期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Stochastic extra-gradient based alternating direction methods for graph-guided regularized minimization 被引量:1
1
作者 Qiang LAN Lin-bo QIAO Yi-jie WANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2018年第6期755-762,共8页
In this study, we propose and compare stochastic variants of the extra-gradient alternating direction method, named the stochastic extra-gradient alternating direction method with Lagrangian function(SEGL) and the s... In this study, we propose and compare stochastic variants of the extra-gradient alternating direction method, named the stochastic extra-gradient alternating direction method with Lagrangian function(SEGL) and the stochastic extra-gradient alternating direction method with augmented Lagrangian function(SEGAL), to minimize the graph-guided optimization problems, which are composited with two convex objective functions in large scale.A number of important applications in machine learning follow the graph-guided optimization formulation, such as linear regression, logistic regression, Lasso, structured extensions of Lasso, and structured regularized logistic regression. We conduct experiments on fused logistic regression and graph-guided regularized regression. Experimental results on several genres of datasets demonstrate that the proposed algorithm outperforms other competing algorithms, and SEGAL has better performance than SEGL in practical use. 展开更多
关键词 Stochastic optimization graph-guided minimization Extra-gradient method Fused logistic regression graph-guided regularized logistic regression
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部