In this paper we introduce the notions of mean dimension and metric mean dimension for non-autonomous iterated function systems(NAIFSs for short)on countably infinite alphabets which can be regarded as generalizations...In this paper we introduce the notions of mean dimension and metric mean dimension for non-autonomous iterated function systems(NAIFSs for short)on countably infinite alphabets which can be regarded as generalizations of the mean dimension and the Lindenstrauss metric mean dimension for non-autonomous iterated function systems.We also show the relationship between the mean topological dimension and the metric mean dimension.展开更多
Fractal interpolation function (FIF) is a special type of continuous function which interpolates certain data set and the attractor of the Iterated Function System (IFS) corresponding to a data set is the graph of the...Fractal interpolation function (FIF) is a special type of continuous function which interpolates certain data set and the attractor of the Iterated Function System (IFS) corresponding to a data set is the graph of the FIF. Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) is both self-affine and non self-affine in nature depending on the free variables and constrained free variables for a generalized IFS. In this article, graph directed iterated function system for a finite number of generalized data sets is considered and it is shown that the projection of the attractors on is the graph of the CHFIFs interpolating the corresponding data sets.展开更多
In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):104...In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].展开更多
Chaos game representation (CGR) of DNA sequences and linked protein sequences from genomes was proposed by Jeffrey (1990) and Yu et al. (2004), respectively. In this paper, we consider the CGR of three kinds of sequen...Chaos game representation (CGR) of DNA sequences and linked protein sequences from genomes was proposed by Jeffrey (1990) and Yu et al. (2004), respectively. In this paper, we consider the CGR of three kinds of sequences from complete genomes: whole genome DNA sequences, linked coding DNA sequences and linked protein sequences. Some fractal patterns are found in these CGRs. A recurrent iterated function systems (RIFS) model is proposed to simulate the CGRs of these sequences from genomes and their induced measures. Numerical results on 50 genomes show that the RIFS model can simulate very well the CGRs and their induced measures. The parameters estimated in the RIFS model reflect information on species classification.展开更多
The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, wher...The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.展开更多
A set of contraction maps of a metric space is called an iterated function systems. Iterated function systems with condensation, can be considered infinite iterated function systems. Infinite iterated function systems...A set of contraction maps of a metric space is called an iterated function systems. Iterated function systems with condensation, can be considered infinite iterated function systems. Infinite iterated function systems on compact metric spaces were studied. Using the properties of Banach limit and uniform contractiveness, it was proved that the random iterating algorithms for infinite iterated function systems on compact metric spaces-satisfy ergodicity. So the random iterating algorithms for iterated function systems with condensation satisfy ergodicity, too.展开更多
In this paper an iterated functional equation of polynomial type which does not possess the firt order iterative term g(x) is to be discussed. The difficulties resulted from loss of the first order term are overcome b...In this paper an iterated functional equation of polynomial type which does not possess the firt order iterative term g(x) is to be discussed. The difficulties resulted from loss of the first order term are overcome by utilization of Hardy-Boedewadt's theorem.展开更多
Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, th...Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, that the figure reconstructed by the new random IFS is the image of the origin figure reconstructed by old IFS under a given affine transformation. Two particular examples are used to show this approach.展开更多
Given a system {S1,…, SN} of N contractive similarities satisfying some strong separation condition, it has an invariant Set K for the system. In this article, the authors construct some random measure μω supported...Given a system {S1,…, SN} of N contractive similarities satisfying some strong separation condition, it has an invariant Set K for the system. In this article, the authors construct some random measure μω supported on random subset Kω of K, μω having some "non-standard" multifractal structure, which contrasts the well-knoWn multifractal formalism for the invariant measure of system {S1,.., SN} may possess. The main tool is the multifractal structures of a Galton-Watson tree, which are obtained by Liu [9], Shieh-Taylor [14], and MSrters-Shieh [12].展开更多
Iterated function systems (IFS) were introduced by Hutchinson in 1981 as a natural generalization of the well-known Banach contraction principle. In 2010, D. R. Sahu and A. Chakraborty introduced K-Iterated Function...Iterated function systems (IFS) were introduced by Hutchinson in 1981 as a natural generalization of the well-known Banach contraction principle. In 2010, D. R. Sahu and A. Chakraborty introduced K-Iterated Function System using Kannan mapping which would cover a larger range of mappings. In this paper, following Hutchinson, D. R. Sahu and A. Chakraborty, we present some new iterated function systems by using the so-called generalized contractive mappings, which will also cover a large range of mappings. Our purpose is to prove the existence and uniqueness of attractors for such class of iterated function systems by virtue of a Banach-like fixed point theorem concerning generalized contractive mappings.展开更多
In this paper, we present some fixed point theorems of iterated function systems consisting of α-ψ-contractive type mappings in Fractal space constituted by the compact subset of metric space and iterated function s...In this paper, we present some fixed point theorems of iterated function systems consisting of α-ψ-contractive type mappings in Fractal space constituted by the compact subset of metric space and iterated function systems consisting of Banach contractive mappings in Fractal space constituted by the compact subset of generalized metric space, which is Mso extensively applied in topological dynamic system.展开更多
We propose a new approach to the investigation of deterministic self-similar networks by using contractive iterated multifunction systems (briefly IMSs). Our paper focuses on the generalized version of two graph model...We propose a new approach to the investigation of deterministic self-similar networks by using contractive iterated multifunction systems (briefly IMSs). Our paper focuses on the generalized version of two graph models introduced by Barabási, Ravasz and Vicsek ([1] [2]). We generalize the graph models using stars and cliques: both algorithm construct graph sequences such that the next iteration is always based on n replicas of the current iteration, where n is the size of the initial graph structure, being a star or a clique. We analyze these self-similar graph sequences using IMSs in function of the size of the initial star and clique, respectively. Our research uses the Cantor set for the description of the fixed set of these IMSs, which we interpret as the limit object of the analyzed self-similar networks.展开更多
An iterated function system crossover (IFSX) operation for real-coded genetic algorithms (RCGAs) is presented in this paper. Iterated?function system (IFS) is one type of fractals that maintains a similarity character...An iterated function system crossover (IFSX) operation for real-coded genetic algorithms (RCGAs) is presented in this paper. Iterated?function system (IFS) is one type of fractals that maintains a similarity characteristic. By introducing the IFS into the crossover operation, the RCGA performs better searching solution with a faster convergence in a set of benchmark test functions.展开更多
This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specific...This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.展开更多
Let X be a d-dimensional random vector with unknown density function f(z) = f (z1, ..., z(d)), and let f(n) be teh nearest neighbor estimator of f proposed by Loftsgaarden and Quesenberry (1965). In this paper, we est...Let X be a d-dimensional random vector with unknown density function f(z) = f (z1, ..., z(d)), and let f(n) be teh nearest neighbor estimator of f proposed by Loftsgaarden and Quesenberry (1965). In this paper, we established the law of the iterated logarithm of f(n) for general case of d greater-than-or-equal-to 1, which gives the exact pointwise strong convergence rate of f(n).展开更多
In this paper, we study the connectedness of the invariant sets of a graph-directed iterated function system(IFS). For a graph-directed IFS with N states, we construct N graphs. We prove that all the invariant sets ...In this paper, we study the connectedness of the invariant sets of a graph-directed iterated function system(IFS). For a graph-directed IFS with N states, we construct N graphs. We prove that all the invariant sets are connected, if and only if all the N graphs are connected; in this case, the invariant sets are all locally connected and path connected. Our result extends the results on the connectedness of the self-similar sets.展开更多
Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterat...Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the mo- del reduction technique is investigated. The new model up- dating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency re- sponse function, which could greatly increase the number of the equations and the updating parameters. Based on the traditional iterative method, a correction term related to the errors resulting from the replacement of the reduction ma- trix of the experimental model with that of the finite element model is added in the new iterative method. Comparisons be- tween the traditional iterative method and the proposed itera- tive method are shown by model updating examples of solar panels, and both of these two iterative methods combine the CMCF method and the succession-level approximate reduc- tion technique. Results show the effectiveness of the CMCF method and the proposed iterative method .展开更多
In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinea...In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.展开更多
Many results are given for iterative roots of PM functions, a class of non-monotonic continuous functions, when the characteristic interval exists. In this paper we discuss iterative roots in the opposite case and par...Many results are given for iterative roots of PM functions, a class of non-monotonic continuous functions, when the characteristic interval exists. In this paper we discuss iterative roots in the opposite case and partly answer the Open Problem 1 proposed in [Ann. Polon. Math., 1997, 65(2): 119-128].展开更多
文摘In this paper we introduce the notions of mean dimension and metric mean dimension for non-autonomous iterated function systems(NAIFSs for short)on countably infinite alphabets which can be regarded as generalizations of the mean dimension and the Lindenstrauss metric mean dimension for non-autonomous iterated function systems.We also show the relationship between the mean topological dimension and the metric mean dimension.
文摘Fractal interpolation function (FIF) is a special type of continuous function which interpolates certain data set and the attractor of the Iterated Function System (IFS) corresponding to a data set is the graph of the FIF. Coalescence Hidden-variable Fractal Interpolation Function (CHFIF) is both self-affine and non self-affine in nature depending on the free variables and constrained free variables for a generalized IFS. In this article, graph directed iterated function system for a finite number of generalized data sets is considered and it is shown that the projection of the attractors on is the graph of the CHFIFs interpolating the corresponding data sets.
基金Supported by NSFC(Nos.11661025,12161024)Natural Science Foundation of Guangxi(Nos.2020GXNSFAA159118,2021GXNSFAA196045)+2 种基金Guangxi Science and Technology Project(No.Guike AD20297006)Training Program for 1000 Young and Middle-aged Cadre Teachers in Universities of GuangxiNational College Student's Innovation and Entrepreneurship Training Program(No.202110595049)。
文摘In this paper,we present local functional law of the iterated logarithm for Cs?rg?-Révész type increments of fractional Brownian motion.The results obtained extend works of Gantert[Ann.Probab.,1993,21(2):1045-1049]and Monrad and Rootzén[Probab.Theory Related Fields,1995,101(2):173-192].
文摘Chaos game representation (CGR) of DNA sequences and linked protein sequences from genomes was proposed by Jeffrey (1990) and Yu et al. (2004), respectively. In this paper, we consider the CGR of three kinds of sequences from complete genomes: whole genome DNA sequences, linked coding DNA sequences and linked protein sequences. Some fractal patterns are found in these CGRs. A recurrent iterated function systems (RIFS) model is proposed to simulate the CGRs of these sequences from genomes and their induced measures. Numerical results on 50 genomes show that the RIFS model can simulate very well the CGRs and their induced measures. The parameters estimated in the RIFS model reflect information on species classification.
基金Project(61372136) supported by the National Natural Science Foundation of China
文摘The design, analysis and parallel implementation of particle filter(PF) were investigated. Firstly, to tackle the particle degeneracy problem in the PF, an iterated importance density function(IIDF) was proposed, where a new term associating with the current measurement information(CMI) was introduced into the expression of the sampled particles. Through the repeated use of the least squares estimate, the CMI can be integrated into the sampling stage in an iterative manner, conducing to the greatly improved sampling quality. By running the IIDF, an iterated PF(IPF) can be obtained. Subsequently, a parallel resampling(PR) was proposed for the purpose of parallel implementation of IPF, whose main idea was the same as systematic resampling(SR) but performed differently. The PR directly used the integral part of the product of the particle weight and particle number as the number of times that a particle was replicated, and it simultaneously eliminated the particles with the smallest weights, which are the two key differences from the SR. The detailed implementation procedures on the graphics processing unit of IPF based on the PR were presented at last. The performance of the IPF, PR and their parallel implementations are illustrated via one-dimensional numerical simulation and practical application of passive radar target tracking.
文摘A set of contraction maps of a metric space is called an iterated function systems. Iterated function systems with condensation, can be considered infinite iterated function systems. Infinite iterated function systems on compact metric spaces were studied. Using the properties of Banach limit and uniform contractiveness, it was proved that the random iterating algorithms for infinite iterated function systems on compact metric spaces-satisfy ergodicity. So the random iterating algorithms for iterated function systems with condensation satisfy ergodicity, too.
文摘In this paper an iterated functional equation of polynomial type which does not possess the firt order iterative term g(x) is to be discussed. The difficulties resulted from loss of the first order term are overcome by utilization of Hardy-Boedewadt's theorem.
文摘Random iterated function systems (IFSs) is discussed, which is one of the methods for fractal drawing. A certain figure can be reconstructed by a random IFS. One approach is presented to determine a new random IFS, that the figure reconstructed by the new random IFS is the image of the origin figure reconstructed by old IFS under a given affine transformation. Two particular examples are used to show this approach.
基金Both authors are supported by a grant NSC 2002/3-2115-M-002-017.
文摘Given a system {S1,…, SN} of N contractive similarities satisfying some strong separation condition, it has an invariant Set K for the system. In this article, the authors construct some random measure μω supported on random subset Kω of K, μω having some "non-standard" multifractal structure, which contrasts the well-knoWn multifractal formalism for the invariant measure of system {S1,.., SN} may possess. The main tool is the multifractal structures of a Galton-Watson tree, which are obtained by Liu [9], Shieh-Taylor [14], and MSrters-Shieh [12].
基金Partially supported by National Natural Science Foundation of China (No. 10961003)
文摘Iterated function systems (IFS) were introduced by Hutchinson in 1981 as a natural generalization of the well-known Banach contraction principle. In 2010, D. R. Sahu and A. Chakraborty introduced K-Iterated Function System using Kannan mapping which would cover a larger range of mappings. In this paper, following Hutchinson, D. R. Sahu and A. Chakraborty, we present some new iterated function systems by using the so-called generalized contractive mappings, which will also cover a large range of mappings. Our purpose is to prove the existence and uniqueness of attractors for such class of iterated function systems by virtue of a Banach-like fixed point theorem concerning generalized contractive mappings.
基金The NSF(11271150)of ChinaChina Government Scholarship
文摘In this paper, we present some fixed point theorems of iterated function systems consisting of α-ψ-contractive type mappings in Fractal space constituted by the compact subset of metric space and iterated function systems consisting of Banach contractive mappings in Fractal space constituted by the compact subset of generalized metric space, which is Mso extensively applied in topological dynamic system.
文摘We propose a new approach to the investigation of deterministic self-similar networks by using contractive iterated multifunction systems (briefly IMSs). Our paper focuses on the generalized version of two graph models introduced by Barabási, Ravasz and Vicsek ([1] [2]). We generalize the graph models using stars and cliques: both algorithm construct graph sequences such that the next iteration is always based on n replicas of the current iteration, where n is the size of the initial graph structure, being a star or a clique. We analyze these self-similar graph sequences using IMSs in function of the size of the initial star and clique, respectively. Our research uses the Cantor set for the description of the fixed set of these IMSs, which we interpret as the limit object of the analyzed self-similar networks.
文摘An iterated function system crossover (IFSX) operation for real-coded genetic algorithms (RCGAs) is presented in this paper. Iterated?function system (IFS) is one type of fractals that maintains a similarity characteristic. By introducing the IFS into the crossover operation, the RCGA performs better searching solution with a faster convergence in a set of benchmark test functions.
文摘This paper attempts to form a bridge between a sum of the divisors function and the gamma function, proposing a novel approach that could have significant implications for classical problems in number theory, specifically the Robin inequality and the Riemann hypothesis. The exploration of using invariant properties of these functions to derive insights into twin primes and sequential primes is a potentially innovative concept that deserves careful consideration by the mathematical community.
基金Research supported by National Natural Science Foundation of China.
文摘Let X be a d-dimensional random vector with unknown density function f(z) = f (z1, ..., z(d)), and let f(n) be teh nearest neighbor estimator of f proposed by Loftsgaarden and Quesenberry (1965). In this paper, we established the law of the iterated logarithm of f(n) for general case of d greater-than-or-equal-to 1, which gives the exact pointwise strong convergence rate of f(n).
基金Supported by the Teaching Research Project of Hubei Province(2013469)the 12th Five-Year Project of Education Plan of Hubei Province(2014B379)
文摘In this paper, we study the connectedness of the invariant sets of a graph-directed iterated function system(IFS). For a graph-directed IFS with N states, we construct N graphs. We prove that all the invariant sets are connected, if and only if all the N graphs are connected; in this case, the invariant sets are all locally connected and path connected. Our result extends the results on the connectedness of the self-similar sets.
基金supported by the Key Project of the National Natural Science Foundation of China (11132007)
文摘Model reduction technique is usually employed in model updating process. In this paper, a new model updat- ing method named as cross-model cross-frequency response function (CMCF) method is proposed and a new iterative method associating the model updating method with the mo- del reduction technique is investigated. The new model up- dating method utilizes the frequency response function to avoid the modal analysis process and it does not need to pair or scale the measured and the analytical frequency re- sponse function, which could greatly increase the number of the equations and the updating parameters. Based on the traditional iterative method, a correction term related to the errors resulting from the replacement of the reduction ma- trix of the experimental model with that of the finite element model is added in the new iterative method. Comparisons be- tween the traditional iterative method and the proposed itera- tive method are shown by model updating examples of solar panels, and both of these two iterative methods combine the CMCF method and the succession-level approximate reduc- tion technique. Results show the effectiveness of the CMCF method and the proposed iterative method .
基金Supported by the National Natural Science Foundation of China (10471039)the Grant of Higher Schools' Natural Science Basic Research of Jiangsu Province of China (06KJD11017507KJB110115)
文摘The authors study the iterated commutators on the weighted Bergman spaces A2(φ), and prove that Cnh is compact on A2(φ) if and only if h ∈ B0.
基金supported by National Foundation of Natural Science under the Grant 11071216
文摘In this paper, we propose a two-grid algorithm for solving the stream function formulation of the stationary Navies-Stokes equations. The algorithm is constructed by reducing the original system to one small, nonlinear system on the coarse mesh space and two similar linear systems (with same stiffness matrix but different right-hand side) on the fine mesh space. The convergence analysis and error estimation of the algorithm are given for the case of conforming elements. Furthermore, the Mgorithm produces a numerical solution with the optimal asymptotic H^2-error. Finally, we give a numerical illustration to demonstrate the effectiveness of the two-grid algorithm for solving the Navier-Stokes equations.
基金Supported by the National Natural Foundation of China(Grant No.11201184)the Scientific Research Fundof Sichuan Provincial Education Department(Grant No.11ZA160)
文摘Many results are given for iterative roots of PM functions, a class of non-monotonic continuous functions, when the characteristic interval exists. In this paper we discuss iterative roots in the opposite case and partly answer the Open Problem 1 proposed in [Ann. Polon. Math., 1997, 65(2): 119-128].