Data curation is vital for selecting effective demonstration examples in graph-to-text generation.However,evaluating the quality ofKnowledgeGraphs(KGs)remains challenging.Prior research exhibits a narrowfocus on struc...Data curation is vital for selecting effective demonstration examples in graph-to-text generation.However,evaluating the quality ofKnowledgeGraphs(KGs)remains challenging.Prior research exhibits a narrowfocus on structural statistics,such as the shortest path length,while the correctness of graphs in representing the associated text is rarely explored.To address this gap,we introduce a dual-perspective evaluation framework for KG-text data,based on the computation of structural adequacy and semantic alignment.Froma structural perspective,we propose the Weighted Incremental EdgeMethod(WIEM)to quantify graph completeness by leveraging agreement between relation models to predict possible edges between entities.WIEM targets to find increments from models on“unseen links”,whose presence is inversely proportional to the structural adequacy of the original KG in representing the text.From a semantic perspective,we evaluate how well a KG aligns with the text in capturing the intended meaning.To do so,we instruct a large language model to convert KGs into natural language andmeasure the similarity between generated and reference texts.Based on these computations,we apply a Top-K union method,integrating the structural and semantic modules,to rank and select high-quality KGs.We evaluate our framework against various approaches for selecting few-shot examples in graph-to-text generation.Experiments on theAssociation for Computational LinguisticsAbstract Graph Dataset(ACL-AGD)and Automatic Content Extraction 05(ACE05)dataset demonstrate the effectiveness of our approach in distinguishing KG-text data of different qualities,evidenced by the largest performance gap between top-and bottom-ranked examples.We also find that the top examples selected through our dual-perspective framework consistently yield better performance than those selected by traditional measures.These results highlight the importance of data curation in improving graph-to-text generation.展开更多
Knowledge graphs convey precise semantic information that can be effectively interpreted by neural networks,and generating descriptive text based on these graphs places significant emphasis on content consistency.Howe...Knowledge graphs convey precise semantic information that can be effectively interpreted by neural networks,and generating descriptive text based on these graphs places significant emphasis on content consistency.However,knowledge graphs are inadequate for providing additional linguistic features such as paragraph structure and expressive modes,making it challenging to ensure content coherence in generating text that spans multiple sentences.This lack of coherence can further compromise the overall consistency of the content within a paragraph.In this work,we present the generation of scientific abstracts by leveraging knowledge graphs,with a focus on enhancing both content consistency and coherence.In particular,we construct the ACL Abstract Graph Dataset(ACL-AGD)which pairs knowledge graphs with text,incorporating sentence labels to guide text structure and diverse expressions.We then implement a Siamese network to complement and concretize the entities and relations based on paragraph structure by accomplishing two tasks:graph-to-text generation and entity alignment.Extensive experiments demonstrate that the logical paragraphs generated by our method exhibit entities with a uniform position distribution and appropriate frequency.In terms of content,our method accurately represents the information encoded in the knowledge graph,prevents the generation of irrelevant content,and achieves coherent and non-redundant adjacent sentences,even with a shared knowledge graph.展开更多
文摘Data curation is vital for selecting effective demonstration examples in graph-to-text generation.However,evaluating the quality ofKnowledgeGraphs(KGs)remains challenging.Prior research exhibits a narrowfocus on structural statistics,such as the shortest path length,while the correctness of graphs in representing the associated text is rarely explored.To address this gap,we introduce a dual-perspective evaluation framework for KG-text data,based on the computation of structural adequacy and semantic alignment.Froma structural perspective,we propose the Weighted Incremental EdgeMethod(WIEM)to quantify graph completeness by leveraging agreement between relation models to predict possible edges between entities.WIEM targets to find increments from models on“unseen links”,whose presence is inversely proportional to the structural adequacy of the original KG in representing the text.From a semantic perspective,we evaluate how well a KG aligns with the text in capturing the intended meaning.To do so,we instruct a large language model to convert KGs into natural language andmeasure the similarity between generated and reference texts.Based on these computations,we apply a Top-K union method,integrating the structural and semantic modules,to rank and select high-quality KGs.We evaluate our framework against various approaches for selecting few-shot examples in graph-to-text generation.Experiments on theAssociation for Computational LinguisticsAbstract Graph Dataset(ACL-AGD)and Automatic Content Extraction 05(ACE05)dataset demonstrate the effectiveness of our approach in distinguishing KG-text data of different qualities,evidenced by the largest performance gap between top-and bottom-ranked examples.We also find that the top examples selected through our dual-perspective framework consistently yield better performance than those selected by traditional measures.These results highlight the importance of data curation in improving graph-to-text generation.
文摘Knowledge graphs convey precise semantic information that can be effectively interpreted by neural networks,and generating descriptive text based on these graphs places significant emphasis on content consistency.However,knowledge graphs are inadequate for providing additional linguistic features such as paragraph structure and expressive modes,making it challenging to ensure content coherence in generating text that spans multiple sentences.This lack of coherence can further compromise the overall consistency of the content within a paragraph.In this work,we present the generation of scientific abstracts by leveraging knowledge graphs,with a focus on enhancing both content consistency and coherence.In particular,we construct the ACL Abstract Graph Dataset(ACL-AGD)which pairs knowledge graphs with text,incorporating sentence labels to guide text structure and diverse expressions.We then implement a Siamese network to complement and concretize the entities and relations based on paragraph structure by accomplishing two tasks:graph-to-text generation and entity alignment.Extensive experiments demonstrate that the logical paragraphs generated by our method exhibit entities with a uniform position distribution and appropriate frequency.In terms of content,our method accurately represents the information encoded in the knowledge graph,prevents the generation of irrelevant content,and achieves coherent and non-redundant adjacent sentences,even with a shared knowledge graph.