期刊文献+
共找到1,162篇文章
< 1 2 59 >
每页显示 20 50 100
Oxidation Resistance of Form-stable Hightemperature Phase Change Thermal Energy Storage Materials Doped by Impregnated Graphite
1
作者 LI Baorang DAI Jianhuan +2 位作者 ZHANG Wei LIU Xiangchen YANG Liu 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2025年第1期1-12,共12页
We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) change... We adopted the solution impregnation route with aluminum dihydrogen phosphate solution as liquid medium for effective surface modification on graphite substrate.The mass ratio of graphite to Al(H_(2)PO_(4))_(3) changed from 0.5:1 to 4:1,and the impregnation time changed from 1 to 7 h.The typical composite phase change thermal storage materials doped with the as-treated graphite were fabricated using form-stable technique.To investigate the oxidation and anti-oxidation behavior of the impregnated graphite at high temperatures,the samples were put into a muffle furnace for a cyclic heat test.Based on SEM,EDS,DSC techniques,analyses on the impregnated technique suggested an optimized processing conditions of a 3 h impregnation time with the ratio of graphite:Al(H_(2)PO_(4))_(3) as 1:3 for graphite impregnation treatment.Further investigations on high-temperature phase change heat storage materials doped by the treated graphite suggested excellent oxidation resistance and thermal cycling performance. 展开更多
关键词 phase change materials GRAPHITE impregnation method oxidation sintering thermal analysis
原文传递
Nanostructured Graphitic Carbon Nitride for Photocatalytic and Electrochemical Applications
2
作者 Muhammad Abdul Qadeer Iqra Fareed +6 位作者 Asif Hussain Muhammad Asim Farid Sadia Nazir Faheem K.Butt Ji-Jun Zou Muhammad Tahir Shang-Feng Du 《电化学(中英文)》 北大核心 2025年第1期1-30,共30页
Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic com... Graphitic carbon nitride(g-C_(3)N_(4))exhibits great mechanical as well as thermal characteristics,making it a valuable ma-terial for use in photoelectric conversion devices,an accelerator for synthesis of organic compounds,an electrolyte for fuel cell applications or power sources,and a hydrogen storage substance and a fluorescence detector.It is fabricated using dif-ferent methods,and there is a variety of morphologies and nanostructures such as zero to three dimensions that have been designed for different purposes.Ther e are many reports about g-C_(3)N_(4) in recent years,but a comprehensive review which covers nanostructure dimensions and their properties are missing.This review paper aims to give basic and comprehensive understanding of the photocatalytic and electrocatalytic usages of g-C_(3)N_(4).It highlights the recent progress of g-C_(3)N_(4) nano-structure designing by covering synthesis methods,dimensions,morphologies,applications and properties.Along with the summary,we will also discuss the challenges and prospects.Scientists,investigators,and engineers looking at g-C_(3)N_(4) nanostructures for a variety of applications might find our review paper to be a useful resource. 展开更多
关键词 Graphitic carbon nitride HER OER Fuel cell Sustainable energy ELECTROCATALYST
在线阅读 下载PDF
A review of strategies to produce a fast-charging graphite anode in lithium-ion batteries
3
作者 LIANG Jin QIN Ze +4 位作者 QUAN Zhong HAO Jing QIN Xian-ying LI Bao-hua KANG Fei-yu 《新型炭材料(中英文)》 北大核心 2025年第4期738-765,共28页
Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience e... Lithium-ion batteries(LIBs)are an electrochemical energy storage technology that has been widely used for portable electrical devices,electric vehicles,and grid storage,etc.To satisfy the demand for user convenience especially for electric vehicles,the development of a fast-charging technology for LIBs has become a critical focus.In commercial LIBs,the slow kinetics of Li+intercalation into the graphite anode from the electrolyte solution is known as the main restriction for fast-charging.We summarize the recent advances in obtaining fast-charging graphite-based anodes,mainly involving modifications of the electrolyte solution and graphite anode.Specifically,strategies for increasing the ionic conductivity and regulating the Li+solvation/desolvation state in the electrolyte solution,as well as optimizing the fabrication and the intrinsic activity of graphite-based anodes are discussed in detail.This review considers practical ways to obtain fast Li+intercalation kinetics into a graphite anode from the electrolyte as well as analysing progress in the commercialization of fast-charging LIBs. 展开更多
关键词 Fast charging GRAPHITE Lithium-ion batteries Electrolyte solution SOLVATION
在线阅读 下载PDF
Conventional carbon anodes for potassium-ion batteries:Progress,challenges and prospects
4
作者 CAO Bin CUI Zheng +2 位作者 LIU Huan ZHANG Shuang-yin XU Bin 《新型炭材料(中英文)》 北大核心 2025年第4期717-737,共21页
As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a h... As an emerging electrochemical energy storage technology,potassium-ion batteries(PIBs),which are considered a“beyond Li-ion”battery system,have attracted tremendous attention due to their potential for providing a high energy density,and having abundant resource,and a low cost.However,their commercialization is hindered by the lack of practical anode materials.Among various reported anodes,conventional carbon materials,including graphite,soft carbon,and hard carbon,have emerged as promising candidates because of their abundance,low cost,high conductivity,and tunable structures.However,these materials have problems such as a low initial Coulombic efficiency,significant volume expansion,and unsatisfactory cyclability and rate performance.Various strategies to solve these have been explored,including optimizing the interlayer spacing,structural design,surface coating,constructing a multifunctional framework,and forming composites.This review provides a comprehensive overview of the recent progress in conventional carbon anodes,highlighting structural design strategies,mechanisms for improving the electrochemical performance,and underscores the critical role of these materials in promoting the practical application of PIBs. 展开更多
关键词 Potassium-ion batteries Carbon anode GRAPHITE Soft carbon Hard carbon
在线阅读 下载PDF
Influence of bismuth trisulfide on the electrochemical performance of iron electrode
5
作者 ZHANG Yi LI Guang +1 位作者 FAN Wenxuan YI Qingfeng 《无机化学学报》 北大核心 2025年第6期1196-1206,共11页
Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The... Iron(Fe)nanoparticles and graphite(Gr)with different masses of bismuth trisulfide(Bi_(2)S_(3))were mixed by high-energy ball milling treatment to fabricate the corresponding composite iron anodes Bi_(2)S_(3)@Fe-Gr.The hydrogen evolution reaction and iron passivation process on these iron electrodes were investigated in alkaline and neutral solutions.The iron electrode Bi_(2)S_(3)-3@Fe-Gr(The additional amount of Bi_(2)S_(3)was 3 mg)revealed the strongest ability to inhibit hydrogen evolution among the iron electrodes of the present investigation,while the Bi_(2)S_(3)-6@Fe-Gr electrode(The additional amount of Bi_(2)S_(3)was 6 mg)delivered significant performance in inhibiting anodic passivation.This is because the high-energy ball milling process leads to the well-dispersion of Bi_(2)S_(3)and the changes in the surface of Fe nanoparticles,thereby slowing down the passivation of the iron electrode surface. 展开更多
关键词 iron-air battery bismuth trisulfide GRAPHITE PASSIVATION hydrogen evolution reaction
在线阅读 下载PDF
Flake Graphite on Mechanical,Anti-corrosion,and Thermal Conductivity Properties of Magnesium Potassium Phosphate Coating
6
作者 FAN Bingcheng ZHENG Yaxin LIU Yi 《材料科学与工程学报》 北大核心 2025年第5期732-742,795,共12页
Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake gra... Magnesium potassium phosphate cement(MKPC)coatings exhibit potential for carbon steel protection but face challenges in practical application due to the preparation process and properties.This study develops flake graphite(FG)-modified MKPC coatings via spraying process,investigating the effects of FG size and dosage on phase composition,microstructure,mechanical properties,corrosion protection,and thermal conductivity.Results show that a low FG dosage(5 wt%)synergistically optimizes multifunctional performance.Compared to unmodified MKPC,FG2-1 exhibited exceptional impact resistance,associated with a 57%reduction in corrosion current density(icorr),a 356.3% increase in low-frequency impedance modulus(Z_(0.01 Hz))and a 37% increase in thermal conductivity.However,the coating with a high FG dosage(15 wt%)degraded performance due to defect accumulation and reduced crystallinity of KMgPO_(4)·6H_(2)O.This work advances the rational design of multifunctional inorganic coatings for extreme service environments requiring coupled corrosion protection and thermal management. 展开更多
关键词 Flake graphite ANTI-CORROSION Thermal conductivity Inorganic coatings
在线阅读 下载PDF
Improving the fracture strain of graphite materials by in-situ porosity introduction by two-step sintering
7
作者 GU Shi-jia CHEN Han-lin +3 位作者 WANG Jun-zhuo LU Xiao-fang WANG Lian-jun JIANG Wan 《新型炭材料(中英文)》 北大核心 2025年第3期703-716,共14页
High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production meth... High-performance graphite materials have important roles in aerospace and nuclear reactor technologies because of their outstanding chemical stability and high-temperature performance.Their traditional production method relies on repeated impregnation-carbonization and graphitization,and is plagued by lengthy preparation cycles and high energy consumption.Phase transition-assisted self-pressurized selfsintering technology can rapidly produce high-strength graphite materials,but the fracture strain of the graphite materials produced is poor.To solve this problem,this study used a two-step sintering method to uniformly introduce micro-nano pores into natural graphite-based bulk graphite,achieving improved fracture strain of the samples without reducing their density and mechanical properties.Using natural graphite powder,micron-diamond,and nano-diamond as raw materials,and by precisely controlling the staged pressure release process,the degree of diamond phase transition expansion was effectively regulated.The strain-to-failure of the graphite samples reached 1.2%,a 35%increase compared to samples produced by fullpressure sintering.Meanwhile,their flexural strength exceeded 110 MPa,and their density was over 1.9 g/cm^(3).The process therefore produced both a high strength and a high fracture strain.The interface evolution and toughening mechanism during the two-step sintering process were investigated.It is believed that the micro-nano pores formed have two roles:as stress concentrators they induce yielding by shear and as multi-crack propagation paths they significantly lengthen the crack propagation path.The two-step sintering phase transition strategy introduces pores and provides a new approach for increasing the fracture strain of brittle materials. 展开更多
关键词 High-performance graphite Phase transition control Two-step sintering process Fracture strain IN-SITU
在线阅读 下载PDF
美国Graphitic Energy公司启动甲烷热解中试工厂
8
作者 燕春晖(摘译) 《石油炼制与化工》 北大核心 2025年第7期68-68,共1页
甲烷热解技术作为一种低排放制氢路径,正逐步从实验室走向工程化验证。美国初创企业Graphitic Energy公司宣布,其位于美国得克萨斯州圣安东尼奥的甲烷热解中试工厂已投入运行。该装置每日可将天然气转化为1 t固态碳和数百千克低碳氢,标... 甲烷热解技术作为一种低排放制氢路径,正逐步从实验室走向工程化验证。美国初创企业Graphitic Energy公司宣布,其位于美国得克萨斯州圣安东尼奥的甲烷热解中试工厂已投入运行。该装置每日可将天然气转化为1 t固态碳和数百千克低碳氢,标志着“绿松石氢”(又称“蓝绿氢”,Turquoise Hydrogen)生产技术向商业化迈出关键一步。此项目依托该公司近期追加的1500万美元A轮融资支持,将在美国西南研究院持续运行至2025年底。 展开更多
关键词 甲烷热解 Graphitic Energy 中试工厂
在线阅读 下载PDF
Constructing graphite-CeO_(2)interfaces to enhance the photothermal activity for solar-driven dry reforming of methane
9
作者 LI Ruitao GONG Kun +3 位作者 DAI Yuanyuan NIU Qiang LIN Tiejun ZHONG Liangshu 《燃料化学学报(中英文)》 北大核心 2025年第8期1137-1147,共11页
CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed gra... CeO_(2) based semiconductor are widely used in solar-driven photothermal catalytic dry reforming of methane(DRM)reaction,but still suffer from low activity and low light utilization efficiency.This study developed graphite-CeO_(2) interfaces to enhance solar-driven photothermal catalytic DRM.Compared with carbon nanotubes-modified CeO_(2)(CeO_(2)-CNT),graphite-modified CeO_(2)(CeO_(2)-GRA)constructed graphite-CeO_(2) interfaces with distortion in CeO_(2),leading to the formation abundant oxygen vacancies.These graphite-CeO_(2) interfaces with oxygen vacancies enhanced optical absorption and promoted the generation and separation of photogenerated carriers.The high endothermic capacity of graphite elevated the catalyst surface temperature from 592.1−691.3℃,boosting light-to-thermal conversion.The synergy between photogenerated carriers and localized heat enabled Ni/CeO_(2)-GRA to achieve a CO production rate of 9985.6 mmol/(g·h)(vs 7192.4 mmol/(g·h)for Ni/CeO_(2))and a light-to-fuel efficiency of 21.8%(vs 13.8%for Ni/CeO_(2)).This work provides insights for designing graphite-semiconductor interfaces to advance photothermal catalytic efficiency. 展开更多
关键词 dry reforming of methane photothermal catalysis CeO_(2) GRAPHITE INTERFACES
在线阅读 下载PDF
Synthesis of hexagonal diamond:A review
10
作者 CHEN De-si LI Heng-yu +1 位作者 DONG Jia-jun YAO Ming-guang 《新型炭材料(中英文)》 北大核心 2025年第3期584-596,共13页
Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown tha... Lonsdaleite,also known as hexagonal diamond,is an allotrope of carbon with a hexagonal crystal structure,which was discovered in the nanostructure of the Canyon Diablo meteorite.Theoretical calculations have shown that this structure gives it exceptional physical properties that exceed those of cubic diamond,making it highly promising for groundbreaking applications in superhard cutting tools,wide-bandgap semiconductor devices,and materials for extreme environments.As a result,the controllable synthesis of hexagonal diamond has emerged as a cutting-edge research focus in materials science.This review briefly outlines the progress in this area,with a focus on the mechanisms governing its key synthesis conditions,its intrinsic physical properties,and its potential applications in various fields. 展开更多
关键词 Hexagonal diamond GRAPHITE High pressure and high temperature Phase transition mechanism Widebandgap semiconductors
在线阅读 下载PDF
Controllable Synthesis of Few⁃layer Graphene/Cu Powders by Additives
11
作者 MA Yu YANG Jun FU Jinliang 《材料导报》 北大核心 2025年第S1期441-447,共7页
Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at hig... Cu suffers from oxidation and corrosion during application due to its active chemical properties.Graphene⁃modified Cu can significantly improve its stability during application.However,copper is easily sintered at high temperatures,so that graphene cannot be grown inside.We demonstrate two kinds of spacers,graphite and SiO_(2),which are effective in preventing the sintering of copper and are used to assist in the growth of graphene.In the Cu⁃C system,the nucleation of graphene is scarce,and it tends to nucleate and grow on the concave surface of copper first,and then grow epitaxially to the convex surface of copper.Eventually,the obtained graphene is relatively thick.In the Cu⁃SiO_(2) system,due to the oxygen released by SiO_(2) at high temperatures,the surface of copper becomes rough.This leads to an increase in the number of graphene nucleation sites without preferred orientation,and relatively thin graphene is obtained.Two different growth mechanisms have been established for spacerseffects on graphene growth.It provides insights for graphene engineering for further applications. 展开更多
关键词 graphene/Cu powder silicon dioxides graphite antisintering chemical vapor deposition(CVD)
在线阅读 下载PDF
Enhancing energy density in planar micro-supercapacitors:The role of few-layer graphite/carbon black/NiCo_(2)O_(4) composite materials
12
作者 ZHANG Wanggang HUANG Lei +3 位作者 WANG Menghu WANG Jian WEI Aili LIU Yiming 《燃料化学学报(中英文)》 北大核心 2025年第5期646-662,共17页
The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this is... The advancement of planar micro-supercapacitors(PMSCs)for micro-electromechanical systems(MEMS)has been significantly hindered by the challenge of achieving high energy and power densities.This study addresses this issue by leveraging screen-printing technology to fabricate high-performance PMSCs using innovative composite ink.The ink,a synergistic blend of few-layer graphene(Gt),carbon black(CB),and NiCo_(2)O_(4),was meticulously mixed to form a conductive and robust coating that enhanced the capacitive performance of the PMSCs.The optimized ink formulation and printing process result in a micro-supercapacitor with an exceptional areal capacitance of 18.95 mF/cm^(2)and an areal energy density of 2.63μW·h/cm^(2)at a current density of 0.05 mA/cm^(2),along with an areal power density of 0.025 mW/cm^(2).The devices demonstrated impressive durability with a capacitance retention rate of 94.7%after a stringent 20000-cycle test,demonstrating their potential for long-term applications.Moreover,the PMSCs displayed excellent mechanical flexibility,with a capacitance decrease of only 3.43%after 5000 bending cycles,highlighting their suitability for flexible electronic devices.The ease of integrating these PMSCs into series and parallel configurations for customized power further underscores their practicality for integrated power supply solutions in various technologies. 展开更多
关键词 graphite/carbon black composite NiCo_(2)O_(4) screen printing planar micro-supercapacitor energy density mechanical flexibility
在线阅读 下载PDF
Correction to: Tuning dual three-dimensional porous copper/graphite composite to achieve diversified utilization of copper current collector for lithium storage
13
作者 Xia Ma Zhi-Jia Zhang +7 位作者 Jia-Min Wang Shi-Hao Sun Shao-Fei Zhang Shen Yuan Zhi-Jun Qiao Zhen-Yang Yu Jian-Li Kang Wei-Jie Li 《Rare Metals》 2025年第2期1409-1409,共1页
In the original publication, incomplete Fig. 1 has been published. The correct version of Fig. 1 is provided in this correction.
关键词 GRAPHITE tuning COMPOSITE three dimensional current collector POROUS DUAL COPPER
原文传递
Positron annihilation study of defect formation and evolution in matrix graphite under He ion irradiation
14
作者 Hong-Xia Xu Jian-Dang Liu +8 位作者 Bang-Jiao Ye Zi-Wen Pan Jun Lin Jin-Liang Song Jian-Qing Cao Chao Yan Ying-Ping Hao Jin-Xing Cheng Qing-Bo Wang 《Nuclear Science and Techniques》 2025年第1期13-21,共9页
The stability of matrix graphite under neutron irradiation and in corrosive environments is crucial for the safe operation of molten salt reactors(MSRs).Raman spectroscopy and a slow positron beam were employed to inv... The stability of matrix graphite under neutron irradiation and in corrosive environments is crucial for the safe operation of molten salt reactors(MSRs).Raman spectroscopy and a slow positron beam were employed to investigate the effects of He ion irradiation fluences and subsequent annealing on the microstructure and defects of the matrix graphite.He ions with 500 keV energy and fluences ranging from 1.1×10^(15)ions∕cm^(2)to 3.5×10^(17)ions∕cm^(2)were used to simulate neutron irradiation at 300 K.The samples with an irradiation fluence of 3.5×10^(16)ions∕cm^(2)were subjected to isochronal annealing at different temperatures(573 K,873 K and 1173 K)for 3 h.The Raman results revealed that the D peak gradually increased,whereas the intrinsic G peak decreased with increasing irradiation fluence.At the same irradiation fluence,the D peak gradually decreased,whereas the intrinsic G peak increased with increasing annealing temperature.Slow positron beam analysis demonstrated that the density or size of irradiation defects(vacancy type)increased with higher irradiation fluence,but decreased rapidly with increasing annealing temperature.The Raman spectral analysis of sample cross sections subjected to high irradiation fluences revealed the emergence of amorphization precisely at the depth where ion damage was most pronounced,whereas the surface retained its crystalline structure.Raman and positron annihilation analyses indicated that the matrix graphite exhibited good irradiation resistance to He ions at 300 K.However,vacancy-type defects induced by He ion irradiation exhibit poor thermal stability and can be easily removed during annealing. 展开更多
关键词 GRAPHITE Positron annihilation IRRADIATION Raman spectrum
在线阅读 下载PDF
Analysis of existence state and deterioration mechanism of coke in a blast furnace hearth
15
作者 Wen-quan Niu Jing-song Wang +3 位作者 Guang Wang Hai-bin Zuo Xue-feng She Qing-guo Xue 《Journal of Iron and Steel Research International》 2025年第4期883-893,共11页
Pursuing green,low-carbon ironmaking technology primarily aims to reduce fuel ratios,especially coke ratios.Simultaneously,the reduction in coke ratios causes the coke layer in the blast furnace(BF)to become thinner,d... Pursuing green,low-carbon ironmaking technology primarily aims to reduce fuel ratios,especially coke ratios.Simultaneously,the reduction in coke ratios causes the coke layer in the blast furnace(BF)to become thinner,deteriorating the gas and liquid permeability of the burden column.This exacerbates coke degradation,significantly impacting the smelting process and increasing the demand for high-quality coke.To investigate the existence state of coke in the hearth,a 2500 m3 BF in China was taken as the research object,and three sets of samples at different heights of the hearth were obtained during planned outage.The results indicate that coke undergoes a significant degradation upon reaching the hearth.The proportion of coke particles smaller than 50 mm ranges from 81.22%to 89.50%.The proportion of coke particles larger than 20 mm decreases as the distance from the centerline of the tuyere increases,while the proportion of particles smaller than 10 mm increases with this distance.Additionally,the closer the bottom of the furnace is,the smaller the coke particle size becomes.The composition of slag filling the coke pores is similar to that of the final slag in the blast furnace,and the graphitization of coke is comparable to that of the final slag.The graphitization of coke starts from the surface of coke and leads to the formation of coke fines,and the graphitization degree of−74μm coke fines is the highest.The temperature has an effect on the reaction rate of coke solution loss,and the higher the temperature is,the faster the reaction rate is. 展开更多
关键词 Blast furnace HEARTH COKE GRAPHITIZATION Dissolution reaction
原文传递
High-performance water-in-salt electrolyte-enabled zinc-graphite batteries with bromine dual electrochemical processes
16
作者 Sirugaloor Thangavel Senthilkumar Maryam Mouselly +2 位作者 Javad B.M.Parambath Anis Allagui Hussain Alawadhi 《Journal of Energy Chemistry》 2025年第8期345-356,共12页
As an alternative to lithium-ion batteries,aqueous zinc-graphite batteries(ZnGBs)are being explored as safer and low-cost options with the expectation of scalability to large energy storage systems.However,the current... As an alternative to lithium-ion batteries,aqueous zinc-graphite batteries(ZnGBs)are being explored as safer and low-cost options with the expectation of scalability to large energy storage systems.However,the currently adopted polyatomic and metal complex anion intercalation process at the graphite electrode in ZnGB exhibits poor electrochemical performances.Alternatively,incorporating halogen anions offers exceptional electrochemical performance to graphite electrodes due to their redox process.In this work,ZnGBs are assembled using a LiCl/ZnCl2/KBr^(-)based water-in-salt electrolyte,which efficiently supplies bromide(Br^(−))ions for conversion into Br_(x)^(−)and facilitates Br_(2)intercalation at the graphite electrode.The conversion and intercalation of bromine together enable the ZnGB to achieve a discharge capacity of 2.73 mAh/cm^(2)with 91.0%of coulombic efficiency(CE)while supporting high current density operations of up to 150 mA/cm^(2).With high energy density(4.56 Wh/cm^(2)),high power density(199.5 mW/cm^(2)),and excellent rate capability(∼93.0%CE at 150 mA/cm^(2)),the ZnGB is shown to operate efficiently for as much as 800 cycles.Beguilingly,an anode-free ZnGB offers enhanced stability for up to 1100 cycles without performance decay,matching the electrochemical performance of Zn metal electrodes.This work provides insights into the bromine reaction mechanism at graphite electrodes and the role of surface exfoliation in enabling efficient Br_(x)^(−)formation,along with Br_(2)intercalation,for achieving high-performance ZnGBs. 展开更多
关键词 Zinc-graphite battery High capacity Bromide ions Graphite exfoliation Water-in-salt
在线阅读 下载PDF
Transformative Catalytic Carbon Conversion Enabling Superior Graphitization and Nanopore Engineering in Hard Carbon Anodes for Sodium-Ion Batteries
17
作者 Guilai Zhang Hong Gao +14 位作者 Dingyi Zhang Jun Xiao Limeng Sun Jiayi Li Congcong Li Yiwen Sun Xinyao Yuan Peng Huang Yi Xu Xin Guo Yufei Zhao Yong Wang Yao Xiao Guoxiu Wang Hao Liu 《Carbon Energy》 2025年第6期37-46,共10页
Hard carbons are promising anode materials for sodium-ion batteries(SIBs),but they face challenges in balancing rate capability,specific capacity,and initial Coulombic efficiency(ICE).Direct pyrolysis of the precursor... Hard carbons are promising anode materials for sodium-ion batteries(SIBs),but they face challenges in balancing rate capability,specific capacity,and initial Coulombic efficiency(ICE).Direct pyrolysis of the precursor often fails to create a suitable structure for sodium-ion storage.Molecular-level control of graphitization with open channels for Na^(+)ions is crucial for high-performance hard carbon,whereas closed pores play a key role in improving the low-voltage(<0.1 V)plateau capacity of hard carbon anodes for SIBs.However,creation of these closed pores presents significant challenges.This work proposes a zinc gluconate-assisted catalytic carbonization strategy to regulate graphitization and create numerous nanopores simultaneously.As the temperature increases,trace amounts of zinc remain as single atoms in the hard carbon,featuring a uniform coordination structure.This mitigates the risk of electrochemically irreversible sites and enhances sodium-ion transport rates.The resulting hard carbon shows an excellent reversible capacity of 348.5 mAh g^(-1) at 30 mA g^(-1) and a high ICE of 92.84%.Furthermore,a sodium storage mechanism involving“adsorption-intercalation-pore filling”is elucidated,providing insights into the pore structure and dynamic pore-filling process. 展开更多
关键词 catalytic carbonization GRAPHITIZATION hard carbon NANOPORES sodium-ion batteries
在线阅读 下载PDF
Effect of Si content and tempering temperature on microstructure and precipitation behavior of graphite particles in Fe -0.58C-1.0Al steel
18
作者 Yong Wan Lijie Tian +5 位作者 Qing Tang Jianwei Hou Fengyou Qi Xingli Zhang Jinzhong Zuo Yonghong Wen 《International Journal of Minerals,Metallurgy and Materials》 2025年第8期1902-1912,共11页
In order to avoid poor machinability caused by excessive hardness under high-silicon conditions in the traditional free-cutting graphited steel,it is important to develop a suitable silicon-saving,aluminum-containing ... In order to avoid poor machinability caused by excessive hardness under high-silicon conditions in the traditional free-cutting graphited steel,it is important to develop a suitable silicon-saving,aluminum-containing free-cutting steel.This study investigated the microstructure and graphite precipitation behavior of Fe–0.58C–1.0Al(wt%)steels with varying silicon contents(0.55wt%–2.67wt%)after tempering at different temperatures(680℃,715℃).The tempering structure and the precipitation behavior of graphite and Fe_(3)C in Fe–0.58C–1.0Al steels were systematically studied by optical microscopy(OM),field emission scanning electron microscopy(FESEM),and electron microprobe analyzer(EPMA).The results showed that,at both tempering temperatures,the microstructure of 0.55wt%Si steel is ferrite+granular Fe_(3)C,and the microstructures of 1.38wt%–2.67wt%Si steels are ferrite+petaloid graphite+granular Fe_(3)C.With increasing Si content from 1.38wt%to 2.67wt%at constant tempering temperature,the number density of graphite particles increases,though their average size decreases.Meanwhile,the number density and average size of Fe_(3)C in experimental steels continuously decrease with the increase of Si content.For 0.55wt%Si steel without graphite precipitation,increasing tempering temperature promotes the accumulation and growth of Fe_(3)C.For 1.38wt%–2.67wt%Si steels with graphite precipitation,higher tempering temperature promotes graphite particles growth while accelerating the decomposition and refinement of Fe_(3)C.Furthermore,compared with the experimental steels containing 0.55wt%Si,1.38wt%Si,and 2.67wt%Si,the 1.89wt%Si steel exhibits significantly lower hardness.Especially,when tempered at 715℃,Fe–0.58C–1.0Al steel with 1.89wt%Si exhibits enhanced graphitization behavior and reduced hardness,which is nearly HV 20 lower than previously reported Fe–0.55C–2.33Si steel. 展开更多
关键词 free-cutting steel silicon content MACHINABILITY tempering temperature graphite particle CEMENTITE
在线阅读 下载PDF
Facile one-pot synthesis of B-g-C_(3)N_(4)-Ce(wt%)composite with outstanding pseudocapacitance contribution
19
作者 Vandana Sairaj Akshay Sidhi Poovethamkandiyil +3 位作者 Fabeena Jahan Jaleel Athul Puthiya Purayil Anjali Paravannoor Baiju Kizhakkekilikoodayil Vijayan 《Journal of Rare Earths》 2025年第10期2212-2221,I0006,共11页
Rare earth metal oxides possess unique electronic properties,which are highly desirable for the fabrication of pseudocapacitor electrodes.The present study demonstrates the synthesis of boron doped graphitic carbon ni... Rare earth metal oxides possess unique electronic properties,which are highly desirable for the fabrication of pseudocapacitor electrodes.The present study demonstrates the synthesis of boron doped graphitic carbon nitride composite with varying concentrations of cerium(B-g-C_(3)N_(4)-Ce(wt%))via a facile one-pot method.A detailed investigation was carried out to elucidate the effects of doping as well as the amount of cerium on the active electrode structure.The structure and morphology of the samples were analyzed using X-ray diffraction(XRD),scanning electron microscopy(SEM),transmission electron microscopy(TEM),energy dispersive spectroscopy(EDS)and X-ray photoelectron spectroscopy(XPS).The structural and morphological analysis suggests the incorporation of boron into the graphitic carbon nitride phase,with spherical cerium oxide particles being embedded homogeneously in that matrix.Electrochemical characterization of the samples was carried out using cyclic voltammetry(CV),galvanostatic charge-discharge(GCD)and electrochemical impedance spectroscopy(EIS)and it is found that in-between the potential window of 0-0.45 V in a 3 mol/L potassium hydroxide(KOH)electrolyte,the Bg-C_(3)N_(4)-Ce(3%)composite displays a superior specific capacitance value of 1826.7 F/g at a current density of 1.5 A/g.The B-g-C_(3)N_(4)-Ce(3%)demonstrates excellent pseudocapacitance behavior with a high pseudocapacitance contribution.At current densities of 7.5 A/g,the heterostructure composite B-g-C_(3)N_(4)-Ce(3%)shows capacitance retention of 87%after 10000 cycles.The synergistic contribution of the individual components of the composite is explained for a better understanding of the capacitive mechanism. 展开更多
关键词 Graphitic carbon nitride SUPERCAPACITOR COMPOSITE CERIUM Rare earths One-pot synthesis
原文传递
Photosensitizer-synergized g-carbon nitride nanosheets with enhanced photocatalytic activity for eradicating drug-resistant bacteria and promoting wound healing
20
作者 Yueying Wang Jianming Xiong +3 位作者 Linwei Xin Yuanyuan Li He Huang Wenjun Miao 《Chinese Chemical Letters》 2025年第4期289-293,共5页
The rapid emergence of drug-resistant bacterial strains undermines the efficacy of conventional antibiotics,necessitating the development of alternative therapies.Antimicrobial photodynamic therapy(PDT)is a promising ... The rapid emergence of drug-resistant bacterial strains undermines the efficacy of conventional antibiotics,necessitating the development of alternative therapies.Antimicrobial photodynamic therapy(PDT)is a promising approach,but its effectiveness is often limited by the suboptimal photocatalytic activity of photosensitizers.In this study,we introduce a novel photoresponsive carbon-based antibacterial agent,Ce6/g-C_(3)N_(4),which combines the photocatalytic properties of graphite-phase carbon nitride(g-C_(3)N_(4))with the photodynamic attributes of chlorin e6(Ce6).This agent,with an average particle size of 250.7 nm,demonstrates significantly enhanced photocatalytic activity.Additionally,the strong affinity of Ce6/g-C_(3)N_(4)for bacteria and efficient delivery of Ce6 result in an inhibition rate exceeding 99%against Gram-positive bacteria and excellent biofilm eradication under light irradiation.In vivo experiments reveal that Ce6/gC_(3)N_(4)effectively inhibits bacterial growth on wounds,and promotes wound healing post-light treatment,while maintaining good biocompatibility.Overall,the Ce6/g-C_(3)N_(4)antibacterial agent synergizes photodynamic and photocatalytic mechanisms,offering a new avenue for the photo-mediated,multi-strategic treatment of bacterial infections and wound healing. 展开更多
关键词 Graphitic carbon nitride PHOTOSENSITIZER PHOTOCATALYTIC ANTIBACTERIAL Photodynamic therapy
原文传递
上一页 1 2 59 下一页 到第
使用帮助 返回顶部