期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
基于Graphical Lasso网络分析的日间过度嗜睡与非嗜睡帕金森病患者非运动症状关系研究
1
作者 刘婧玥 林子昂 +3 位作者 冯焕焕 许保磊 刘疏影 许二赫 《中风与神经疾病杂志》 2025年第11期1024-1028,共5页
目的采用Graphical Lasso(GLASSO)网络分析方法探讨帕金森病(PD)患者日间过度嗜睡(EDS)与其他非运动症状(NMS)之间的关联,并分析嗜睡-嗅觉-情绪轴在EDS发生中的可能作用。方法选取2023年2月—2024年2月于首都医科大学宣武医院就诊的500... 目的采用Graphical Lasso(GLASSO)网络分析方法探讨帕金森病(PD)患者日间过度嗜睡(EDS)与其他非运动症状(NMS)之间的关联,并分析嗜睡-嗅觉-情绪轴在EDS发生中的可能作用。方法选取2023年2月—2024年2月于首都医科大学宣武医院就诊的500例PD患者,根据埃普沃斯嗜睡量表(ESS)评分分为嗜睡组(ESS≥10分)和非嗜睡组(ESS<10分)。收集患者一般临床资料,并采用NMSS、HAMA、HAMD、PDSS、RBDQHK、MoCA、MMSE、QOD-F等量表评估非运动症状。通过Graphical Lasso构建PD非运动症状网络,并计算节点中心性指标评估EDS在NMS网络中的核心作用。结果EDS在本研究人群中的发生率为7.12%。与非嗜睡组相比,嗜睡组患者的HAMA、HAMD、NMSS、PDSS及RBDQ-HK评分显著更高(P<0.05)。网络分析结果显示,在非嗜睡组中,NMSS具有最高中心性(Strength=0.906),为非运动症状网络的核心节点。嗜睡状态下,嗅觉功能的Strength值显著上升(0.930),取代NMSS成为网络核心,同时RBDQ-HK的影响力增强(Strength=0.318)。结论PD患者的EDS与多种非运动症状密切相关,嗜睡状态可能改变PD非运动症状的网络结构。嗜睡-嗅觉-情绪轴在EDS发生中的作用值得进一步探讨。 展开更多
关键词 帕金森病 日间过度嗜睡 非运动症状 graphical lasso 症状网络分析
暂未订购
Reproducible Learning of Gaussian Graphical Models via Graphical Lasso Multiple Data Splitting
2
作者 Kang Hu Danning Li Binghui Liu 《Acta Mathematica Sinica,English Series》 2025年第2期553-568,共16页
Gaussian graphical models(GGMs) are widely used as intuitive and efficient tools for data analysis in several application domains. To address the reproducibility issue of structure learning of a GGM, it is essential t... Gaussian graphical models(GGMs) are widely used as intuitive and efficient tools for data analysis in several application domains. To address the reproducibility issue of structure learning of a GGM, it is essential to control the false discovery rate(FDR) of the estimated edge set of the graph in terms of the graphical model. Hence, in recent years, the problem of GGM estimation with FDR control is receiving more and more attention. In this paper, we propose a new GGM estimation method by implementing multiple data splitting. Instead of using the node-by-node regressions to estimate each row of the precision matrix, we suggest directly estimating the entire precision matrix using the graphical Lasso in the multiple data splitting, and our calculation speed is p times faster than the previous. We show that the proposed method can asymptotically control FDR, and the proposed method has significant advantages in computational efficiency. Finally, we demonstrate the usefulness of the proposed method through a real data analysis. 展开更多
关键词 False discovery rate Gaussian graphical model multiple data splitting graphical lasso
原文传递
基于Tlasso的大维协方差矩阵估计及其应用 被引量:1
3
作者 袁欣 俞卫琴 《统计与决策》 CSSCI 北大核心 2021年第6期60-63,共4页
金融数据的大维度性、高度正相关性及非正态性给投资组合中协方差矩阵的估计带来了巨大挑布,并借助l1惩罚项来获得大维逆协方差矩阵的稀疏估计。实证结果表明,相对于等权重模型、样本协方差模型及Glasso模型,Tlasso模型能显著提高大维... 金融数据的大维度性、高度正相关性及非正态性给投资组合中协方差矩阵的估计带来了巨大挑布,并借助l1惩罚项来获得大维逆协方差矩阵的稀疏估计。实证结果表明,相对于等权重模型、样本协方差模型及Glasso模型,Tlasso模型能显著提高大维协方差矩阵的估计效率,并选出最佳的投资组合。 展开更多
关键词 大维协方差矩阵 graphical lasso Tlasso 投资组合
在线阅读 下载PDF
Neurocognitive Graphs of First-Episode Schizophrenia and Major Depression Based on Cognitive Features 被引量:8
4
作者 Sugai Liang Roberto Vega +8 位作者 Xiangzhen Kong Wei Deng Qiang Wang Xiaohong Ma Mingli Li Xun Hu Andrew J.Greenshaw Russell Greiner Tao Li 《Neuroscience Bulletin》 SCIE CAS CSCD 2018年第2期312-320,共9页
Neurocognitive deficits are frequently observed in patients with schizophrenia and major depressive disorder(MDD). The relations between cognitive features may be represented by neurocognitive graphs based on cognitiv... Neurocognitive deficits are frequently observed in patients with schizophrenia and major depressive disorder(MDD). The relations between cognitive features may be represented by neurocognitive graphs based on cognitive features, modeled as Gaussian Markov random fields. However, it is unclear whether it is possible to differentiate between phenotypic patterns associated with the differential diagnosis of schizophrenia and depression using this neurocognitive graph approach. In this study, we enrolled 215 first-episode patients with schizophrenia(FES), 125 with MDD, and 237 demographically-matched healthy controls(HCs). The cognitive performance of all participants was evaluated using a battery of neurocognitive tests. The graphical LASSO model was trained with aone-vs-one scenario to learn the conditional independent structure of neurocognitive features of each group. Participants in the holdout dataset were classified into different groups with the highest likelihood. A partial correlation matrix was transformed from the graphical model to further explore the neurocognitive graph for each group. The classification approach identified the diagnostic class for individuals with an average accuracy of 73.41% for FES vs HC, 67.07% for MDD vs HC, and 59.48% for FES vs MDD. Both of the neurocognitive graphs for FES and MDD had more connections and higher node centrality than those for HC. The neurocognitive graph for FES was less sparse and had more connections than that for MDD.Thus, neurocognitive graphs based on cognitive features are promising for describing endophenotypes that may discriminate schizophrenia from depression. 展开更多
关键词 SCHIZOPHRENIA Major depressive disorder NEUROCOGNITION Neurocognitive graph graphical lasso
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部