We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) change...We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance.展开更多
Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic com...Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic compounds,an electrolyte for fuel cell applications or power sources,and a hydrogen storage substance and a fluorescence detector.It is fabricated using dif-ferent methods,and there is a variety of morphologies and nanostructures such as zero to three dimensions that have been designed for different purposes.Ther e are many reports about g-C_(3)N_(4) in recent years,but a comprehensive review which covers nanostructure dimensions and their properties are missing.This review paper aims to give basic and comprehensive understanding of the photocatalytic and electrocatalytic usages of g-C_(3)N_(4).It highlights the recent progress of g-C_(3)N_(4) nano-structure designing by covering synthesis methods,dimensions,morphologies,applications and properties.Along with the summary,we will also discuss the challenges and prospects.Scientists,investigators,and engineers looking at g-C_(3)N_(4) nanostructures for a variety of applications might find our review paper to be a useful resource.展开更多
Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience e...Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs.展开更多
As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a h...As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a high energy density,and having abundant resource,and a low cost.However,their commercialization is hindered by the lack of practical anode materials.Among various reported anodes,conventional carbon materials,including graphite,soft carbon,and hard carbon,have emerged as promising candidates because of their abundance,low cost,high conductivity,and tunable structures.However,these materials have problems such as a low initial Coulombic efficiency,significant volume expansion,and unsatisfactory cyclability and rate performance.Various strategies to solve these have been explored,including optimizing the interlayer spacing,structural design,surface coating,constructing a multifunctional framework,and forming composites.This review provides a comprehensive overview of the recent progress in conventional carbon anodes,highlighting structural design strategies,mechanisms for improving the electrochemical performance,and underscores the critical role of these materials in promoting the practical application of PIBs.展开更多
Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The...Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface.展开更多
Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake gra...Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake graphite(FG)-modified MKPC coatings via spraying process,investigating the effects of FG size and dosage on phase composition,microstructure,mechanical properties,corrosion protection,and thermal conductivity.Results show that a low FG dosage(5 wt%)synergistically optimizes multifunctional performance.Compared to unmodified MKPC,FG2-1 exhibited exceptional impact resistance,associated with a 57%reduction in corrosion current density(icorr),a 356.3% increase in low-frequency impedance modulus(Z_(0.01 Hz))and a 37% increase in thermal conductivity.However,the coating with a high FG dosage(15 wt%)degraded performance due to defect accumulation and reduced crystallinity of KMgPO_(4)·6H_(2)O.This work advances the rational design of multifunctional inorganic coatings for extreme service environments requiring coupled corrosion protection and thermal management.展开更多
High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth...High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.展开更多
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra...CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.展开更多
Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown tha...Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond,making it highly promising for groundbreaking applications in superhard cutting tools,wide-bandgap semiconductor devices,and materials for extreme environments.As a result,the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science.This review briefly outlines the progress in this area,with a focus on the mechanisms governing its key synthesis conditions,its intrinsic physical properties,and its potential applications in various fields.展开更多
Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at hig...Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications.展开更多
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is...The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.展开更多
The stability of matrix graphite under neutron irradiation and in corrosive environments is crucial for the safe operation of molten salt reactors(MSRs).Raman spectroscopy and a slow positron beam were employed to inv...The stability of matrix graphite under neutron irradiation and in corrosive environments is crucial for the safe operation of molten salt reactors(MSRs).Raman spectroscopy and a slow positron beam were employed to investigate the effects of He ion irradiation fluences and subsequent annealing on the microstructure and defects of the matrix graphite.He ions with 500 keV energy and fluences ranging from 1.1×10^(15)ions∕cm^(2)to 3.5×10^(17)ions∕cm^(2)were used to simulate neutron irradiation at 300 K.The samples with an irradiation fluence of 3.5×10^(16)ions∕cm^(2)were subjected to isochronal annealing at different temperatures(573 K,873 K and 1173 K)for 3 h.The Raman results revealed that the D peak gradually increased,whereas the intrinsic G peak decreased with increasing irradiation fluence.At the same irradiation fluence,the D peak gradually decreased,whereas the intrinsic G peak increased with increasing annealing temperature.Slow positron beam analysis demonstrated that the density or size of irradiation defects(vacancy type)increased with higher irradiation fluence,but decreased rapidly with increasing annealing temperature.The Raman spectral analysis of sample cross sections subjected to high irradiation fluences revealed the emergence of amorphization precisely at the depth where ion damage was most pronounced,whereas the surface retained its crystalline structure.Raman and positron annihilation analyses indicated that the matrix graphite exhibited good irradiation resistance to He ions at 300 K.However,vacancy-type defects induced by He ion irradiation exhibit poor thermal stability and can be easily removed during annealing.展开更多
Pursuing green,low-carbon ironmaking technology primarily aims to reduce fuel ratios,especially coke ratios.Simultaneously,the reduction in coke ratios causes the coke layer in the blast furnace(BF)to become thinner,d...Pursuing green,low-carbon ironmaking technology primarily aims to reduce fuel ratios,especially coke ratios.Simultaneously,the reduction in coke ratios causes the coke layer in the blast furnace(BF)to become thinner,deteriorating the gas and liquid permeability of the burden column.This exacerbates coke degradation,significantly impacting the smelting process and increasing the demand for high-quality coke.To investigate the existence state of coke in the hearth,a 2500 m3 BF in China was taken as the research object,and three sets of samples at different heights of the hearth were obtained during planned outage.The results indicate that coke undergoes a significant degradation upon reaching the hearth.The proportion of coke particles smaller than 50 mm ranges from 81.22%to 89.50%.The proportion of coke particles larger than 20 mm decreases as the distance from the centerline of the tuyere increases,while the proportion of particles smaller than 10 mm increases with this distance.Additionally,the closer the bottom of the furnace is,the smaller the coke particle size becomes.The composition of slag filling the coke pores is similar to that of the final slag in the blast furnace,and the graphitization of coke is comparable to that of the final slag.The graphitization of coke starts from the surface of coke and leads to the formation of coke fines,and the graphitization degree of−74μm coke fines is the highest.The temperature has an effect on the reaction rate of coke solution loss,and the higher the temperature is,the faster the reaction rate is.展开更多
As an alternative to lithium-ion batteries,aqueous zinc-graphite batteries(ZnGBs)are being explored as safer and low-cost options with the expectation of scalability to large energy storage systems.However,the current...As an alternative to lithium-ion batteries,aqueous zinc-graphite batteries(ZnGBs)are being explored as safer and low-cost options with the expectation of scalability to large energy storage systems.However,the currently adopted polyatomic and metal complex anion intercalation process at the graphite electrode in ZnGB exhibits poor electrochemical performances.Alternatively,incorporating halogen anions offers exceptional electrochemical performance to graphite electrodes due to their redox process.In this work,ZnGBs are assembled using a LiCl/ZnCl2/KBr^(-)based water-in-salt electrolyte,which efficiently supplies bromide(Br^(−))ions for conversion into Br_(x)^(−)and facilitates Br_(2)intercalation at the graphite electrode.The conversion and intercalation of bromine together enable the ZnGB to achieve a discharge capacity of 2.73 mAh/cm^(2)with 91.0%of coulombic efficiency(CE)while supporting high current density operations of up to 150 mA/cm^(2).With high energy density(4.56 Wh/cm^(2)),high power density(199.5 mW/cm^(2)),and excellent rate capability(∼93.0%CE at 150 mA/cm^(2)),the ZnGB is shown to operate efficiently for as much as 800 cycles.Beguilingly,an anode-free ZnGB offers enhanced stability for up to 1100 cycles without performance decay,matching the electrochemical performance of Zn metal electrodes.This work provides insights into the bromine reaction mechanism at graphite electrodes and the role of surface exfoliation in enabling efficient Br_(x)^(−)formation,along with Br_(2)intercalation,for achieving high-performance ZnGBs.展开更多
Hard carbons are promising anode materials for sodium-ion batteries(SIBs),but they face challenges in balancing rate capability,specific capacity,and initial Coulombic efficiency(ICE).Direct pyrolysis of the precursor...Hard carbons are promising anode materials for sodium-ion batteries(SIBs),but they face challenges in balancing rate capability,specific capacity,and initial Coulombic efficiency(ICE).Direct pyrolysis of the precursor often fails to create a suitable structure for sodium-ion storage.Molecular-level control of graphitization with open channels for Na^(+)ions is crucial for high-performance hard carbon,whereas closed pores play a key role in improving the low-voltage(<0.1 V)plateau capacity of hard carbon anodes for SIBs.However,creation of these closed pores presents significant challenges.This work proposes a zinc gluconate-assisted catalytic carbonization strategy to regulate graphitization and create numerous nanopores simultaneously.As the temperature increases,trace amounts of zinc remain as single atoms in the hard carbon,featuring a uniform coordination structure.This mitigates the risk of electrochemically irreversible sites and enhances sodium-ion transport rates.The resulting hard carbon shows an excellent reversible capacity of 348.5 mAh g^(-1) at 30 mA g^(-1) and a high ICE of 92.84%.Furthermore,a sodium storage mechanism involving“adsorption-intercalation-pore filling”is elucidated,providing insights into the pore structure and dynamic pore-filling process.展开更多
In order to avoid poor machinability caused by excessive hardness under high-silicon conditions in the traditional free-cutting graphited steel,it is important to develop a suitable silicon-saving,aluminum-containing ...In order to avoid poor machinability caused by excessive hardness under high-silicon conditions in the traditional free-cutting graphited steel,it is important to develop a suitable silicon-saving,aluminum-containing free-cutting steel.This study investigated the microstructure and graphite precipitation behavior of Fe–0.58C–1.0Al(wt%)steels with varying silicon contents(0.55wt%–2.67wt%)after tempering at different temperatures(680℃,715℃).The tempering structure and the precipitation behavior of graphite and Fe_(3)C in Fe–0.58C–1.0Al steels were systematically studied by optical microscopy(OM),field emission scanning electron microscopy(FESEM),and electron microprobe analyzer(EPMA).The results showed that,at both tempering temperatures,the microstructure of 0.55wt%Si steel is ferrite+granular Fe_(3)C,and the microstructures of 1.38wt%–2.67wt%Si steels are ferrite+petaloid graphite+granular Fe_(3)C.With increasing Si content from 1.38wt%to 2.67wt%at constant tempering temperature,the number density of graphite particles increases,though their average size decreases.Meanwhile,the number density and average size of Fe_(3)C in experimental steels continuously decrease with the increase of Si content.For 0.55wt%Si steel without graphite precipitation,increasing tempering temperature promotes the accumulation and growth of Fe_(3)C.For 1.38wt%–2.67wt%Si steels with graphite precipitation,higher tempering temperature promotes graphite particles growth while accelerating the decomposition and refinement of Fe_(3)C.Furthermore,compared with the experimental steels containing 0.55wt%Si,1.38wt%Si,and 2.67wt%Si,the 1.89wt%Si steel exhibits significantly lower hardness.Especially,when tempered at 715℃,Fe–0.58C–1.0Al steel with 1.89wt%Si exhibits enhanced graphitization behavior and reduced hardness,which is nearly HV 20 lower than previously reported Fe–0.55C–2.33Si steel.展开更多
Rare earth metal oxides possess unique electronic properties,which are highly desirable for the fabrication of pseudocapacitor electrodes.The present study demonstrates the synthesis of boron doped graphitic carbon ni...Rare earth metal oxides possess unique electronic properties,which are highly desirable for the fabrication of pseudocapacitor electrodes.The present study demonstrates the synthesis of boron doped graphitic carbon nitride composite with varying concentrations of cerium(B-g-C_(3)N_(4)-Ce(wt%))via a facile one-pot method.A detailed investigation was carried out to elucidate the effects of doping as well as the amount of cerium on the active electrode structure.The structure and morphology of the samples were analyzed using X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),energy dispersive spectroscopy(EDS)and X-ray photoelectron spectroscopy(XPS).The structural and morphological analysis suggests the incorporation of boron into the graphitic carbon nitride phase,with spherical cerium oxide particles being embedded homogeneously in that matrix.Electrochemical characterization of the samples was carried out using cyclic voltammetry(CV),galvanostatic charge-discharge(GCD)and electrochemical impedance spectroscopy(EIS)and it is found that in-between the potential window of 0-0.45 V in a 3 mol/L potassium hydroxide(KOH)electrolyte,the Bg-C_(3)N_(4)-Ce(3%)composite displays a superior specific capacitance value of 1826.7 F/g at a current density of 1.5 A/g.The B-g-C_(3)N_(4)-Ce(3%)demonstrates excellent pseudocapacitance behavior with a high pseudocapacitance contribution.At current densities of 7.5 A/g,the heterostructure composite B-g-C_(3)N_(4)-Ce(3%)shows capacitance retention of 87%after 10000 cycles.The synergistic contribution of the individual components of the composite is explained for a better understanding of the capacitive mechanism.展开更多
The rapid emergence of drug-resistant bacterial strains undermines the efficacy of conventional antibiotics,necessitating the development of alternative therapies.Antimicrobial photodynamic therapy(PDT)is a promising ...The rapid emergence of drug-resistant bacterial strains undermines the efficacy of conventional antibiotics,necessitating the development of alternative therapies.Antimicrobial photodynamic therapy(PDT)is a promising approach,but its effectiveness is often limited by the suboptimal photocatalytic activity of photosensitizers.In this study,we introduce a novel photoresponsive carbon-based antibacterial agent,Ce6/g-C_(3)N_(4),which combines the photocatalytic properties of graphite-phase carbon nitride(g-C_(3)N_(4))with the photodynamic attributes of chlorin e6(Ce6).This agent,with an average particle size of 250.7 nm,demonstrates significantly enhanced photocatalytic activity.Additionally,the strong affinity of Ce6/g-C_(3)N_(4)for bacteria and efficient delivery of Ce6 result in an inhibition rate exceeding 99%against Gram-positive bacteria and excellent biofilm eradication under light irradiation.In vivo experiments reveal that Ce6/gC_(3)N_(4)effectively inhibits bacterial growth on wounds,and promotes wound healing post-light treatment,while maintaining good biocompatibility.Overall,the Ce6/g-C_(3)N_(4)antibacterial agent synergizes photodynamic and photocatalytic mechanisms,offering a new avenue for the photo-mediated,multi-strategic treatment of bacterial infections and wound healing.展开更多
基金Funded by Scientific and Technological Innovation Project of Carbon Emission Peak and Carbon Neutrality of Jiangsu Province(No.BE2022028-4)。
文摘We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance.
基金M Tahir is funded by EU H2020 Marie Skłodows-ka-Curie Fellowship(1439425).
文摘Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic compounds,an electrolyte for fuel cell applications or power sources,and a hydrogen storage substance and a fluorescence detector.It is fabricated using dif-ferent methods,and there is a variety of morphologies and nanostructures such as zero to three dimensions that have been designed for different purposes.Ther e are many reports about g-C_(3)N_(4) in recent years,but a comprehensive review which covers nanostructure dimensions and their properties are missing.This review paper aims to give basic and comprehensive understanding of the photocatalytic and electrocatalytic usages of g-C_(3)N_(4).It highlights the recent progress of g-C_(3)N_(4) nano-structure designing by covering synthesis methods,dimensions,morphologies,applications and properties.Along with the summary,we will also discuss the challenges and prospects.Scientists,investigators,and engineers looking at g-C_(3)N_(4) nanostructures for a variety of applications might find our review paper to be a useful resource.
文摘Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs.
文摘As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a high energy density,and having abundant resource,and a low cost.However,their commercialization is hindered by the lack of practical anode materials.Among various reported anodes,conventional carbon materials,including graphite,soft carbon,and hard carbon,have emerged as promising candidates because of their abundance,low cost,high conductivity,and tunable structures.However,these materials have problems such as a low initial Coulombic efficiency,significant volume expansion,and unsatisfactory cyclability and rate performance.Various strategies to solve these have been explored,including optimizing the interlayer spacing,structural design,surface coating,constructing a multifunctional framework,and forming composites.This review provides a comprehensive overview of the recent progress in conventional carbon anodes,highlighting structural design strategies,mechanisms for improving the electrochemical performance,and underscores the critical role of these materials in promoting the practical application of PIBs.
文摘Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface.
基金National Key Research and Development Program of China(2024YFB3714804)National Natural Science Foundation of China(52171277)+1 种基金Baima Lake Laboratory Joint Funds of the Zhejiang Provincial Natural Science Foundation of China(LBMHZ24E020001)Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2022SZ-TD006).
文摘Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake graphite(FG)-modified MKPC coatings via spraying process,investigating the effects of FG size and dosage on phase composition,microstructure,mechanical properties,corrosion protection,and thermal conductivity.Results show that a low FG dosage(5 wt%)synergistically optimizes multifunctional performance.Compared to unmodified MKPC,FG2-1 exhibited exceptional impact resistance,associated with a 57%reduction in corrosion current density(icorr),a 356.3% increase in low-frequency impedance modulus(Z_(0.01 Hz))and a 37% increase in thermal conductivity.However,the coating with a high FG dosage(15 wt%)degraded performance due to defect accumulation and reduced crystallinity of KMgPO_(4)·6H_(2)O.This work advances the rational design of multifunctional inorganic coatings for extreme service environments requiring coupled corrosion protection and thermal management.
基金Natural Science Foundation of Shanghai(24ZR1400800)he Natural Science Foundation of China(U23A20685,52073058,91963204)+1 种基金the National Key R&D Program of China(2021YFB3701400)Shanghai Sailing Program(23YF1400200)。
文摘High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials.
文摘CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency.
基金the National Natural Science Foundation of China(12274170 and 52225203)。
文摘Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond,making it highly promising for groundbreaking applications in superhard cutting tools,wide-bandgap semiconductor devices,and materials for extreme environments.As a result,the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science.This review briefly outlines the progress in this area,with a focus on the mechanisms governing its key synthesis conditions,its intrinsic physical properties,and its potential applications in various fields.
文摘Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications.
基金supported by the Shanxi Province Central Guidance Fund for Local Science and Technology Development Project(YDZJSX2024D030)the National Natural Science Foundation of China(22075197,22278290)+2 种基金the Shanxi Province Key Research and Development Program Project(2021020660301013)the Shanxi Provincial Natural Science Foundation of China(202103021224079)the Research and Development Project of Key Core and Common Technology of Shanxi Province(20201102018).
文摘The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies.
基金supported by the National Natural Science Foundation of China(Nos.12005289,52072397)State Key Laboratory of Nuclear Detection and Electronics,University of Science and Technology of China(SKLPDE-KF-202316).
文摘The stability of matrix graphite under neutron irradiation and in corrosive environments is crucial for the safe operation of molten salt reactors(MSRs).Raman spectroscopy and a slow positron beam were employed to investigate the effects of He ion irradiation fluences and subsequent annealing on the microstructure and defects of the matrix graphite.He ions with 500 keV energy and fluences ranging from 1.1×10^(15)ions∕cm^(2)to 3.5×10^(17)ions∕cm^(2)were used to simulate neutron irradiation at 300 K.The samples with an irradiation fluence of 3.5×10^(16)ions∕cm^(2)were subjected to isochronal annealing at different temperatures(573 K,873 K and 1173 K)for 3 h.The Raman results revealed that the D peak gradually increased,whereas the intrinsic G peak decreased with increasing irradiation fluence.At the same irradiation fluence,the D peak gradually decreased,whereas the intrinsic G peak increased with increasing annealing temperature.Slow positron beam analysis demonstrated that the density or size of irradiation defects(vacancy type)increased with higher irradiation fluence,but decreased rapidly with increasing annealing temperature.The Raman spectral analysis of sample cross sections subjected to high irradiation fluences revealed the emergence of amorphization precisely at the depth where ion damage was most pronounced,whereas the surface retained its crystalline structure.Raman and positron annihilation analyses indicated that the matrix graphite exhibited good irradiation resistance to He ions at 300 K.However,vacancy-type defects induced by He ion irradiation exhibit poor thermal stability and can be easily removed during annealing.
基金supported by the National Natural Science Foundation of China(Grant No.U1960205)China Baowu Low Carbon Metallurgy Innovation Foundation(Grant Nos.BWLCF202101 and BWLCF202104)China Minmetals Science and Technology Special Plan Foundation(Grant No.2020ZXA01).
文摘Pursuing green,low-carbon ironmaking technology primarily aims to reduce fuel ratios,especially coke ratios.Simultaneously,the reduction in coke ratios causes the coke layer in the blast furnace(BF)to become thinner,deteriorating the gas and liquid permeability of the burden column.This exacerbates coke degradation,significantly impacting the smelting process and increasing the demand for high-quality coke.To investigate the existence state of coke in the hearth,a 2500 m3 BF in China was taken as the research object,and three sets of samples at different heights of the hearth were obtained during planned outage.The results indicate that coke undergoes a significant degradation upon reaching the hearth.The proportion of coke particles smaller than 50 mm ranges from 81.22%to 89.50%.The proportion of coke particles larger than 20 mm decreases as the distance from the centerline of the tuyere increases,while the proportion of particles smaller than 10 mm increases with this distance.Additionally,the closer the bottom of the furnace is,the smaller the coke particle size becomes.The composition of slag filling the coke pores is similar to that of the final slag in the blast furnace,and the graphitization of coke is comparable to that of the final slag.The graphitization of coke starts from the surface of coke and leads to the formation of coke fines,and the graphitization degree of−74μm coke fines is the highest.The temperature has an effect on the reaction rate of coke solution loss,and the higher the temperature is,the faster the reaction rate is.
基金The authors acknowledge the University of Sharjah for financial support through a competitive research project grant(project number:23020406277)。
文摘As an alternative to lithium-ion batteries,aqueous zinc-graphite batteries(ZnGBs)are being explored as safer and low-cost options with the expectation of scalability to large energy storage systems.However,the currently adopted polyatomic and metal complex anion intercalation process at the graphite electrode in ZnGB exhibits poor electrochemical performances.Alternatively,incorporating halogen anions offers exceptional electrochemical performance to graphite electrodes due to their redox process.In this work,ZnGBs are assembled using a LiCl/ZnCl2/KBr^(-)based water-in-salt electrolyte,which efficiently supplies bromide(Br^(−))ions for conversion into Br_(x)^(−)and facilitates Br_(2)intercalation at the graphite electrode.The conversion and intercalation of bromine together enable the ZnGB to achieve a discharge capacity of 2.73 mAh/cm^(2)with 91.0%of coulombic efficiency(CE)while supporting high current density operations of up to 150 mA/cm^(2).With high energy density(4.56 Wh/cm^(2)),high power density(199.5 mW/cm^(2)),and excellent rate capability(∼93.0%CE at 150 mA/cm^(2)),the ZnGB is shown to operate efficiently for as much as 800 cycles.Beguilingly,an anode-free ZnGB offers enhanced stability for up to 1100 cycles without performance decay,matching the electrochemical performance of Zn metal electrodes.This work provides insights into the bromine reaction mechanism at graphite electrodes and the role of surface exfoliation in enabling efficient Br_(x)^(−)formation,along with Br_(2)intercalation,for achieving high-performance ZnGBs.
基金supported by the National Natural Science Foundation of China(22209103)Science and Technology Commission of Shanghai Municipality(22010500400)Australian Research Council(FT180100705)。
文摘Hard carbons are promising anode materials for sodium-ion batteries(SIBs),but they face challenges in balancing rate capability,specific capacity,and initial Coulombic efficiency(ICE).Direct pyrolysis of the precursor often fails to create a suitable structure for sodium-ion storage.Molecular-level control of graphitization with open channels for Na^(+)ions is crucial for high-performance hard carbon,whereas closed pores play a key role in improving the low-voltage(<0.1 V)plateau capacity of hard carbon anodes for SIBs.However,creation of these closed pores presents significant challenges.This work proposes a zinc gluconate-assisted catalytic carbonization strategy to regulate graphitization and create numerous nanopores simultaneously.As the temperature increases,trace amounts of zinc remain as single atoms in the hard carbon,featuring a uniform coordination structure.This mitigates the risk of electrochemically irreversible sites and enhances sodium-ion transport rates.The resulting hard carbon shows an excellent reversible capacity of 348.5 mAh g^(-1) at 30 mA g^(-1) and a high ICE of 92.84%.Furthermore,a sodium storage mechanism involving“adsorption-intercalation-pore filling”is elucidated,providing insights into the pore structure and dynamic pore-filling process.
基金supports by the National Natural Science Foundation of China(No.52274311)the Natural Science Research Project of Anhui Educational Committee,China(No.2023AH051081).
文摘In order to avoid poor machinability caused by excessive hardness under high-silicon conditions in the traditional free-cutting graphited steel,it is important to develop a suitable silicon-saving,aluminum-containing free-cutting steel.This study investigated the microstructure and graphite precipitation behavior of Fe–0.58C–1.0Al(wt%)steels with varying silicon contents(0.55wt%–2.67wt%)after tempering at different temperatures(680℃,715℃).The tempering structure and the precipitation behavior of graphite and Fe_(3)C in Fe–0.58C–1.0Al steels were systematically studied by optical microscopy(OM),field emission scanning electron microscopy(FESEM),and electron microprobe analyzer(EPMA).The results showed that,at both tempering temperatures,the microstructure of 0.55wt%Si steel is ferrite+granular Fe_(3)C,and the microstructures of 1.38wt%–2.67wt%Si steels are ferrite+petaloid graphite+granular Fe_(3)C.With increasing Si content from 1.38wt%to 2.67wt%at constant tempering temperature,the number density of graphite particles increases,though their average size decreases.Meanwhile,the number density and average size of Fe_(3)C in experimental steels continuously decrease with the increase of Si content.For 0.55wt%Si steel without graphite precipitation,increasing tempering temperature promotes the accumulation and growth of Fe_(3)C.For 1.38wt%–2.67wt%Si steels with graphite precipitation,higher tempering temperature promotes graphite particles growth while accelerating the decomposition and refinement of Fe_(3)C.Furthermore,compared with the experimental steels containing 0.55wt%Si,1.38wt%Si,and 2.67wt%Si,the 1.89wt%Si steel exhibits significantly lower hardness.Especially,when tempered at 715℃,Fe–0.58C–1.0Al steel with 1.89wt%Si exhibits enhanced graphitization behavior and reduced hardness,which is nearly HV 20 lower than previously reported Fe–0.55C–2.33Si steel.
基金supported by Indian National Science Academy Visiting Scientist Fellowship(INSA/SP/VSP-15/2022-23)。
文摘Rare earth metal oxides possess unique electronic properties,which are highly desirable for the fabrication of pseudocapacitor electrodes.The present study demonstrates the synthesis of boron doped graphitic carbon nitride composite with varying concentrations of cerium(B-g-C_(3)N_(4)-Ce(wt%))via a facile one-pot method.A detailed investigation was carried out to elucidate the effects of doping as well as the amount of cerium on the active electrode structure.The structure and morphology of the samples were analyzed using X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),energy dispersive spectroscopy(EDS)and X-ray photoelectron spectroscopy(XPS).The structural and morphological analysis suggests the incorporation of boron into the graphitic carbon nitride phase,with spherical cerium oxide particles being embedded homogeneously in that matrix.Electrochemical characterization of the samples was carried out using cyclic voltammetry(CV),galvanostatic charge-discharge(GCD)and electrochemical impedance spectroscopy(EIS)and it is found that in-between the potential window of 0-0.45 V in a 3 mol/L potassium hydroxide(KOH)electrolyte,the Bg-C_(3)N_(4)-Ce(3%)composite displays a superior specific capacitance value of 1826.7 F/g at a current density of 1.5 A/g.The B-g-C_(3)N_(4)-Ce(3%)demonstrates excellent pseudocapacitance behavior with a high pseudocapacitance contribution.At current densities of 7.5 A/g,the heterostructure composite B-g-C_(3)N_(4)-Ce(3%)shows capacitance retention of 87%after 10000 cycles.The synergistic contribution of the individual components of the composite is explained for a better understanding of the capacitive mechanism.
基金supported by the Natural Science Foundation of the Jiangsu Higher Education Institutes of China(No.22KJB530006)Hainan Provincial Natural Science Foundation of China(No.824QN267)。
文摘The rapid emergence of drug-resistant bacterial strains undermines the efficacy of conventional antibiotics,necessitating the development of alternative therapies.Antimicrobial photodynamic therapy(PDT)is a promising approach,but its effectiveness is often limited by the suboptimal photocatalytic activity of photosensitizers.In this study,we introduce a novel photoresponsive carbon-based antibacterial agent,Ce6/g-C_(3)N_(4),which combines the photocatalytic properties of graphite-phase carbon nitride(g-C_(3)N_(4))with the photodynamic attributes of chlorin e6(Ce6).This agent,with an average particle size of 250.7 nm,demonstrates significantly enhanced photocatalytic activity.Additionally,the strong affinity of Ce6/g-C_(3)N_(4)for bacteria and efficient delivery of Ce6 result in an inhibition rate exceeding 99%against Gram-positive bacteria and excellent biofilm eradication under light irradiation.In vivo experiments reveal that Ce6/gC_(3)N_(4)effectively inhibits bacterial growth on wounds,and promotes wound healing post-light treatment,while maintaining good biocompatibility.Overall,the Ce6/g-C_(3)N_(4)antibacterial agent synergizes photodynamic and photocatalytic mechanisms,offering a new avenue for the photo-mediated,multi-strategic treatment of bacterial infections and wound healing.