Link prediction has attracted wide attention among interdisciplinaryresearchers as an important issue in complex network. It aims to predict the missing links in current networks and new links that will appear in futu...Link prediction has attracted wide attention among interdisciplinaryresearchers as an important issue in complex network. It aims to predict the missing links in current networks and new links that will appear in future networks.Despite the presence of missing links in the target network of link prediction studies, the network it processes remains macroscopically as a large connectedgraph. However, the complexity of the real world makes the complex networksabstracted from real systems often contain many isolated nodes. This phenomenon leads to existing link prediction methods not to efficiently implement the prediction of missing edges on isolated nodes. Therefore, the cold-start linkprediction is favored as one of the most valuable subproblems of traditional linkprediction. However, due to the loss of many links in the observation network, thetopological information available for completing the link prediction task is extremely scarce. This presents a severe challenge for the study of cold-start link prediction. Therefore, how to mine and fuse more available non-topologicalinformation from observed network becomes the key point to solve the problemof cold-start link prediction. In this paper, we propose a framework for solving thecold-start link prediction problem, a joint-weighted symmetric nonnegative matrixfactorization model fusing graph regularization information, based on low-rankapproximation algorithms in the field of machine learning. First, the nonlinear features in high-dimensional space of node attributes are captured by the designedgraph regularization term. Second, using a weighted matrix, we associate the attribute similarity and first order structure information of nodes and constrain eachother. Finally, a unified framework for implementing cold-start link prediction isconstructed by using a symmetric nonnegative matrix factorization model to integrate the multiple information extracted together. Extensive experimental validationon five real networks with attributes shows that the proposed model has very goodpredictive performance when predicting missing edges of isolated nodes.展开更多
Aiming at the low recognition accuracy of non-negative matrix factorization(NMF)in practical application,an improved spare graph NMF(New-SGNMF)is proposed in this paper.New-SGNMF makes full use of the inherent geometr...Aiming at the low recognition accuracy of non-negative matrix factorization(NMF)in practical application,an improved spare graph NMF(New-SGNMF)is proposed in this paper.New-SGNMF makes full use of the inherent geometric structure of image data to optimize the basis matrix in two steps.A threshold value s was first set to judge the threshold value of the decomposed base matrix to filter the redundant information in the data.Using L2 norm,sparse constraints were then implemented on the basis matrix,and integrated into the objective function to obtain the objective function of New-SGNMF.In addition,the derivation process of the algorithm and the convergence analysis of the algorithm were given.The experimental results on COIL20,PIE-pose09 and YaleB database show that compared with K-means,PCA,NMF and other algorithms,the proposed algorithm has higher accuracy and normalized mutual information.展开更多
A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inne...A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if t...A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if there does not extst a STDF g: V(G)→{-1,1}, f≠g, for which g ( v )≤f( v ) for every v∈V( G ). The weight of a STDF is the sum of its function values over all vertices. The signed total domination number of G is the minimum weight of a STDF of G, while the upper signed domination number of G is the maximum weight of a minimal STDF of G, In this paper, we present sharp upper bounds on the upper signed total domination number of a nearly regular graph.展开更多
Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the di...Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes.展开更多
The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) ...The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.展开更多
In this paper, an equivalent condition of a graph G with t (2≤ t ≤n) distinct Laplacian eigenvalues is established. By applying this condition to t = 3, if G is regular (necessarily be strongly regular), an equi...In this paper, an equivalent condition of a graph G with t (2≤ t ≤n) distinct Laplacian eigenvalues is established. By applying this condition to t = 3, if G is regular (necessarily be strongly regular), an equivalent condition of G being Laplacian integral is given. Also for the case of t = 3, if G is non-regular, it is found that G has diameter 2 and girth at most 5 if G is not a tree. Graph G is characterized in the case of its being triangle-free, bipartite and pentagon-free. In both cases, G is Laplacian integral.展开更多
In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the...In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.展开更多
Recently Tang et al put forward two new operations G_(1)■_(k)G_(2)and G_(1)◆_(k)G_(2)of graphs G_(1)and G_(2),and obtained the distance spectrum of G_(1)■_(k)G_(2)and G_(1)◆_(k)G_(2)of regular graphs G_(1)and G_(2...Recently Tang et al put forward two new operations G_(1)■_(k)G_(2)and G_(1)◆_(k)G_(2)of graphs G_(1)and G_(2),and obtained the distance spectrum of G_(1)■_(k)G_(2)and G_(1)◆_(k)G_(2)of regular graphs G_(1)and G_(2).In this paper,we characterize the adjacency spectrum,the Laplacian spectrum and the signless Laplacian spectrum of G_(1)■_(k)G_(2)and G_(1)◆_(k)G_(2)in terms of adjacency spectrum of regular graphs G_(1)and G_(2).展开更多
A λ harmonic graph G, a λ-Hgraph G for short, means that there exists a constant A such that the equality λd(ui) = ∑(vi,vj)∈E(G) d(vj) holds for all i = 1, 2,…, |V(G)|, where d(vi) denotes the degr...A λ harmonic graph G, a λ-Hgraph G for short, means that there exists a constant A such that the equality λd(ui) = ∑(vi,vj)∈E(G) d(vj) holds for all i = 1, 2,…, |V(G)|, where d(vi) denotes the degree of vertex vi. In this paper, some harmonic properties of the complement and line graph are given, and some algebraic properties for the λ-Hgraphs are obtained.展开更多
A graph G is k-covered if each edge of G belongs to a k-factor of G. We determine some valuee of k for which every r-regular graph with edge-connectivity λ is k-covered.
Janmark, Meyer, and Wong showed that continuous-time quantum walk search on known families of strongly regular graphs(SRGs) with parameters(N, k, λ, μ) achieves full quantum speedup. The problem is reconsidered ...Janmark, Meyer, and Wong showed that continuous-time quantum walk search on known families of strongly regular graphs(SRGs) with parameters(N, k, λ, μ) achieves full quantum speedup. The problem is reconsidered in terms of scattering quantum walk, a type of discrete-time quantum walks. Here, the search space is confined to a low-dimensional subspace corresponding to the collapsed graph of SRGs. To quantify the algorithm's performance, we leverage the fundamental pairing theorem, a general theory developed by Cottrell for quantum search of structural anomalies in star graphs.The search algorithm on the SRGs with k scales as N satisfies the theorem, and results can be immediately obtained, while search on the SRGs with k scales as√N does not satisfy the theorem, and matrix perturbation theory is used to provide an analysis. Both these cases can be solved in O(√N) time steps with a success probability close to 1. The analytical conclusions are verified by simulation results on two SRGs. These examples show that the formalism on star graphs can be applied more generally.展开更多
Let G be a graph of order n and μ be an adjacency eigenvalue of G with multiplicity k ≥ 1. A star complement H for μ in G is an induced subgraph of G with n-k vertices and no eigenvalue μ, and the vertex subset X ...Let G be a graph of order n and μ be an adjacency eigenvalue of G with multiplicity k ≥ 1. A star complement H for μ in G is an induced subgraph of G with n-k vertices and no eigenvalue μ, and the vertex subset X = V(G-H) is called a star set for μ in G. The star complement technique provides a spectral tool for reconstructing a certain part of a graph from the remaining part. In this paper, we study the regular graphs with K_(t,s)(s ≥ t ≥ 2) as a star complement for an eigenvalue μ, especially, characterize the case of t = 3 completely, obtain some properties when t = s, and propose some problems for further study.展开更多
This paper is concerned with the normalized Laplacian spectra of four variants of double join operations based on subdivision graph,Q-graph,R-graph and total graph.The results here generalize some well known results a...This paper is concerned with the normalized Laplacian spectra of four variants of double join operations based on subdivision graph,Q-graph,R-graph and total graph.The results here generalize some well known results about some join operations of graphs.展开更多
Koetzig put forward a question on strongly-regular self-complementary graphs, that is, for any natural number k, whether there exists a strongLy-regular self- complementary graph whose order is 4k + 1, where 4k + 1 ...Koetzig put forward a question on strongly-regular self-complementary graphs, that is, for any natural number k, whether there exists a strongLy-regular self- complementary graph whose order is 4k + 1, where 4k + 1 = x^2 + y^2, x and y are positive integers; what is the minimum number that made there exist at least two non-isomorphic strongly-regular self-complementary graphs. In this paper, we use two famous lemmas to generalize the existential conditions for strongly-regular self-complementary circular graphs with 4k + 1 orders.展开更多
Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,ter...Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,termed graph-based transform(GBT)and dual graph Laplacian regularization(DGLR)(DGLR-GBT).This model specifically aims to remove Gaussian white noise by capitalizing on the nonlocal self-similarity(NSS)and the piecewise smoothness properties intrinsic to depth maps.Within the group sparse coding(GSC)framework,a combination of GBT and DGLR is implemented.Firstly,within each group,the graph is constructed by using estimates of the true values of the averaged blocks instead of the observations.Secondly,the graph Laplacian regular terms are constructed based on rows and columns of similar block groups,respectively.Lastly,the solution is obtained effectively by combining the alternating direction multiplication method(ADMM)with the weighted thresholding method within the domain of GBT.展开更多
We consider the real three-dimensional Euclidean Jordan algebra associated to a strongly regular graph. Then, the Krein parameters of a strongly regular graph are generalized and some generalized Krein admissibility c...We consider the real three-dimensional Euclidean Jordan algebra associated to a strongly regular graph. Then, the Krein parameters of a strongly regular graph are generalized and some generalized Krein admissibility conditions are deduced. Furthermore, we establish some relations between the classical Krein parameters and the generalized Krein parameters.展开更多
The definition of the ascending subgraph decomposition was given by Alavi. It has been conjectured that every graph of positive size has an ascending subgraph decomposition. In this paper it is proved that the regular...The definition of the ascending subgraph decomposition was given by Alavi. It has been conjectured that every graph of positive size has an ascending subgraph decomposition. In this paper it is proved that the regular graphs under some conditions do have an ascending subgraph decomposition.展开更多
Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil s...Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil sums,several classes of two-weight or three-weight linear codes are presented by choosing a proper defining set,and their weight enumerators and complete weight enumerators are determined.Furthermore,these codes are proven to be minimal.By puncturing these linear codes,two classes of two-weight projective codes are obtained,and the parameters of the corresponding strongly regular graph are given.This paper generalizes the results of[7].展开更多
The directed L-distance minimal dominating set(MDS) problem has wide practical applications in the fields of computer science and communication networks. Here, we study this problem from the perspective of purely theo...The directed L-distance minimal dominating set(MDS) problem has wide practical applications in the fields of computer science and communication networks. Here, we study this problem from the perspective of purely theoretical interest. We only give results for an Erdós Rényi(ER)random graph and regular random(RR) graph, but this work can be extended to any type of network. We develop spin glass theory to study the directed 2-distance MDS problem. First, we find that the belief propagation(BP) algorithm does not converge when the inverse temperatureβ exceeds a threshold on either an ER random network or RR network. Second, the entropy density of replica symmetric theory has a transition point at a finite β on a regular random graph when the arc density exceeds 2 and on an ER random graph when the arc density exceeds3.3;there is no entropy transition point(or β = ■) in other circumstances. Third, the results of the replica symmetry(RS) theory are in agreement with those of BP algorithm while the results of the BP decimation algorithm are better than those of the greedy heuristic algorithm.展开更多
基金supported by the Teaching Reform Research Project of Qinghai Minzu University,China(2021-JYYB-009)the“Chunhui Plan”Cooperative Scientific Research Project of the Ministry of Education of China(2018).
文摘Link prediction has attracted wide attention among interdisciplinaryresearchers as an important issue in complex network. It aims to predict the missing links in current networks and new links that will appear in future networks.Despite the presence of missing links in the target network of link prediction studies, the network it processes remains macroscopically as a large connectedgraph. However, the complexity of the real world makes the complex networksabstracted from real systems often contain many isolated nodes. This phenomenon leads to existing link prediction methods not to efficiently implement the prediction of missing edges on isolated nodes. Therefore, the cold-start linkprediction is favored as one of the most valuable subproblems of traditional linkprediction. However, due to the loss of many links in the observation network, thetopological information available for completing the link prediction task is extremely scarce. This presents a severe challenge for the study of cold-start link prediction. Therefore, how to mine and fuse more available non-topologicalinformation from observed network becomes the key point to solve the problemof cold-start link prediction. In this paper, we propose a framework for solving thecold-start link prediction problem, a joint-weighted symmetric nonnegative matrixfactorization model fusing graph regularization information, based on low-rankapproximation algorithms in the field of machine learning. First, the nonlinear features in high-dimensional space of node attributes are captured by the designedgraph regularization term. Second, using a weighted matrix, we associate the attribute similarity and first order structure information of nodes and constrain eachother. Finally, a unified framework for implementing cold-start link prediction isconstructed by using a symmetric nonnegative matrix factorization model to integrate the multiple information extracted together. Extensive experimental validationon five real networks with attributes shows that the proposed model has very goodpredictive performance when predicting missing edges of isolated nodes.
基金This work was supported by the National Natural Science Foundation of China(Grant No.61501005)the Anhui Natural Science Foundation(Grant No.1608085 MF 147)+2 种基金the Natural Science Foundation of Anhui Universities(Grant No.KJ2016A057)the Industry Collaborative Innovation Fund of Anhui Polytechnic University and Jiujiang District(Grant No.2021cyxtb4)the Science Research Project of Anhui Polytechnic University(Grant No.Xjky2020120).
文摘Aiming at the low recognition accuracy of non-negative matrix factorization(NMF)in practical application,an improved spare graph NMF(New-SGNMF)is proposed in this paper.New-SGNMF makes full use of the inherent geometric structure of image data to optimize the basis matrix in two steps.A threshold value s was first set to judge the threshold value of the decomposed base matrix to filter the redundant information in the data.Using L2 norm,sparse constraints were then implemented on the basis matrix,and integrated into the objective function to obtain the objective function of New-SGNMF.In addition,the derivation process of the algorithm and the convergence analysis of the algorithm were given.The experimental results on COIL20,PIE-pose09 and YaleB database show that compared with K-means,PCA,NMF and other algorithms,the proposed algorithm has higher accuracy and normalized mutual information.
基金The National Natural Science Foundation of China (No.61362001,61102043,61262084,20132BAB211030,20122BAB211015)the Basic Research Program of Shenzhen(No.JC201104220219A)
文摘A two-level Bregmanized method with graph regularized sparse coding (TBGSC) is presented for image interpolation. The outer-level Bregman iterative procedure enforces the observation data constraints, while the inner-level Bregmanized method devotes to dictionary updating and sparse represention of small overlapping image patches. The introduced constraint of graph regularized sparse coding can capture local image features effectively, and consequently enables accurate reconstruction from highly undersampled partial data. Furthermore, modified sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge within a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can effectively reconstruct images and it outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
文摘A function f: V( G)→{1,1} defined on the vertices of a graph G is a signed total dominating function (STDF) if the sum of its function values over any open neighborhood is at least one. An STDF f is minimal if there does not extst a STDF g: V(G)→{-1,1}, f≠g, for which g ( v )≤f( v ) for every v∈V( G ). The weight of a STDF is the sum of its function values over all vertices. The signed total domination number of G is the minimum weight of a STDF of G, while the upper signed domination number of G is the maximum weight of a minimal STDF of G, In this paper, we present sharp upper bounds on the upper signed total domination number of a nearly regular graph.
基金supported by the National Natural Science Foundation of China(No.51877013),(ZJ),(http://www.nsfc.gov.cn/)the Natural Science Foundation of Jiangsu Province(No.BK20181463),(ZJ),(http://kxjst.jiangsu.gov.cn/)sponsored by Qing Lan Project of Jiangsu Province(no specific grant number),(ZJ),(http://jyt.jiangsu.gov.cn/).
文摘Currently,functional connectomes constructed from neuroimaging data have emerged as a powerful tool in identifying brain disorders.If one brain disease just manifests as some cognitive dysfunction,it means that the disease may affect some local connectivity in the brain functional network.That is,there are functional abnormalities in the sub-network.Therefore,it is crucial to accurately identify them in pathological diagnosis.To solve these problems,we proposed a sub-network extraction method based on graph regularization nonnegative matrix factorization(GNMF).The dynamic functional networks of normal subjects and early mild cognitive impairment(eMCI)subjects were vectorized and the functional connection vectors(FCV)were assembled to aggregation matrices.Then GNMF was applied to factorize the aggregation matrix to get the base matrix,in which the column vectors were restored to a common sub-network and a distinctive sub-network,and visualization and statistical analysis were conducted on the two sub-networks,respectively.Experimental results demonstrated that,compared with other matrix factorization methods,the proposed method can more obviously reflect the similarity between the common subnetwork of eMCI subjects and normal subjects,as well as the difference between the distinctive sub-network of eMCI subjects and normal subjects,Therefore,the high-dimensional features in brain functional networks can be best represented locally in the lowdimensional space,which provides a new idea for studying brain functional connectomes.
基金National Natural Science Foundations of China(Nos.61362001,61102043,61262084)Technology Foundations of Department of Education of Jiangxi Province,China(Nos.GJJ12006,GJJ14196)Natural Science Foundations of Jiangxi Province,China(Nos.20132BAB211030,20122BAB211015)
文摘The imaging speed is a bottleneck for magnetic resonance imaging( MRI) since it appears. To alleviate this difficulty,a novel graph regularized sparse coding method for highly undersampled MRI reconstruction( GSCMRI) was proposed. The graph regularized sparse coding showed the potential in maintaining the geometrical information of the data. In this study, it was incorporated with two-level Bregman iterative procedure that updated the data term in outer-level and learned dictionary in innerlevel. Moreover,the graph regularized sparse coding and simple dictionary updating stages derived by the inner minimization made the proposed algorithm converge in few iterations, meanwhile achieving superior reconstruction performance. Extensive experimental results have demonstrated GSCMRI can consistently recover both real-valued MR images and complex-valued MR data efficiently,and outperform the current state-of-the-art approaches in terms of higher PSNR and lower HFEN values.
基金Supported by the Anhui Provincial Natural Science Foundation(050460102)National Natural Science Foundation of China(10601001,10571163)+3 种基金NSF of Department of Education of Anhui Province(2004kj027,2005kj005zd)Foundation of Anhui Institute of Architecture and Industry(200510307)Foundation of Mathematics Innovation Team of Anhui UniversityFoundation of Talents Group Construction of Anhui University
文摘In this paper, an equivalent condition of a graph G with t (2≤ t ≤n) distinct Laplacian eigenvalues is established. By applying this condition to t = 3, if G is regular (necessarily be strongly regular), an equivalent condition of G being Laplacian integral is given. Also for the case of t = 3, if G is non-regular, it is found that G has diameter 2 and girth at most 5 if G is not a tree. Graph G is characterized in the case of its being triangle-free, bipartite and pentagon-free. In both cases, G is Laplacian integral.
基金Supported by the National Natural Science Foundation of China(No.61261010No.61362001+7 种基金No.61365013No.61262084No.51165033)Technology Foundation of Department of Education in Jiangxi Province(GJJ13061GJJ14196)Young Scientists Training Plan of Jiangxi Province(No.20133ACB21007No.20142BCB23001)National Post-Doctoral Research Fund(No.2014M551867)and Jiangxi Advanced Project for Post-Doctoral Research Fund(No.2014KY02)
文摘In this paper, a two-level Bregman method is presented with graph regularized sparse coding for highly undersampled magnetic resonance image reconstruction. The graph regularized sparse coding is incorporated with the two-level Bregman iterative procedure which enforces the sampled data constraints in the outer level and updates dictionary and sparse representation in the inner level. Graph regularized sparse coding and simple dictionary updating applied in the inner minimization make the proposed algorithm converge with a relatively small number of iterations. Experimental results demonstrate that the proposed algorithm can consistently reconstruct both simulated MR images and real MR data efficiently, and outperforms the current state-of-the-art approaches in terms of visual comparisons and quantitative measures.
基金Supported by the National Natural Science Foundation of China(11561042,11961040)the Natural Science Foundation of Gansu Province(20JR5RA418)
文摘Recently Tang et al put forward two new operations G_(1)■_(k)G_(2)and G_(1)◆_(k)G_(2)of graphs G_(1)and G_(2),and obtained the distance spectrum of G_(1)■_(k)G_(2)and G_(1)◆_(k)G_(2)of regular graphs G_(1)and G_(2).In this paper,we characterize the adjacency spectrum,the Laplacian spectrum and the signless Laplacian spectrum of G_(1)■_(k)G_(2)and G_(1)◆_(k)G_(2)in terms of adjacency spectrum of regular graphs G_(1)and G_(2).
基金supported by the fund of South China Agricultural University (4900-K08225)supported by the National Natural Science Foundation of China(10771080)Specialized Research Fund for the Doctoral Program of Higher Eduction (20070574006)
文摘A λ harmonic graph G, a λ-Hgraph G for short, means that there exists a constant A such that the equality λd(ui) = ∑(vi,vj)∈E(G) d(vj) holds for all i = 1, 2,…, |V(G)|, where d(vi) denotes the degree of vertex vi. In this paper, some harmonic properties of the complement and line graph are given, and some algebraic properties for the λ-Hgraphs are obtained.
文摘A graph G is k-covered if each edge of G belongs to a k-factor of G. We determine some valuee of k for which every r-regular graph with edge-connectivity λ is k-covered.
基金supported by the National Natural Science Foundation of China(Grant Nos.61502101 and 61170321)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK20140651)the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20110092110024)
文摘Janmark, Meyer, and Wong showed that continuous-time quantum walk search on known families of strongly regular graphs(SRGs) with parameters(N, k, λ, μ) achieves full quantum speedup. The problem is reconsidered in terms of scattering quantum walk, a type of discrete-time quantum walks. Here, the search space is confined to a low-dimensional subspace corresponding to the collapsed graph of SRGs. To quantify the algorithm's performance, we leverage the fundamental pairing theorem, a general theory developed by Cottrell for quantum search of structural anomalies in star graphs.The search algorithm on the SRGs with k scales as N satisfies the theorem, and results can be immediately obtained, while search on the SRGs with k scales as√N does not satisfy the theorem, and matrix perturbation theory is used to provide an analysis. Both these cases can be solved in O(√N) time steps with a success probability close to 1. The analytical conclusions are verified by simulation results on two SRGs. These examples show that the formalism on star graphs can be applied more generally.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 1197118012271337)+1 种基金the Characteristic Innovation Project of General Colleges and Universities in Guangdong Province (Grant No. 2022KTSCX225)the Guangdong Education and Scientific Research Project (Grant No. 2021GXJK159)。
文摘Let G be a graph of order n and μ be an adjacency eigenvalue of G with multiplicity k ≥ 1. A star complement H for μ in G is an induced subgraph of G with n-k vertices and no eigenvalue μ, and the vertex subset X = V(G-H) is called a star set for μ in G. The star complement technique provides a spectral tool for reconstructing a certain part of a graph from the remaining part. In this paper, we study the regular graphs with K_(t,s)(s ≥ t ≥ 2) as a star complement for an eigenvalue μ, especially, characterize the case of t = 3 completely, obtain some properties when t = s, and propose some problems for further study.
基金Supported by the National Natural Science Foundation of China(Grant No.11961040)the Natural Science Foundation of Gansu Province(Grant No.20JR5RA418)。
文摘This paper is concerned with the normalized Laplacian spectra of four variants of double join operations based on subdivision graph,Q-graph,R-graph and total graph.The results here generalize some well known results about some join operations of graphs.
文摘Koetzig put forward a question on strongly-regular self-complementary graphs, that is, for any natural number k, whether there exists a strongLy-regular self- complementary graph whose order is 4k + 1, where 4k + 1 = x^2 + y^2, x and y are positive integers; what is the minimum number that made there exist at least two non-isomorphic strongly-regular self-complementary graphs. In this paper, we use two famous lemmas to generalize the existential conditions for strongly-regular self-complementary circular graphs with 4k + 1 orders.
基金National Natural Science Foundation of China(No.62372100)。
文摘Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,termed graph-based transform(GBT)and dual graph Laplacian regularization(DGLR)(DGLR-GBT).This model specifically aims to remove Gaussian white noise by capitalizing on the nonlocal self-similarity(NSS)and the piecewise smoothness properties intrinsic to depth maps.Within the group sparse coding(GSC)framework,a combination of GBT and DGLR is implemented.Firstly,within each group,the graph is constructed by using estimates of the true values of the averaged blocks instead of the observations.Secondly,the graph Laplacian regular terms are constructed based on rows and columns of similar block groups,respectively.Lastly,the solution is obtained effectively by combining the alternating direction multiplication method(ADMM)with the weighted thresholding method within the domain of GBT.
基金supported by the European Regional Development Fund through the program COMPETEby the Portuguese Government through the FCT—Fundacao para a Ciencia e a Tecnologia under the project PEst—C/MAT/UI0144/2013+1 种基金partially supported by Portuguese Funds trough CIDMA—Center for Research and development in Mathematics and Applications,Department of Mathematics,University of Aveiro,3810-193,Aveiro,Portugalthe Portuguese Foundation for Science and Technology(FCT-Fundacao para a Ciencia e Tecnologia),within Project PEst-OE/MAT/UI4106/2014
文摘We consider the real three-dimensional Euclidean Jordan algebra associated to a strongly regular graph. Then, the Krein parameters of a strongly regular graph are generalized and some generalized Krein admissibility conditions are deduced. Furthermore, we establish some relations between the classical Krein parameters and the generalized Krein parameters.
文摘The definition of the ascending subgraph decomposition was given by Alavi. It has been conjectured that every graph of positive size has an ascending subgraph decomposition. In this paper it is proved that the regular graphs under some conditions do have an ascending subgraph decomposition.
基金supported by the Natural Science Foundation of China (No.11901062)the Sichuan Natural Science Foundation (No.2024NSFSC0417)。
文摘Recently,linear codes with a few weights have been extensively studied due to their applications in secret sharing schemes,constant composition codes,strongly regular graphs and so on.In this paper,based on the Weil sums,several classes of two-weight or three-weight linear codes are presented by choosing a proper defining set,and their weight enumerators and complete weight enumerators are determined.Furthermore,these codes are proven to be minimal.By puncturing these linear codes,two classes of two-weight projective codes are obtained,and the parameters of the corresponding strongly regular graph are given.This paper generalizes the results of[7].
基金supported by the doctoral startup fund of Xinjiang University of China (grant number 208-61357)the National Natural Science Foundation of China (grant number 11 465 019,11 664 040)。
文摘The directed L-distance minimal dominating set(MDS) problem has wide practical applications in the fields of computer science and communication networks. Here, we study this problem from the perspective of purely theoretical interest. We only give results for an Erdós Rényi(ER)random graph and regular random(RR) graph, but this work can be extended to any type of network. We develop spin glass theory to study the directed 2-distance MDS problem. First, we find that the belief propagation(BP) algorithm does not converge when the inverse temperatureβ exceeds a threshold on either an ER random network or RR network. Second, the entropy density of replica symmetric theory has a transition point at a finite β on a regular random graph when the arc density exceeds 2 and on an ER random graph when the arc density exceeds3.3;there is no entropy transition point(or β = ■) in other circumstances. Third, the results of the replica symmetry(RS) theory are in agreement with those of BP algorithm while the results of the BP decimation algorithm are better than those of the greedy heuristic algorithm.