期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Application of graphite screen printed electrode modified with dysprosium tungstate nanoparticles in voltammetric determination of epinephrine in the presence of acetylcholine
1
作者 Hadi Beitollahi Zahra Dourandish +3 位作者 Somayeh Tajik Mohammad Reza Ganjali Parviz Norouzi Farnoush Faridbod 《Journal of Rare Earths》 SCIE EI CAS CSCD 2018年第7期750-757,共8页
The current work focuses on the development of a sensitive and selective electrochemical device based on a graphite screen printed electrode modified with Dy2(WO4)3 nanoparticles(DWO/SPE) for the analysis of epine... The current work focuses on the development of a sensitive and selective electrochemical device based on a graphite screen printed electrode modified with Dy2(WO4)3 nanoparticles(DWO/SPE) for the analysis of epinephrine in samples also containing acetylcholine. The study proves that the sensor has excellent electron-mediating behavior in the oxidation of epinephrine in a 0.1 mol/L phosphate buffer solution(PBS)(pH 7.0). The application of the DWO/SPE in differential pulse voltammetry(DPV) is found to lead to distinct response for the oxidation of epinephrine and acetylcholine, with the potentials of the epinephrine and acetylcholine peaks(△Ep) to be 550 mV apart. The detection limits of the method for epinephrine and acetylcholine are 0.5 and 0.7 μmol/L(S/N = 3) and the responses are found to be linear in the concentration ranges of 1.0-900.0 μmol/L and 1.0-1200.0 μmol/L in a PBS buffer(pH = 7.0)respectively. The modified electrode was used for the detection of epinephrine and acetylcholine in real samples and found to produce satisfactory results. These results can be a proof that Dy2(WO4)3 nanoparticles can find promising applications in electrochemical sensors to be used for the analysis of(bio)chemical species. 展开更多
关键词 EPINEPHRINE Acetylcholine Dy2(WO4)3 nanoparticles graphite screen printed electrode Rare earths
原文传递
Microfibrillated Cellulose Based Ink for Eco-Sustainable Screen Printed Flexible Electrodes in Lithium Ion Batteries 被引量:6
2
作者 Oussama El Baradai Davide Beneventi +4 位作者 Fannie Alloin Roberta Bongiovanni Nadege Bruas-Reverdy Yann Bultel Didier Chaussy 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第6期566-572,共7页
Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainabl... Free organic solvent ink containing graphite, carboxymethyl cellulose and microfibrillated cellulose as active material, dispersing and binder, respectively, has been formulated to produce flexible and eco- sustainable electrodes for lithium ion batteries. Content ratio of components and dispersion protocol were tailored in order to have theological properties suitable for a large and cheap manufacturing process as well as screen printing. The bio-sourced printed electrodes exhibit a high porosity value of 70% that limits the electrochemical performances. However, the calendering process enhances electrode performances by increasing the reversible capacity from 85 until 315 mAh/g and reducing porosity to an optimal value of 34%. Moreover the introduction of 2% w/w of monofluoro-ethylene carbonate in the electrolyte reduced their reversible capacity loss of 11% in the printed electrode. 展开更多
关键词 Lithium ion batteries Flexible electrode graphite screen printing Cellulose Organic free solvent
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部