期刊文献+
共找到3,141篇文章
< 1 2 158 >
每页显示 20 50 100
PIAFGNN:Property Inference Attacks against Federated Graph Neural Networks
1
作者 Jiewen Liu Bing Chen +2 位作者 Baolu Xue Mengya Guo Yuntao Xu 《Computers, Materials & Continua》 2025年第2期1857-1877,共21页
Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and so... Federated Graph Neural Networks (FedGNNs) have achieved significant success in representation learning for graph data, enabling collaborative training among multiple parties without sharing their raw graph data and solving the data isolation problem faced by centralized GNNs in data-sensitive scenarios. Despite the plethora of prior work on inference attacks against centralized GNNs, the vulnerability of FedGNNs to inference attacks has not yet been widely explored. It is still unclear whether the privacy leakage risks of centralized GNNs will also be introduced in FedGNNs. To bridge this gap, we present PIAFGNN, the first property inference attack (PIA) against FedGNNs. Compared with prior works on centralized GNNs, in PIAFGNN, the attacker can only obtain the global embedding gradient distributed by the central server. The attacker converts the task of stealing the target user’s local embeddings into a regression problem, using a regression model to generate the target graph node embeddings. By training shadow models and property classifiers, the attacker can infer the basic property information within the target graph that is of interest. Experiments on three benchmark graph datasets demonstrate that PIAFGNN achieves attack accuracy of over 70% in most cases, even approaching the attack accuracy of inference attacks against centralized GNNs in some instances, which is much higher than the attack accuracy of the random guessing method. Furthermore, we observe that common defense mechanisms cannot mitigate our attack without affecting the model’s performance on mainly classification tasks. 展开更多
关键词 Federated graph neural networks GNNs privacy leakage regression model property inference attacks EMBEDDINGS
在线阅读 下载PDF
Graph Neural Networks and Multimodal DTI Features for Schizophrenia Classification:Insights from Brain Network Analysis and Gene Expression
2
作者 Jingjing Gao Heping Tang +25 位作者 Zhengning Wang Yanling Li Na Luo Ming Song Sangma Xie Weiyang Shi Hao Yan Lin Lu Jun Yan Peng Li Yuqing Song Jun Chen Yunchun Chen Huaning Wang Wenming Liu Zhigang Li Hua Guo Ping Wan Luxian Lv Yongfeng Yang Huiling Wang Hongxing Zhang Huawang Wu Yuping Ning Dai Zhang Tianzi Jiang 《Neuroscience Bulletin》 2025年第6期933-950,共18页
Schizophrenia(SZ)stands as a severe psychiatric disorder.This study applied diffusion tensor imaging(DTI)data in conjunction with graph neural networks to distinguish SZ patients from normal controls(NCs)and showcases... Schizophrenia(SZ)stands as a severe psychiatric disorder.This study applied diffusion tensor imaging(DTI)data in conjunction with graph neural networks to distinguish SZ patients from normal controls(NCs)and showcases the superior performance of a graph neural network integrating combined fractional anisotropy and fiber number brain network features,achieving an accuracy of 73.79%in distinguishing SZ patients from NCs.Beyond mere discrimination,our study delved deeper into the advantages of utilizing white matter brain network features for identifying SZ patients through interpretable model analysis and gene expression analysis.These analyses uncovered intricate interrelationships between brain imaging markers and genetic biomarkers,providing novel insights into the neuropathological basis of SZ.In summary,our findings underscore the potential of graph neural networks applied to multimodal DTI data for enhancing SZ detection through an integrated analysis of neuroimaging and genetic features. 展开更多
关键词 SCHIZOPHRENIA Magnetic resonance imaging CLASSIFICATION Deep learning graph neural network
原文传递
DSGNN:Dual-Shield Defense for Robust Graph Neural Networks
3
作者 Xiaohan Chen Yuanfang Chen +2 位作者 Gyu Myoung Lee Noel Crespi Pierluigi Siano 《Computers, Materials & Continua》 2025年第10期1733-1750,共18页
Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),t... Graph Neural Networks(GNNs)have demonstrated outstanding capabilities in processing graph-structured data and are increasingly being integrated into large-scale pre-trained models,such as Large Language Models(LLMs),to enhance structural reasoning,knowledge retrieval,and memory management.The expansion of their application scope imposes higher requirements on the robustness of GNNs.However,as GNNs are applied to more dynamic and heterogeneous environments,they become increasingly vulnerable to real-world perturbations.In particular,graph data frequently encounters joint adversarial perturbations that simultaneously affect both structures and features,which are significantly more challenging than isolated attacks.These disruptions,caused by incomplete data,malicious attacks,or inherent noise,pose substantial threats to the stable and reliable performance of traditional GNN models.To address this issue,this study proposes the Dual-Shield Graph Neural Network(DSGNN),a defense model that simultaneously mitigates structural and feature perturbations.DSGNN utilizes two parallel GNN channels to independently process structural noise and feature noise,and introduces an adaptive fusion mechanism that integrates information from both pathways to generate robust node representations.Theoretical analysis demonstrates that DSGNN achieves a tighter robustness boundary under joint perturbations compared to conventional single-channel methods.Experimental evaluations across Cora,CiteSeer,and Industry datasets show that DSGNN achieves the highest average classification accuracy under various adversarial settings,reaching 81.24%,71.94%,and 81.66%,respectively,outperforming GNNGuard,GCN-Jaccard,GCN-SVD,RGCN,and NoisyGNN.These results underscore the importance of multi-view perturbation decoupling in constructing resilient GNN models for real-world applications. 展开更多
关键词 graph neural networks adversarial attacks dual-shield defense certified robustness node classification
在线阅读 下载PDF
Intelligent Medical Diagnosis Model Based on Graph Neural Networks for Medical Images
4
作者 Ashutosh Sharma Amit Sharma Kai Guo 《CAAI Transactions on Intelligence Technology》 2025年第4期1201-1216,共16页
Recently,numerous estimation issues have been solved due to the developments in data-driven artificial neural networks(ANN)and graph neural networks(GNN).The primary limitation of previous methodologies has been the d... Recently,numerous estimation issues have been solved due to the developments in data-driven artificial neural networks(ANN)and graph neural networks(GNN).The primary limitation of previous methodologies has been the dependence on data that can be structured in a grid format.However,physiological recordings often exhibit irregular and unordered patterns,posing a significant challenge in conceptualising them as matrices.As a result,GNNs which comprise interactive nodes connected by edges whose weights are defined by anatomical junctions or temporal relationships have received a lot of consideration by leveraging implicit data that exists in a biological system.Additionally,our study incorporates a structural GNN to effectively differentiate between different degrees of infection in both the left and right hemispheres of the brain.Subsequently,demographic data are included,and a multi-task learning architecture is devised,integrating classification and regression tasks.The trials used an authentic dataset,including 800 brain x-ray pictures,consisting of 560 instances classified as moderate cases and 240 instances classified as severe cases.Based on empirical evidence,our methodology demonstrates superior performance in classification,surpassing other comparison methods with a notable achievement of 92.27%in terms of area under the curve as well as a correlation coefficient of 0.62. 展开更多
关键词 artificial intelligence disease prediction electronic medical records graph neural networks medical imaging
在线阅读 下载PDF
BlastGraphNet:An Intelligent Computational Method for the Precise and Rapid Prediction of Blast Loads on Complex 3D Buildings Using Graph Neural Networks
5
作者 Zhiqiao Wang Jiangzhou Peng +6 位作者 Jie Hu Mingchuan Wang Xiaoli Rong Leixiang Bian Mingyang Wang Yong He Weitao Wu 《Engineering》 2025年第6期205-224,共20页
Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective meas... Accurate and efficient prediction of the distribution of surface loads on buildings subjected to explosive effects is crucial for rapidly calculating structural dynamic responses,establishing effective protective measures,and designing civil defense engineering solutions.Current state-of-the-art methods face several issues:Experimental research is difficult and costly to implement,theoretical research is limited to simple geometries and lacks precision,and direct simulations require substantial computational resources.To address these challenges,this paper presents a data-driven method for predicting blast loads on building surfaces.This approach increases both the accuracy and computational efficiency of load predictions when the geometry of the building changes while the explosive yield remains constant,significantly improving its applicability in complex scenarios.This study introduces an innovative encoder-decoder graph neural network model named BlastGraphNet,which uses a message-passing mechanism to predict the overpressure and impulse load distributions on buildings with conventional and complex geometries during explosive events.The model also facilitates related downstream applications,such as damage mode identification and rapid assessment of virtual city explosions.The calculation results indicate that the prediction error of the model for conventional building tests is less than 2%,and its inference speed is 3-4 orders of magnitude faster than that of state-of-the-art numerical methods.In extreme test cases involving buildings with complex geometries and building clusters,the method achieved high accuracy and excellent generalizability.The strong adaptability and generalizability of BlastGraphNet confirm that this novel method enables precise real-time prediction of blast loads and provides a new paradigm for damage assessment in protective engineering. 展开更多
关键词 Blast load prediction graph neural networks Data-driven learning Real-time prediction Protective engineering
在线阅读 下载PDF
Integrating Attention Mechanisms in Graph Neural Networks for Marine Oil Spill Detection
6
作者 CAI Fengjing WANG Yue +5 位作者 TIAN Zhuangcai LI Xi’an XU Jing MO Yuming ZHANG Shaotong WU Jinran 《Journal of Ocean University of China》 2025年第5期1327-1340,I0003-I0014,共26页
The increasing frequency of offshore engineering activities,particularly the expansion of offshore oil transport and the rise in the number of oil platforms,has greatly increased the potential risk of marine oil spill... The increasing frequency of offshore engineering activities,particularly the expansion of offshore oil transport and the rise in the number of oil platforms,has greatly increased the potential risk of marine oil spill incidents.Historically,several large oil spills have had long-term adverse effects on marine ecosystems and economic development,highlighting the importance of accurate-ly delineating and monitoring oil spill areas.In this study,graph neural network technology is introduced to implement semantic seg-mentation of SAR images,and two graph neural network models based on Graph-FCN and Graph-DeepLabV3+with the introduction of an attention mechanism are constructed and evaluated to improve the accuracy and efficiency of oil spill detection.By com-paring the Swin-Unet model,the Graph-DeepLabV3+model performs better in complex scenarios,especially in edge detail recognition.This not only provides strong technical support for marine oil spill monitoring but also provides an effective solution to deal with the potential risks brought by the increase of marine engineering activities,which is of great practical significance as it helps to safeguard the health and sustainable development of marine ecosystems and reduce the economic losses. 展开更多
关键词 marine oil spill monitoring graph neural network semantic segmentation Swin-Unet graph-DeeplabV3+
在线阅读 下载PDF
A diagnosis method based on graph neural networks embedded with multirelationships of intrinsic mode functions for multiple mechanical faults
7
作者 Bin Wang Manyi Wang +3 位作者 Yadong Xu Liangkuan Wang Shiyu Chen Xuanshi Chen 《Defence Technology(防务技术)》 2025年第8期364-373,共10页
Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types o... Fault diagnosis occupies a pivotal position within the domain of machine and equipment management.Existing methods,however,often exhibit limitations in their scope of application,typically focusing on specific types of signals or faults in individual mechanical components while being constrained by data types and inherent characteristics.To address the limitations of existing methods,we propose a fault diagnosis method based on graph neural networks(GNNs)embedded with multirelationships of intrinsic mode functions(MIMF).The approach introduces a novel graph topological structure constructed from the features of intrinsic mode functions(IMFs)of monitored signals and their multirelationships.Additionally,a graph-level based fault diagnosis network model is designed to enhance feature learning capabilities for graph samples and enable flexible application across diverse signal sources and devices.Experimental validation with datasets including independent vibration signals for gear fault detection,mixed vibration signals for concurrent gear and bearing faults,and pressure signals for hydraulic cylinder leakage characterization demonstrates the model's adaptability and superior diagnostic accuracy across various types of signals and mechanical systems. 展开更多
关键词 Fault diagnosis graph neural networks graph topological structure Intrinsic mode functions Feature learning
在线阅读 下载PDF
A Privacy-Preserving Graph Neural Network Framework with Attention Mechanism for Computational Offloading in the Internet of Vehicles
8
作者 Aishwarya Rajasekar Vetriselvi Vetrian 《Computer Modeling in Engineering & Sciences》 2025年第4期225-254,共30页
The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle ap... The integration of technologies like artificial intelligence,6G,and vehicular ad-hoc networks holds great potential to meet the communication demands of the Internet of Vehicles and drive the advancement of vehicle applications.However,these advancements also generate a surge in data processing requirements,necessitating the offloading of vehicular tasks to edge servers due to the limited computational capacity of vehicles.Despite recent advancements,the robustness and scalability of the existing approaches with respect to the number of vehicles and edge servers and their resources,as well as privacy,remain a concern.In this paper,a lightweight offloading strategy that leverages ubiquitous connectivity through the Space Air Ground Integrated Vehicular Network architecture while ensuring privacy preservation is proposed.The Internet of Vehicles(IoV)environment is first modeled as a graph,with vehicles and base stations as nodes,and their communication links as edges.Secondly,vehicular applications are offloaded to suitable servers based on latency using an attention-based heterogeneous graph neural network(HetGNN)algorithm.Subsequently,a differential privacy stochastic gradient descent trainingmechanism is employed for privacypreserving of vehicles and offloading inference.Finally,the simulation results demonstrated that the proposedHetGNN method shows good performance with 0.321 s of inference time,which is 42.68%,63.93%,30.22%,and 76.04% less than baseline methods such as Deep Deterministic Policy Gradient,Deep Q Learning,Deep Neural Network,and Genetic Algorithm,respectively. 展开更多
关键词 Internet of vehicles vehicular ad-hoc networks(VANET) multiaccess edge computing task offloading graph neural networks differential privacy
在线阅读 下载PDF
Optimized graph neural network-multilayer perceptron fusion classifier for metastatic prostate cancer detection in Western and Asian populations
9
作者 Fengxian Han Xiaohui Fan +12 位作者 Pengwei Long Wenhui Zhang Qiting Li Yingxuan Li Xingpeng Guo Yinran Luo Rongqi Wen Sheng Wang Shan Zhang Yizhuo Li Yan Wang Xu Gao Jing Li 《Asian Journal of Urology》 2025年第3期327-337,共11页
Objective:Prostate cancer(PCa)exhibits significant genomic differences between Western and Asian populations.This study aimed to design a predictive model applicable across diverse populations while selecting a limite... Objective:Prostate cancer(PCa)exhibits significant genomic differences between Western and Asian populations.This study aimed to design a predictive model applicable across diverse populations while selecting a limited set of genes suitable for clinical implementation.Methods:We utilized an integrated dataset of 1360 whole-exome and whole-genome sequences from Chinese and Western PCa cohorts to develop and evaluate the model.External validation was conducted using an independent cohort of patients.A graph neural network architecture,termed the pathway-aware multi-layered hierarchical network-Western and Asian(P-NETwa),was developed and trained on combined genomic profiles from Chinese and Western cohorts.The model employed a multilayer perceptron(MLP)to identify key signature genes from multiomics data,enabling precise prediction of PCa metastasis.Results:The model achieved an accuracy of 0.87 and an F1-score of 0.85 on Western population datasets.The application of integrated Chinese and Western population data improved the accuracy to 0.88,achieving an F1-score of 0.75.The analysis identified 18 signature genes implicated in PCa progression,including established markers(AR and TP53)and novel candidates(MUC16,MUC4,and ASB12).For clinical adoption,the model was optimized for commercially available gene panels while maintaining high classification accuracy.Additionally,a user-friendly web interface was developed to facilitate real-time prediction of primary versus metastatic status using the pre-trained P-NETwa-MLP model.Conclusion:The P-NETwa-MLP model integrates a query system that allows for efficient retrieval of prediction outcomes and associated genomic signatures via sample ID,enhancing its potential for seamless integration into clinical workflows. 展开更多
关键词 Prostate cancer Machine learning Multilayer perceptron graph neural network
在线阅读 下载PDF
Denoising graph neural network based on zero-shot learning for Gibbs phenomenon in high-order DG applications
10
作者 Wei AN Jiawen LIU +3 位作者 Wenxuan OUYANG Haoyu RU Xuejun LIU Hongqiang LYU 《Chinese Journal of Aeronautics》 2025年第3期234-248,共15页
With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engi... With the availability of high-performance computing technology and the development of advanced numerical simulation methods, Computational Fluid Dynamics (CFD) is becoming more and more practical and efficient in engineering. As one of the high-precision representative algorithms, the high-order Discontinuous Galerkin Method (DGM) has not only attracted widespread attention from scholars in the CFD research community, but also received strong development. However, when DGM is extended to high-speed aerodynamic flow field calculations, non-physical numerical Gibbs oscillations near shock waves often significantly affect the numerical accuracy and even cause calculation failure. Data driven approaches based on machine learning techniques can be used to learn the characteristics of Gibbs noise, which motivates us to use it in high-speed DG applications. To achieve this goal, labeled data need to be generated in order to train the machine learning models. This paper proposes a new method for denoising modeling of Gibbs phenomenon using a machine learning technique, the zero-shot learning strategy, to eliminate acquiring large amounts of CFD data. The model adopts a graph convolutional network combined with graph attention mechanism to learn the denoising paradigm from synthetic Gibbs noise data and generalize to DGM numerical simulation data. Numerical simulation results show that the Gibbs denoising model proposed in this paper can suppress the numerical oscillation near shock waves in the high-order DGM. Our work automates the extension of DGM to high-speed aerodynamic flow field calculations with higher generalization and lower cost. 展开更多
关键词 Computational fluid dynamics High-order discon tinuous Galerkin method Gibbs phenomenon graph neural networks Zero-shot learning
原文传递
Sparse graph neural network aided efficient decoder for polar codes under bursty interference
11
作者 Shengyu Zhang Zhongxiu Feng +2 位作者 Zhe Peng Lixia Xiao Tao Jiang 《Digital Communications and Networks》 2025年第2期359-364,共6页
In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the e... In this paper,a sparse graph neural network-aided(SGNN-aided)decoder is proposed for improving the decoding performance of polar codes under bursty interference.Firstly,a sparse factor graph is constructed using the encoding characteristic to achieve high-throughput polar decoding.To further improve the decoding performance,a residual gated bipartite graph neural network is designed for updating embedding vectors of heterogeneous nodes based on a bidirectional message passing neural network.This framework exploits gated recurrent units and residual blocks to address the gradient disappearance in deep graph recurrent neural networks.Finally,predictions are generated by feeding the embedding vectors into a readout module.Simulation results show that the proposed decoder is more robust than the existing ones in the presence of bursty interference and exhibits high universality. 展开更多
关键词 Sparse graph neural network Polar codes Bursty interference Sparse factor graph Message passing neural network
在线阅读 下载PDF
Graph neural network-driven prediction of high-performance CO_(2)reduction catalysts based on Cu-based high-entropy alloys
12
作者 Zihao Jiao Chengyi Zhang +2 位作者 Ya Liu Liejin Guo Ziyun Wang 《Chinese Journal of Catalysis》 2025年第4期197-207,共11页
High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface compl... High-entropy alloy(HEA)offer tunable composition and surface structures,enabling the creation of novel active sites that enhance catalytic performance in renewable energy application.However,the inherent surface complexity and tendency for elemental segregation,which results in discrepancies between bulk and surface compositions,pose challenges for direct investigation via density functional theory.To address this,Monte Carlo simulations combined with molecular dynamics were employed to model surface segregation across a broad range of elements,including Cu,Ag,Au,Pt,Pd,and Al.The analysis revealed a trend in surface segregation propensity following the order Ag>Au>Al>Cu>Pd>Pt.To capture the correlation between surface site characteristics and the free energy of multi-dentate CO_(2)reduction intermediates,a graph neural network was designed,where adsorbates were transformed into pseudo-atoms at their centers of mass.This model achieved mean absolute errors of 0.08–0.15 eV for the free energies of C_(2)intermediates,enabling precise site activity quantification.Results indicated that increasing the concentration of Cu,Ag,and Al significantly boosts activity for CO and C_(2)formation,whereas Au,Pd,and Pt exhibit negative effects.By screening stable composition space,promising HEA bulk compositions for CO,HCOOH,and C_(2)products were predicted,offering superior catalytic activity compared to pure Cu catalysts. 展开更多
关键词 Density functional theory Machine learning CO_(2)reduction High entropy alloys graph neural network
在线阅读 下载PDF
A graph neural network and multi-task learning-based decoding algorithm for enhancing XZZX code stability in biased noise
13
作者 Bo Xiao Zai-Xu Fan +2 位作者 Hui-Qian Sun Hong-Yang Ma Xing-Kui Fan 《Chinese Physics B》 2025年第5期250-257,共8页
Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The... Quantum error correction is a technique that enhances a system’s ability to combat noise by encoding logical information into additional quantum bits,which plays a key role in building practical quantum computers.The XZZX surface code,with only one stabilizer generator on each face,demonstrates significant application potential under biased noise.However,the existing minimum weight perfect matching(MWPM)algorithm has high computational complexity and lacks flexibility in large-scale systems.Therefore,this paper proposes a decoding method that combines graph neural networks(GNN)with multi-classifiers,the syndrome is transformed into an undirected graph,and the features are aggregated by convolutional layers,providing a more efficient and accurate decoding strategy.In the experiments,we evaluated the performance of the XZZX code under different biased noise conditions(bias=1,20,200)and different code distances(d=3,5,7,9,11).The experimental results show that under low bias noise(bias=1),the GNN decoder achieves a threshold of 0.18386,an improvement of approximately 19.12%compared to the MWPM decoder.Under high bias noise(bias=200),the GNN decoder reaches a threshold of 0.40542,improving by approximately 20.76%,overcoming the limitations of the conventional decoder.They demonstrate that the GNN decoding method exhibits superior performance and has broad application potential in the error correction of XZZX code. 展开更多
关键词 quantum error correction XZZX code biased noise graph neural network
原文传递
A Fine-Grained Defect Prediction Method Based on Drift-Immune Graph Neural Networks
14
作者 Fengyu Yang Fa Zhong +1 位作者 Xiaohui Wei Guangdong Zeng 《Computers, Materials & Continua》 2025年第2期3563-3590,共28页
The primary goal of software defect prediction (SDP) is to pinpoint code modules that are likely to contain defects, thereby enabling software quality assurance teams to strategically allocate their resources and manp... The primary goal of software defect prediction (SDP) is to pinpoint code modules that are likely to contain defects, thereby enabling software quality assurance teams to strategically allocate their resources and manpower. Within-project defect prediction (WPDP) is a widely used method in SDP. Despite various improvements, current methods still face challenges such as coarse-grained prediction and ineffective handling of data drift due to differences in project distribution. To address these issues, we propose a fine-grained SDP method called DIDP (drift-immune defect prediction), based on drift-immune graph neural networks (DI-GNN). DIDP converts source code into graph representations and uses DI-GNN to mitigate data drift at the model level. It also analyses key statements leading to file defects for a more detailed SDP approach. We evaluated the performance of DIDP in WPDP by examining its file-level and statement-level accuracy compared to state-of-the-art methods, and by examining its cross-project prediction accuracy. The results of the experiment show that DIDP showed significant improvements in F1-score and Recall@Top20%LOC compared to existing methods, even with large software version changes. DIDP also performed well in cross-project SDP. Our study demonstrates that DIDP achieves impressive prediction results in WPDP, effectively mitigating data drift and accurately predicting defective files. Additionally, DIDP can rank the risk of statements in defective files, aiding developers and testers in identifying potential code issues. 展开更多
关键词 Software defect prediction data drift graph neural networks information bottleneck
在线阅读 下载PDF
Resource Allocation in V2X Networks:A Double Deep Q-Network Approach with Graph Neural Networks
15
作者 Zhengda Huan Jian Sun +3 位作者 Zeyu Chen Ziyi Zhang Xiao Sun Zenghui Xiao 《Computers, Materials & Continua》 2025年第9期5427-5443,共17页
With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from h... With the advancement of Vehicle-to-Everything(V2X)technology,efficient resource allocation in dynamic vehicular networks has become a critical challenge for achieving optimal performance.Existing methods suffer from high computational complexity and decision latency under high-density traffic and heterogeneous network conditions.To address these challenges,this study presents an innovative framework that combines Graph Neural Networks(GNNs)with a Double Deep Q-Network(DDQN),utilizing dynamic graph structures and reinforcement learning.An adaptive neighbor sampling mechanism is introduced to dynamically select the most relevant neighbors based on interference levels and network topology,thereby improving decision accuracy and efficiency.Meanwhile,the framework models communication links as nodes and interference relationships as edges,effectively capturing the direct impact of interference on resource allocation while reducing computational complexity and preserving critical interaction information.Employing an aggregation mechanism based on the Graph Attention Network(GAT),it dynamically adjusts the neighbor sampling scope and performs attention-weighted aggregation based on node importance,ensuring more efficient and adaptive resource management.This design ensures reliable Vehicle-to-Vehicle(V2V)communication while maintaining high Vehicle-to-Infrastructure(V2I)throughput.The framework retains the global feature learning capabilities of GNNs and supports distributed network deployment,allowing vehicles to extract low-dimensional graph embeddings from local observations for real-time resource decisions.Experimental results demonstrate that the proposed method significantly reduces computational overhead,mitigates latency,and improves resource utilization efficiency in vehicular networks under complex traffic scenarios.This research not only provides a novel solution to resource allocation challenges in V2X networks but also advances the application of DDQN in intelligent transportation systems,offering substantial theoretical significance and practical value. 展开更多
关键词 Resource allocation V2X double deep Q-network graph neural network
在线阅读 下载PDF
Graph neural networks unveil universal dynamics in directed percolation
16
作者 Ji-Hui Han Cheng-Yi Zhang +3 位作者 Gao-Gao Dong Yue-Feng Shi Long-Feng Zhao Yi-Jiang Zou 《Chinese Physics B》 2025年第8期540-545,共6页
Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investig... Recent advances in statistical physics highlight the significant potential of machine learning for phase transition recognition.This study introduces a deep learning framework based on graph neural network to investigate non-equilibrium phase transitions,specifically focusing on the directed percolation process.By converting lattices with varying dimensions and connectivity schemes into graph structures and embedding the temporal evolution of the percolation process into node features,our approach enables unified analysis across diverse systems.The framework utilizes a multi-layer graph attention mechanism combined with global pooling to autonomously extract critical features from local dynamics to global phase transition signatures.The model successfully predicts percolation thresholds without relying on lattice geometry,demonstrating its robustness and versatility.Our approach not only offers new insights into phase transition studies but also provides a powerful tool for analyzing complex dynamical systems across various domains. 展开更多
关键词 graph neural networks non-equilibrium phase transition directed percolation model nonlinear dynamics
原文传递
Convolutional Graph Neural Network with Novel Loss Strategies for Daily Temperature and Precipitation Statistical Downscaling over South China
17
作者 Wenjie YAN Shengjun LIU +6 位作者 Yulin ZOU Xinru LIU Diyao WEN Yamin HU Dangfu YANG Jiehong XIE Liang ZHAO 《Advances in Atmospheric Sciences》 2025年第1期232-247,共16页
Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome th... Traditional meteorological downscaling methods face limitations due to the complex distribution of meteorological variables,which can lead to unstable forecasting results,especially in extreme scenarios.To overcome this issue,we propose a convolutional graph neural network(CGNN)model,which we enhance with multilayer feature fusion and a squeeze-and-excitation block.Additionally,we introduce a spatially balanced mean squared error(SBMSE)loss function to address the imbalanced distribution and spatial variability of meteorological variables.The CGNN is capable of extracting essential spatial features and aggregating them from a global perspective,thereby improving the accuracy of prediction and enhancing the model's generalization ability.Based on the experimental results,CGNN has certain advantages in terms of bias distribution,exhibiting a smaller variance.When it comes to precipitation,both UNet and AE also demonstrate relatively small biases.As for temperature,AE and CNNdense perform outstandingly during the winter.The time correlation coefficients show an improvement of at least 10%at daily and monthly scales for both temperature and precipitation.Furthermore,the SBMSE loss function displays an advantage over existing loss functions in predicting the98th percentile and identifying areas where extreme events occur.However,the SBMSE tends to overestimate the distribution of extreme precipitation,which may be due to the theoretical assumptions about the posterior distribution of data that partially limit the effectiveness of the loss function.In future work,we will further optimize the SBMSE to improve prediction accuracy. 展开更多
关键词 statistical downscaling convolutional graph neural network feature processing SBMSE loss function
在线阅读 下载PDF
Utility of Graph Neural Networks in Short-to Medium-Range Weather Forecasting
18
作者 Xiaoni Sun Jiming Li +5 位作者 Zhiqiang Zhao Guodong Jing Baojun Chen Jinrong Hu Fei Wang Yong Zhang 《Computers, Materials & Continua》 2025年第8期2121-2149,共29页
Weather forecasting is crucial for agriculture,transportation,and industry.Deep Learning(DL)has greatly improved the prediction accuracy.Among them,Graph Neural Networks(GNNs)excel at processing weather data by establ... Weather forecasting is crucial for agriculture,transportation,and industry.Deep Learning(DL)has greatly improved the prediction accuracy.Among them,Graph Neural Networks(GNNs)excel at processing weather data by establishing connections between regions.This allows them to understand complex patterns that traditional methods might miss.As a result,achieving more accurate predictions becomes possible.The paper reviews the role of GNNs in short-to medium-range weather forecasting.The methods are classified into three categories based on dataset differences.The paper also further identifies five promising research frontiers.These areas aim to boost forecasting precision and enhance computational efficiency.They offer valuable insights for future weather forecasting systems. 展开更多
关键词 graph neural networks weather forecasting meteorological datasets
在线阅读 下载PDF
Adaptive regulation-based Mutual Information Camouflage Poisoning Attack in Graph Neural Networks
19
作者 Jihui Yin Taorui Yang +3 位作者 Yifei Sun Jianzhi Gao Jiangbo Lu Zhi-Hui Zhan 《Journal of Automation and Intelligence》 2025年第1期21-28,共8页
Studies show that Graph Neural Networks(GNNs)are susceptible to minor perturbations.Therefore,analyzing adversarial attacks on GNNs is crucial in current research.Previous studies used Generative Adversarial Networks ... Studies show that Graph Neural Networks(GNNs)are susceptible to minor perturbations.Therefore,analyzing adversarial attacks on GNNs is crucial in current research.Previous studies used Generative Adversarial Networks to generate a set of fake nodes,injecting them into a clean GNNs to poison the graph structure and evaluate the robustness of GNNs.In the attack process,the computation of new node connections and the attack loss are independent,which affects the attack on the GNN.To improve this,a Fake Node Camouflage Attack based on Mutual Information(FNCAMI)algorithm is proposed.By incorporating Mutual Information(MI)loss,the distribution of nodes injected into the GNNs become more similar to the original nodes,achieving better attack results.Since the loss ratios of GNNs and MI affect performance,we also design an adaptive weighting method.By adjusting the loss weights in real-time through rate changes,larger loss values are obtained,eliminating local optima.The feasibility,effectiveness,and stealthiness of this algorithm are validated on four real datasets.Additionally,we use both global and targeted attacks to test the algorithm’s performance.Comparisons with baseline attack algorithms and ablation experiments demonstrate the efficiency of the FNCAMI algorithm. 展开更多
关键词 Mutual information Adaptive weighting Poisoning attack graph neural networks
在线阅读 下载PDF
Graph neural network-based scheduling for multi-UAV-enabled communications in D2D networks 被引量:1
20
作者 Pei Li Lingyi Wang +3 位作者 Wei Wu Fuhui Zhou Baoyun Wang Qihui Wu 《Digital Communications and Networks》 SCIE CSCD 2024年第1期45-52,共8页
In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission... In this paper,we jointly design the power control and position dispatch for Multi-Unmanned Aerial Vehicle(UAV)-enabled communication in Device-to-Device(D2D)networks.Our objective is to maximize the total transmission rate of Downlink Users(DUs).Meanwhile,the Quality of Service(QoS)of all D2D users must be satisfied.We comprehensively considered the interference among D2D communications and downlink transmissions.The original problem is strongly non-convex,which requires high computational complexity for traditional optimization methods.And to make matters worse,the results are not necessarily globally optimal.In this paper,we propose a novel Graph Neural Networks(GNN)based approach that can map the considered system into a specific graph structure and achieve the optimal solution in a low complexity manner.Particularly,we first construct a GNN-based model for the proposed network,in which the transmission links and interference links are formulated as vertexes and edges,respectively.Then,by taking the channel state information and the coordinates of ground users as the inputs,as well as the location of UAVs and the transmission power of all transmitters as outputs,we obtain the mapping from inputs to outputs through training the parameters of GNN.Simulation results verified that the way to maximize the total transmission rate of DUs can be extracted effectively via the training on samples.Moreover,it also shows that the performance of proposed GNN-based method is better than that of traditional means. 展开更多
关键词 Unmanned aerial vehicle D2 Dcommunication graph neural network Power control Position planning
在线阅读 下载PDF
上一页 1 2 158 下一页 到第
使用帮助 返回顶部