,the Cu single atoms in Cu-N_(2)served as catalytic sites that could accelerate charge transfer and facilitate the adsorption of molecular oxygen to produce active species.The stable Cu(Ⅰ)embedded in the layer structure led to the excellent recycling test and remained stable after four runs of degradation and even thermal regenerated treatment.The degradation paths of NOR by CUCN under visible light were also demonstrated.Our work sheds light on a sustainable and practical approach for achieving stable metal single-atom doping and enhancing photocatalytic degradation of aqueous pollutants. 展开更多
关键词 Graphitic carbon nitride Antibiotic degradation Cu single copper atom Active species Degradation pathways
原文传递
Nanostructured Graphitic Carbon Nitride for Photocatalytic and Electrochemical Applications
8
作者 Muhammad Abdul Qadeer Iqra Fareed +6 位作者 Asif Hussain Muhammad Asim Farid Sadia Nazir Faheem K.Butt Ji-Jun Zou Muhammad Tahir Shang-Feng Du 《电化学(中英文)》 北大核心 2025年第1期1-30,共30页
Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic com... Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic compounds,an electrolyte for fuel cell applications or power sources,and a hydrogen storage substance and a fluorescence detector.It is fabricated using dif-ferent methods,and there is a variety of morphologies and nanostructures such as zero to three dimensions that have been designed for different purposes.Ther e are many reports about g-C_(3)N_(4) in recent years,but a comprehensive review which covers nanostructure dimensions and their properties are missing.This review paper aims to give basic and comprehensive understanding of the photocatalytic and electrocatalytic usages of g-C_(3)N_(4).It highlights the recent progress of g-C_(3)N_(4) nano-structure designing by covering synthesis methods,dimensions,morphologies,applications and properties.Along with the summary,we will also discuss the challenges and prospects.Scientists,investigators,and engineers looking at g-C_(3)N_(4) nanostructures for a variety of applications might find our review paper to be a useful resource. 展开更多
关键词 Graphitic carbon nitride HER OER Fuel cell Sustainable energy ELECTROCATALYST
在线阅读 下载PDF
Enhancing energy density in planar micro-supercapacitors:The role of few-layer graphite/carbon black/NiCo_(2)O_(4) composite materials
9
作者 ZHANG Wanggang HUANG Lei +3 位作者 WANG Menghu WANG Jian WEI Aili LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第5期646-662,共17页
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is... The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies. 展开更多
关键词 graphite/carbon black composite NiCo_(2)O_(4) screen printing planar micro-supercapacitor energy density mechanical flexibility
在线阅读 下载PDF
Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing
10
作者 Yueying Wang Jianming Xiong +3 位作者 Linwei Xin Yuanyuan Li He Huang Wenjun Miao 《Chinese Chemical Letters》 2025年第4期289-293,共5页
The rapid emergence of drug-resistant bacterial strains undermines the efficacy of conventional antibiotics,necessitating the development of alternative therapies.Antimicrobial photodynamic therapy(PDT)is a promising ... The rapid emergence of drug-resistant bacterial strains undermines the efficacy of conventional antibiotics,necessitating the development of alternative therapies.Antimicrobial photodynamic therapy(PDT)is a promising approach,but its effectiveness is often limited by the suboptimal photocatalytic activity of photosensitizers.In this study,we introduce a novel photoresponsive carbon-based antibacterial agent,Ce6/g-C_(3)N_(4),which combines the photocatalytic properties of graphite-phase carbon nitride(g-C_(3)N_(4))with the photodynamic attributes of chlorin e6(Ce6).This agent,with an average particle size of 250.7 nm,demonstrates significantly enhanced photocatalytic activity.Additionally,the strong affinity of Ce6/g-C_(3)N_(4)for bacteria and efficient delivery of Ce6 result in an inhibition rate exceeding 99%against Gram-positive bacteria and excellent biofilm eradication under light irradiation.In vivo experiments reveal that Ce6/gC_(3)N_(4)effectively inhibits bacterial growth on wounds,and promotes wound healing post-light treatment,while maintaining good biocompatibility.Overall,the Ce6/g-C_(3)N_(4)antibacterial agent synergizes photodynamic and photocatalytic mechanisms,offering a new avenue for the photo-mediated,multi-strategic treatment of bacterial infections and wound healing. 展开更多
关键词 Graphitic carbon nitride PHOTOSENSITIZER PHOTOCATALYTIC ANTIBACTERIAL Photodynamic therapy
原文传递
Emerging role of graphitic carbon nitride in advanced supercapacitors:A comprehensive review
11
作者 Priyanka Chaluvachar Y.N.Sudhakar +3 位作者 G.T.Mahesha Vishnu G.Nair Nakul Desai Dayananda K.Pai 《Journal of Energy Chemistry》 2025年第4期498-524,共27页
Graphitic carbon nitride(g-C_(3)N_(4)),known for its green and abundant nature and composed of carbon and nitrogen in a two-dimensional structure,has emerged as a significant area of interest across various discipline... Graphitic carbon nitride(g-C_(3)N_(4)),known for its green and abundant nature and composed of carbon and nitrogen in a two-dimensional structure,has emerged as a significant area of interest across various disciplines,particularly in energy conversion and storage.Its recent demonstrations of high potential in supercapacitor applications mark it as a promising alternative to graphene within the realm of materials science.Numerous favorable features,such as chemical and thermal stability,abundant nitrogen content,eco-friendly attributes,and gentle conditions for synthesis,are shown.This review summarizes recent advancements in the use of g-C_(3)N_(4)and its composites as electrodes for supercapacitors,highlighting the advantages and issues associated with g-C_(3)N_(4)in these applications.This emphasizes situations where the composition of g-C_(3)N_(4)with other materials,such as metal oxides,metal chalcogenides,carbon materials,and conducting polymers,overcomes its limitations,leading to composite materials with improved functionalities.This review discusses the challenges that still need to be addressed and the possible future roles of g-C_(3)N_(4)in the research of advanced supercapacitor technology,such as battery-hybrid supercapacitors,flexible supercapacitors,and photo-supercapacitors. 展开更多
关键词 Graphitic carbon nitride Metal oxides GRAPHENE Conducting polymers Battery-type hybrid supercapacitors Flexible supercapacitors Photo-supercapacitors
在线阅读 下载PDF
Built-in electric field induced by defected carbons adjacent to graphitic nitrogen valley for efficient oxygen reduction reaction and zinc-air batteries
12
作者 Na Li Tingting Ma +9 位作者 Huihui Wang Jiayi Li Dingrong Qiu Zhen Meng Jiangdu Huang Lijun Sui Faming Han Huidan Lu Yongping Liu Sundaram Chandrasekaran 《Journal of Energy Chemistry》 2025年第4期813-825,共13页
Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping... Rational design of defected carbons adjacent to nitrogen(N)dopants is a fascinating but challenging approach for enhancing the catalytic performance of N-doped carbon.Meanwhile,the combined effect of heteroatom doping and defect engineering can efficiently increase the oxygen reduction reaction(ORR)ability of inactive carbons through charge redistribution.Herein,we report that an enhanced built-in electric field caused by the combined effect of N-doping and carbon defects in the twodimensional(2D)mesoporous N-doped carbon nano flakes(NCNF)is a promising technique for improving ORR performance.As a result,the NCNF exhibits more promising ORR activity than Pt/C and similar performance with reported robust catalysts.Comprehensive experimental and theoretical investigations suggest that topologically defected carbon adjacent to the graphitic valley nitrogen is a real active site,rendering optimal energy for the adsorption of ORR intermediates and lowering the total energy barrier for ORR.Also,NCNF-based Zn-air batteries exhibited an excellent power density and specific capacity of~121.10 mW cm^(-2)and~679.86 mA h g_(Zn)^(-1),respectively.This study not only offers new insights into defected carbons with graphitic valley N for ORR but also proposes novel catalyst design principles and provides a solid grasp of the built-in electric field effect on the ORR performance of defective catalysts. 展开更多
关键词 Defective carbon Built-in electric field Graphitic valley nitrogen-doped carbon defects Oxygen reduction reaction Zn-air batteries
在线阅读 下载PDF
Metabolic Molecular Diagnosis of Inflammatory Bowel Disease by Synergistical Promotion of Layered Titania Nanosheets with Graphitized Carbon
13
作者 Xufang Hu Yang Zhang +2 位作者 Chunhui Deng Nianrong Sun Hao Wu 《Phenomics》 2022年第4期261-271,共11页
Due to inefficient diagnostic methods,inflammatory bowel disease(IBD)normally progresses into severe complications including cancer.Highly efficient extraction and identification of metabolic fingerprints are of signi... Due to inefficient diagnostic methods,inflammatory bowel disease(IBD)normally progresses into severe complications including cancer.Highly efficient extraction and identification of metabolic fingerprints are of significance for disease surveillance.In this work,we synthesized a layered titania nanosheet doped with graphitized carbon(2D-GC-mTNS)through a simple one-step assembly process for assisting laser desorption ionization mass spectrometry(LDI-MS)for metabolite analysis.Based on the synergistic effect of graphitized carbon and mesoporous titania,2D-GC-mTNS exhibits good extraction ability including high sensitivity(<1 fmolμL−1)and great repeatability toward metabolites.A total of 996 fingerprint spectra were collected from hundreds of native urine samples(including IBD patients and healthy controls),each of which contained 1220 m/z metabolite features.Diagnostic model was further established for precise discrimination of patients from healthy controls,with high area under the curve value of 0.972 and 0.981 toward discovery cohort and validation cohort,respectively.The 2D-GC-mTNS promotes LDI-MS to be close to clinical application,with rapid speed,minimum sample consumption and free of sample pretreatment. 展开更多
关键词 graphitized carbon Mesoporous titania METABOLITE Mass spectrometry Machine learning Diagnosis
暂未订购
MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors 被引量:1
14
作者 Ge Chu Chaohui Wang +2 位作者 Zhewei Yang Lin Qin Xin Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期395-404,共10页
The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived fro... The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived from a new triply interpenetrated co-balt metal-organic framework(Co-MOF)was prepared through the facile and robust carbonization at 1300°C and washing by HCl solu-tion.The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework,which not only contributes to high plateau capacity(105.0 mAh·g^(−1)below 0.2 V at 0.05 A·g^(−1)),but also supplies more convenient pathways for ions and increases the rate capability(128.5 mAh·g^(−1)at 3.2 A·g^(−1)).According to the kinetics analyses,it can be found that diffusion regulated surface induced capa-citive process and Li-ions intercalation process are coexisted for lithium-ion storage.Additionally,LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon(AC)cathode exhibited an increased energy density of 102.8 Wh·kg^(−1),a power dens-ity of 6017.1 W·kg^(−1),together with the excellent cyclic stability(91.6%retention after 10000 cycles at 1.0 A·g^(−1)). 展开更多
关键词 metal-organic framework porous graphitic carbon optimized plateau capacity kinetic analysis lithium-ion capacitor
在线阅读 下载PDF
Energy band engineering of graphitic carbon nitride for photocatalytic hydrogen peroxide production 被引量:2
15
作者 Tengyang Gao Degui Zhao +4 位作者 Saisai Yuan Ming Zheng Xianjuan Pu Liang Tang Zhendong Lei 《Carbon Energy》 CSCD 2024年第11期346-370,共25页
Hydrogen peroxide(H_(2)O_(2))is one of the 100 most important chemicals in the world with high energy density and environmental friendliness.Compared with anthraquinone oxidation,direct synthesis of H_(2)O_(2) with hy... Hydrogen peroxide(H_(2)O_(2))is one of the 100 most important chemicals in the world with high energy density and environmental friendliness.Compared with anthraquinone oxidation,direct synthesis of H_(2)O_(2) with hydrogen(H_(2))and oxygen(O_(2)),and electrochemical methods,photocatalysis has the characteristics of low energy consumption,easy operation and less pollution,and broad application prospects in H_(2)O_(2) generation.Various photocatalysts,such as titanium dioxide(TiO_(2)),graphitic carbon nitride(g-C_(3)N_(4)),metal-organic materials,and nonmetallic materials,have been studied for H_(2)O_(2) production.Among them,g-C_(3)N_(4) materials,which are simple to synthesize and functionalize,have attracted wide attention.The electronic band structure of g-C_(3)N_(4) shows a bandgap of 2.77 eV,a valence band maximum of 1.44 V,and a conduction band minimum of−1.33 V,which theoretically meets the requirements for hydrogen peroxide production.In comparison to semiconductor materials like TiO_(2)(3.2 eV),this material has a smaller bandgap,which results in a more efficient response to visible light.However,the photocatalytic activity of g-C_(3)N_(4) and the yield of H_(2)O_(2) were severely inhibited by the electron-hole pair with high recombination rate,low utilization rate of visible light,and poor selectivity of products.Although previous reviews also presented various strategies to improve photocatalytic H_(2)O_(2) production,they did not systematically elaborate the inherent relationship between the control strategies and their energy band structure.From this point of view,this article focuses on energy band engineering and reviews the latest research progress of g-C_(3)N_(4) photocatalytic H_(2)O_(2) production.On this basis,a strategy to improve the H_(2)O_(2) production by g-C_(3)N_(4) photocatalysis is proposed through morphology control,crystallinity and defect,and doping,combined with other materials and other strategies.Finally,the challenges and prospects of industrialization of g-C_(3)N_(4) photocatalytic H_(2)O_(2) production are discussed and envisioned. 展开更多
关键词 energy band engineering graphitic carbon nitride hydrogen peroxide PHOTOCATALYSIS various strategies
在线阅读 下载PDF
Competitive assembling strategy to construct carbon nitride homojunctions for boosting photocatalytic performance
16
作者 Hua-Wei Zhang Yuan-Yuan Li +6 位作者 Bo Li Jing-Hui Shi Tao Huang Gui-Fang Huang Anlian Pan Wangyu Hu Wei-Qing Huang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第5期23-32,共10页
Both morphology and composition have a great influence on the properties and functions of materials,however,how to rational modulate both of them to achieve their synergistic effects has been a longstanding expectatio... Both morphology and composition have a great influence on the properties and functions of materials,however,how to rational modulate both of them to achieve their synergistic effects has been a longstanding expectation.Herein,we demonstrate a competitive assembling strategy for the construction of metal-free graphite carbon nitride(CN)homojunctions in which morphology and composition can be easily controlled simultaneously by only changing the ratio of assembly raw materials.These homojunctions are comprised of porous nanotubular S-doped CN(SCN)grafted with CN nanovesicles,which are derived from thermal polycondensation of melamine-thiocyanuric acid(M-T)/melamine-cyanuric acid(M-C)supramolecular hybrid blocks.This unique architecture and component engineering endows the novel SCN-CN homojunction with abundant active sites,enhanced visible trapping ability,and intimate interface contact.As a result,the synthesized SCN-CN homojunctions demonstrate high photocatalytic activity for hydrogen evolution and pollutant degradation.This developed strategy opens up intriguing opportu-nities for the rational construction of intricate metal-free heterostructures with controllable architecture and interfacial contact for applications in energy-related fields. 展开更多
关键词 Competitive assembling strategy Supramolecular hybrid blocks HOMOJUNCTIONS Graphite carbon nitride Photocatalytic
原文传递
Novel multifunctional epoxy based graphitic carbon nitride/silanized TiO_(2) nanocomposite as protective coatings for steel surface against corrosion and flame in the shipping industry
17
作者 XAVIER Joseph Raj 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第10期3394-3422,共29页
The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The ... The chemical compound 3-(N-ethylamino)isobutyl)trimethoxysilane(EAMS)modified titanium dioxide(TiO_(2)),producing EAMS-TiO_(2),which was encased in graphitic carbon nitride(GCN)and integrated into epoxy resin(EP).The protective properties of mild steel coated with this nanocomposite in a marine environment were assessedusing electrochemical techniques.Thermogravimetric analysis(TGA)and Cone calorimetry tests demonstrated thatGCN/EAMS-TiO_(2)significantly enhanced the flame retardancy of the epoxy coating,reducing peak heat release rate(PHRR)and total heat release(THR)values by 88%and 70%,respectively,compared to pure EP.Salt spray testsindicated reduced water absorption and improved corrosion resistance.The optimal concentration of 0.6 wt%GCNEAMS/TiO_(2)yielded the highest resistance,with the nanocomposite achieving a coating resistance of 7.50×10^(10)Ω·cm^(2)after 28 d in seawater.The surface resistance of EP-GCN/EAMS-TiO_(2)was over 99.9 times higher than pure EP after onehour in seawater.SECM analysis showed the lowest ferrous ion dissipation(1.0 nA)for EP-GCN/EAMS-TiO_(2)coatedsteel.FE-SEM and EDX analyses revealed improved breakdown products and a durable inert nanolayered covering.Thenanocomposite exhibited excellent water resistance(water contact angle of 167°)and strong mechanical properties,withadhesive strength increasing to 18.3 MPa after 28 d in seawater.EP-GCN/EAMS-TiO_(2)shows potential as a coatingmaterial for the shipping industry. 展开更多
关键词 graphitic carbon nitride nanocomposites flame retardant coating corrosion functional materials
在线阅读 下载PDF
Graphitic carbons:preparation,characterization,and application on K-ion batteries
18
作者 Kang-Zhe Cao Jia-Hui Ma +5 位作者 Yu-Lian Dong Yu Duan Run-Tian Zheng Dharani Bundhooa Hui-Qiao Liu Yong Lei 《Rare Metals》 SCIE EI CAS CSCD 2024年第9期4056-4075,共20页
K-ion batteries(KIBs)have drawn much attention due to the abundant potassium reserves and wide accessibility as well as high energy density,which can be designed for large-scale energy storage systems.As the most prom... K-ion batteries(KIBs)have drawn much attention due to the abundant potassium reserves and wide accessibility as well as high energy density,which can be designed for large-scale energy storage systems.As the most promising anode materials for KIBs,graphitic carbons,especially those with an intermediate structure between the crystalline graphite and amorphous carbons become a hot research focus because of the improved rate capability and enhanced diffusion-controlled capacity at low voltage regions.Herein,we first review the structures of graphitic carbons in the view of graphitic domains and the structure changes in their K-ion intercalation compounds.Then,we summarize the preparation mechanisms and characterizations of graphitic carbons and the influence factors in their degree of graphitization.Furtherly,we illustrate the strategies to optimize their K-ion storage properties from four aspects,namely graphitic domain design,microstructure engineering,electrochemical active component regulation,and defect engineering.Finally,we propose the issues that urgently need to be solved in graphitic carbons and the possible solutions.We hope that this view could offer some inspiration for the further designing and optimizing of graphitic carbons for practical KIBs. 展开更多
关键词 Graphitic carbon K-ion battery ANODE GRAPHITE Structure design
原文传递
One dimensional pea-shaped NiSe_(2) nanoparticles encapsulated in N-doped graphitic carbon fibers to boost redox reversibility in sodium-ion batteries
19
作者 Hyunjeong Gim Achmad Yanuar Maulana +7 位作者 Jiwon Choi Jungwook Song Boram Yun Yuri Jeong Nahyun An Myeongkee Park Cybelle M.Futalan Jongsik Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第1期215-226,共12页
In recent years,sodium-ion batteries(SIBs)have emerged as a promising technology for energy storage systems(ESSs)because of the abundance and affordability of sodium.Recently,metal selenides have been studied as promi... In recent years,sodium-ion batteries(SIBs)have emerged as a promising technology for energy storage systems(ESSs)because of the abundance and affordability of sodium.Recently,metal selenides have been studied as promising high-performance conversion-type anode materials in SIBs.Among them,nickel se-lenide(NiSe_(2))has received considerable attention due to its high theoretical capacity of 495 mAh g^(-1)and conductivity.However,it still suffers from poor cycling stability because of the low electrochemical reactivity,large volume expansion,and structural instability during cycles.To address these challenges,NiSe_(2)nanoparticles encapsulated in N-doped graphitic carbon fibers(NiSe_(2)@NGCF)were synthesized by using ZIF-8 as a template.NiSe_(2)@NGCF showed a high discharge capacity of 558.3 mAh g^(-1)with a fading rate of 0.14%per cycle after 200 cycles at 0.5 A g^(-1)in 0.01-3.0 V.At a very high current density of 5 A g^(-1),the capacity still displayed excellent long-term cycle life with a discharge capacity of 406.1 mAh g^(-1)with a fading rate of 0.016%per cycle after 3000 cycles.The mechanism of the excellent electrochem-ical performance of NiSe_(2)@NGCF was thoroughly investigated by ex-situ XRD,TEM,and SEM analyses.Furthermore,NiSe_(2)@NGCF//Na_(3)V_(2)(PO_(4))_(3)full-cell also delivered an excellent reversible capacity of 378.7 mAh g^(−1)at 0.1 A g^(−1)after 50 cycles,demonstrating its potential for practical application in SIBs. 展开更多
关键词 Sodium-ion batteries Anode materials Nickel selenide N-doped graphitic carbon fibers One-dimensional electrode
原文传递
Covalently bonded ternary photocatalyst comprising MoSe_(2)/black phosphorus nanosheet/graphitic carbon nitride for efficient moxifloxacin degradation
20
作者 Yuhao Ma Yufei Zhou +3 位作者 Mingchuan Yu Cheng Fang Shaoxia Yang Junfeng Niu 《Chinese Chemical Letters》 SCIE CAS CSCD 2024年第9期356-359,共4页
Covalently bonded bridging between different semiconductors is a remarkable approach to improve the transfer of charge carriers at interfaces.In this study,we designed a ternary heterojunction(MBG)combining of molybde... Covalently bonded bridging between different semiconductors is a remarkable approach to improve the transfer of charge carriers at interfaces.In this study,we designed a ternary heterojunction(MBG)combining of molybdenum diselenide(Mo Se_(2)),black phosphorus nanosheets(Bpn)and graphitic carbon nitride(GCN).Among this MBG of Mo Se_(2)/Bpn/GCN,(i)the covalently bonded bridging effect between Bpn/GCN facilitates directional charge carrier transfer,meanwhile(ii)a Z-scheme heterojunction is formed between Mo Se_(2)/GCN to enhance the separation of photogenerated carriers.Furthermore,(iii)this composite exhibits an increased absorption for visible light.Using this MBG,photocatalytic degradation of over 98%of moxifloxacin is achieved within 20 min,with O_(2)·-confirmed as the primary photocatalytic active species.These findings provide novel insights into the construction of efficient heterojunction by covalently bonded bridging. 展开更多
关键词 Ternary heterojunction Black phosphorus nanosheets Covalent bond Photocatalytic degradation Graphitic carbon nitride
原文传递
上一页 1 2 10 下一页 到第
使用帮助 返回顶部