Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,ter...Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,termed graph-based transform(GBT)and dual graph Laplacian regularization(DGLR)(DGLR-GBT).This model specifically aims to remove Gaussian white noise by capitalizing on the nonlocal self-similarity(NSS)and the piecewise smoothness properties intrinsic to depth maps.Within the group sparse coding(GSC)framework,a combination of GBT and DGLR is implemented.Firstly,within each group,the graph is constructed by using estimates of the true values of the averaged blocks instead of the observations.Secondly,the graph Laplacian regular terms are constructed based on rows and columns of similar block groups,respectively.Lastly,the solution is obtained effectively by combining the alternating direction multiplication method(ADMM)with the weighted thresholding method within the domain of GBT.展开更多
In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesia...In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesian product graph of the time-and vertex-graphs.By assuming the signals follow a Gaussian prior distribution on the joint graph,a meaningful representation that promotes the smoothness property of the joint graph signal is derived.Furthermore,by decoupling the joint graph,the graph learning framework is formulated as a joint optimization problem which includes signal denoising,timeand vertex-graphs learning together.Specifically,two algorithms are proposed to solve the optimization problem,where the discrete second-order difference operator with reversed sign(DSODO)in the time domain is used as the time-graph Laplacian operator to recover the signal and infer a vertex-graph in the first algorithm,and the time-graph,as well as the vertex-graph,is estimated by the other algorithm.Experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively infer meaningful time-and vertex-graphs from noisy and incomplete data.展开更多
This paper reviews some main results and progress in distributed multi-agent coordination from a graph Laplacian perspective.Distributed multi-agent coordination has been a very active subject studied extensively by t...This paper reviews some main results and progress in distributed multi-agent coordination from a graph Laplacian perspective.Distributed multi-agent coordination has been a very active subject studied extensively by the systems and control community in last decades,including distributed consensus,formation control,sensor localization,distributed optimization,etc.The aim of this paper is to provide both a comprehensive survey of existing literature in distributed multi-agent coordination and a new perspective in terms of graph Laplacian to categorize the fundamental mechanisms for distributed coordination.For different types of graph Laplacians,we summarize their inherent coordination features and specific research issues.This paper also highlights several promising research directions along with some open problems that are deemed important for future study.展开更多
In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been f...In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.展开更多
Let H(n; q, n1, n2, n3, n4) be a unicyclic graph with n vertices containing a cycle Cq and four hanging paths Ph1+1, Pn2+1, Pn3+1 and Pn4+1 attached at the same vertex of the cycle. In this paper, it is proved t...Let H(n; q, n1, n2, n3, n4) be a unicyclic graph with n vertices containing a cycle Cq and four hanging paths Ph1+1, Pn2+1, Pn3+1 and Pn4+1 attached at the same vertex of the cycle. In this paper, it is proved that all unicyclic graphs H (n; q, n1, n2, n3, n4) are determined by their Laplacian spectra.展开更多
Let Bn^k be the class of bipartite graphs with n vertices and k cut edges. The extremal graphs with the first and the second largest Laplacian spectral radius among all graphs in Bn^K are presented. The bounds of the ...Let Bn^k be the class of bipartite graphs with n vertices and k cut edges. The extremal graphs with the first and the second largest Laplacian spectral radius among all graphs in Bn^K are presented. The bounds of the Laplacian spectral radius of these extremal graphs are also obtained.展开更多
Let G be a simple graph and let Q(G) be the signless Laplacian matrix of G. In this paper we obtain some results on the spectral perturbation of the matrix Q(G) under an edge addition or an edge contraction.
A tricyclic graph G =(V(G), E(G)) is a connected and simple graph such that|E(G)| = |V(G)|+2. Let Tg nbe the set of all tricyclic graphs on n vertices with girth g. In this paper, we will show that ther...A tricyclic graph G =(V(G), E(G)) is a connected and simple graph such that|E(G)| = |V(G)|+2. Let Tg nbe the set of all tricyclic graphs on n vertices with girth g. In this paper, we will show that there exists the unique graph which has the largest signless Laplacian spectral radius among all tricyclic graphs with girth g containing exactly three(resp., four)cycles. And at the same time, we also give an upper bound of the signless Laplacian spectral radius and the extremal graph having the largest signless Laplacian spectral radius in Tg n,where g is even.展开更多
Let G be a simple graph with n vertices and m edges. In this paper, we present some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs in which every pair of adjacent vertices has ...Let G be a simple graph with n vertices and m edges. In this paper, we present some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs in which every pair of adjacent vertices has at least one common adjacent vertex. Our results improve some known upper bounds. The main tool we use here is the Lagrange identity.展开更多
For a simple graph G,let matrix Q(G)=D(G) + A(G) be it's signless Laplacian matrix and Q G (λ)=det(λI Q) it's signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex deg...For a simple graph G,let matrix Q(G)=D(G) + A(G) be it's signless Laplacian matrix and Q G (λ)=det(λI Q) it's signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex degrees of G,A(G) denotes its adjacency matrix of G.If all eigenvalues of Q G (λ) are integral,then the graph G is called Q-integral.In this paper,we obtain that the signless Laplacian characteristic polynomials of the complete multi-partite graphs G=K(n_1,n_2,···,n_t).We prove that the complete t-partite graphs K(n,n,···,n)t are Q-integral and give a necessary and sufficient condition for the complete multipartite graphs K(m,···,m)s(n,···,n)t to be Q-integral.We also obtain that the signless Laplacian characteristic polynomials of the complete multipartite graphs K(m,···,m,)s1(n,···,n,)s2(l,···,l)s3.展开更多
A subdivision vertex-edge corona G_1~S?(∪ G_3~E) is a graph that consists of S(G_1),|V(G_1)| copies of G_2 and |I(G_1)| copies of G_3 by joining the i-th vertex in V(G_1) to each vertex in the i-th copy of G_2 and i-...A subdivision vertex-edge corona G_1~S?(∪ G_3~E) is a graph that consists of S(G_1),|V(G_1)| copies of G_2 and |I(G_1)| copies of G_3 by joining the i-th vertex in V(G_1) to each vertex in the i-th copy of G_2 and i-th vertex of I(G_1) to each vertex in the i-th copy of G_3.In this paper, we determine the normalized Laplacian spectrum of G_1~S?(G_2~V∪ G_3~E) in terms of the corresponding normalized Laplacian spectra of three connected regular graphs G_1, G_2 and G_3. As applications, we construct some non-regular normalized Laplacian cospectral graphs. In addition, we also give the multiplicative degree-Kirchhoff index, the Kemeny's constant and the number of the spanning trees of G_1~S?(G_2~V∪ G_3~E) on three regular graphs.展开更多
In this paper, an equivalent condition of a graph G with t (2≤ t ≤n) distinct Laplacian eigenvalues is established. By applying this condition to t = 3, if G is regular (necessarily be strongly regular), an equi...In this paper, an equivalent condition of a graph G with t (2≤ t ≤n) distinct Laplacian eigenvalues is established. By applying this condition to t = 3, if G is regular (necessarily be strongly regular), an equivalent condition of G being Laplacian integral is given. Also for the case of t = 3, if G is non-regular, it is found that G has diameter 2 and girth at most 5 if G is not a tree. Graph G is characterized in the case of its being triangle-free, bipartite and pentagon-free. In both cases, G is Laplacian integral.展开更多
The signless Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the smallest eigenvalue of its signless Laplacian matrix. In this paper, we determine the first to llth large...The signless Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the smallest eigenvalue of its signless Laplacian matrix. In this paper, we determine the first to llth largest signless Laplacian spectral radii in the class of bicyclic graphs with n vertices. Moreover, the unique bicyclic graph with the largest or the second largest signless Laplacian spread among the class of connected bicyclic graphs of order n is determined, respectively.展开更多
Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modalit...Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.展开更多
Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in ter...Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in terms of r,the number of vertices of G for any positive integer r and x,y,z∈{ 0,1},and also for r = 2 and all x,y,z∈{0,1,+,-}. Some Laplacian equienergetic pairs of G^(xyz) for r = 2 and x,y,z∈{0,1, +,-} are obtained. This also provides several ways to construct infinitely many pairs of Laplacian equienergetic graphs.展开更多
A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of ...A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of order n. Furthermore, we determine the first three unicycles and bicyclic, C_4-free graphs whose spectral radius of the signless Laplacian is maximal. Similar results are obtained for the(combinatorial)展开更多
In this paper, we determine the unique graph with the largest signless Laplacian spectral radius among all the tricyclic graphs with n vertices and k pendant vertices.
This paper mainly researches on the signless laplacian spectral radius of bipartite graphs Dr(m1,m2;n1,n2). We consider how the signless laplacian spectral radius of Dr(m1,m2;n1,n2)?changes under some special cases. A...This paper mainly researches on the signless laplacian spectral radius of bipartite graphs Dr(m1,m2;n1,n2). We consider how the signless laplacian spectral radius of Dr(m1,m2;n1,n2)?changes under some special cases. As application, we give two upper bounds on the signless laplacian spectral radius of Dr(m1,m2;n1,n2), and determine the graphs that obtain the upper bounds.展开更多
基金National Natural Science Foundation of China(No.62372100)。
文摘Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,termed graph-based transform(GBT)and dual graph Laplacian regularization(DGLR)(DGLR-GBT).This model specifically aims to remove Gaussian white noise by capitalizing on the nonlocal self-similarity(NSS)and the piecewise smoothness properties intrinsic to depth maps.Within the group sparse coding(GSC)framework,a combination of GBT and DGLR is implemented.Firstly,within each group,the graph is constructed by using estimates of the true values of the averaged blocks instead of the observations.Secondly,the graph Laplacian regular terms are constructed based on rows and columns of similar block groups,respectively.Lastly,the solution is obtained effectively by combining the alternating direction multiplication method(ADMM)with the weighted thresholding method within the domain of GBT.
基金supported by the National Natural Science Foundation of China(Grant No.61966007)Key Laboratory of Cognitive Radio and Information Processing,Ministry of Education(No.CRKL180106,No.CRKL180201)+1 种基金Guangxi Key Laboratory of Wireless Wideband Communication and Signal Processing,Guilin University of Electronic Technology(No.GXKL06180107,No.GXKL06190117)Guangxi Colleges and Universities Key Laboratory of Satellite Navigation and Position Sensing.
文摘In this paper,we focus on inferring graph Laplacian matrix from the spatiotemporal signal which is defined as“time-vertex signal”.To realize this,we first represent the signals on a joint graph which is the Cartesian product graph of the time-and vertex-graphs.By assuming the signals follow a Gaussian prior distribution on the joint graph,a meaningful representation that promotes the smoothness property of the joint graph signal is derived.Furthermore,by decoupling the joint graph,the graph learning framework is formulated as a joint optimization problem which includes signal denoising,timeand vertex-graphs learning together.Specifically,two algorithms are proposed to solve the optimization problem,where the discrete second-order difference operator with reversed sign(DSODO)in the time domain is used as the time-graph Laplacian operator to recover the signal and infer a vertex-graph in the first algorithm,and the time-graph,as well as the vertex-graph,is estimated by the other algorithm.Experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively infer meaningful time-and vertex-graphs from noisy and incomplete data.
基金Project supported by the National Natural Science Foundation of China(No.61273113)
文摘This paper reviews some main results and progress in distributed multi-agent coordination from a graph Laplacian perspective.Distributed multi-agent coordination has been a very active subject studied extensively by the systems and control community in last decades,including distributed consensus,formation control,sensor localization,distributed optimization,etc.The aim of this paper is to provide both a comprehensive survey of existing literature in distributed multi-agent coordination and a new perspective in terms of graph Laplacian to categorize the fundamental mechanisms for distributed coordination.For different types of graph Laplacians,we summarize their inherent coordination features and specific research issues.This paper also highlights several promising research directions along with some open problems that are deemed important for future study.
文摘In this paper, we develop a cascadic multigrid algorithm for fast computation of the Fiedler vector of a graph Laplacian, namely, the eigenvector corresponding to the second smallest eigenvalne. This vector has been found to have applications in fields such as graph partitioning and graph drawing. The algorithm is a purely algebraic approach based on a heavy edge coarsening scheme and pointwise smoothing for refinement. To gain theoretical insight, we also consider the related cascadic multigrid method in the geometric setting for elliptic eigenvalue problems and show its uniform convergence under certain assumptions. Numerical tests are presented for computing the Fiedler vector of several practical graphs, and numerical results show the efficiency and optimality of our proposed cascadic multigrid algorithm.
基金the National Natural Science Foundation of China(Grant No.11171273)Graduate StartingSeed Fund of Northwestern Polytechnical University(Grant No.Z2014173)
文摘Let H(n; q, n1, n2, n3, n4) be a unicyclic graph with n vertices containing a cycle Cq and four hanging paths Ph1+1, Pn2+1, Pn3+1 and Pn4+1 attached at the same vertex of the cycle. In this paper, it is proved that all unicyclic graphs H (n; q, n1, n2, n3, n4) are determined by their Laplacian spectra.
基金Fundamental Research Funds for the Central Universities of China(No. 11D10902,No. 11D10913)
文摘Let Bn^k be the class of bipartite graphs with n vertices and k cut edges. The extremal graphs with the first and the second largest Laplacian spectral radius among all graphs in Bn^K are presented. The bounds of the Laplacian spectral radius of these extremal graphs are also obtained.
基金Supported by the National Natural Science Foundation of China(11071002)the Anhui Natural ScienceFoundation of China(11040606M14)NSF of Department of Education of Anhui Province(KJ2011A195)
文摘Let G be a simple graph and let Q(G) be the signless Laplacian matrix of G. In this paper we obtain some results on the spectral perturbation of the matrix Q(G) under an edge addition or an edge contraction.
基金Supported by the National Natural Science Foundation of China(Grant No.11171273)
文摘A tricyclic graph G =(V(G), E(G)) is a connected and simple graph such that|E(G)| = |V(G)|+2. Let Tg nbe the set of all tricyclic graphs on n vertices with girth g. In this paper, we will show that there exists the unique graph which has the largest signless Laplacian spectral radius among all tricyclic graphs with girth g containing exactly three(resp., four)cycles. And at the same time, we also give an upper bound of the signless Laplacian spectral radius and the extremal graph having the largest signless Laplacian spectral radius in Tg n,where g is even.
基金Supported by the National Natural Science Foundation of China(11471077)the Open Research Fund of Key Laboratory of Spatial Data Mining and Information Sharing of MOE(2018LSDMIS09)Foundation of Key Laboratory of Intelligent Metro of Universities in Fujian Province(53001703)
文摘Let G be a simple graph with n vertices and m edges. In this paper, we present some new upper bounds for the adjacency and the signless Laplacian spectral radius of graphs in which every pair of adjacent vertices has at least one common adjacent vertex. Our results improve some known upper bounds. The main tool we use here is the Lagrange identity.
基金Supported by the NSFC(60863006)Supported by the NCET(-06-0912)Supported by the Science-Technology Foundation for Middle-aged and Yong Scientist of Qinghai University(2011-QGY-8)
文摘For a simple graph G,let matrix Q(G)=D(G) + A(G) be it's signless Laplacian matrix and Q G (λ)=det(λI Q) it's signless Laplacian characteristic polynomial,where D(G) denotes the diagonal matrix of vertex degrees of G,A(G) denotes its adjacency matrix of G.If all eigenvalues of Q G (λ) are integral,then the graph G is called Q-integral.In this paper,we obtain that the signless Laplacian characteristic polynomials of the complete multi-partite graphs G=K(n_1,n_2,···,n_t).We prove that the complete t-partite graphs K(n,n,···,n)t are Q-integral and give a necessary and sufficient condition for the complete multipartite graphs K(m,···,m)s(n,···,n)t to be Q-integral.We also obtain that the signless Laplacian characteristic polynomials of the complete multipartite graphs K(m,···,m,)s1(n,···,n,)s2(l,···,l)s3.
基金Supported by the Young Scholars Science Foundation of Lanzhou Jiaotong University(Grant Nos.20160142017004+3 种基金 2017021)the Education Foundation of Gansu Province(Grant No.2017A-021)the National Natural Science Foundation of China(Grant Nos.11461038 61163010)
文摘A subdivision vertex-edge corona G_1~S?(∪ G_3~E) is a graph that consists of S(G_1),|V(G_1)| copies of G_2 and |I(G_1)| copies of G_3 by joining the i-th vertex in V(G_1) to each vertex in the i-th copy of G_2 and i-th vertex of I(G_1) to each vertex in the i-th copy of G_3.In this paper, we determine the normalized Laplacian spectrum of G_1~S?(G_2~V∪ G_3~E) in terms of the corresponding normalized Laplacian spectra of three connected regular graphs G_1, G_2 and G_3. As applications, we construct some non-regular normalized Laplacian cospectral graphs. In addition, we also give the multiplicative degree-Kirchhoff index, the Kemeny's constant and the number of the spanning trees of G_1~S?(G_2~V∪ G_3~E) on three regular graphs.
基金Supported by the Anhui Provincial Natural Science Foundation(050460102)National Natural Science Foundation of China(10601001,10571163)+3 种基金NSF of Department of Education of Anhui Province(2004kj027,2005kj005zd)Foundation of Anhui Institute of Architecture and Industry(200510307)Foundation of Mathematics Innovation Team of Anhui UniversityFoundation of Talents Group Construction of Anhui University
文摘In this paper, an equivalent condition of a graph G with t (2≤ t ≤n) distinct Laplacian eigenvalues is established. By applying this condition to t = 3, if G is regular (necessarily be strongly regular), an equivalent condition of G being Laplacian integral is given. Also for the case of t = 3, if G is non-regular, it is found that G has diameter 2 and girth at most 5 if G is not a tree. Graph G is characterized in the case of its being triangle-free, bipartite and pentagon-free. In both cases, G is Laplacian integral.
基金Supported by the National Natural Science Foundation of China(Grant No.11171273)Graduate Starting Seed Fund of Northwestern Polytechnical University(Grant No.Z2014173)
文摘The signless Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the smallest eigenvalue of its signless Laplacian matrix. In this paper, we determine the first to llth largest signless Laplacian spectral radii in the class of bicyclic graphs with n vertices. Moreover, the unique bicyclic graph with the largest or the second largest signless Laplacian spread among the class of connected bicyclic graphs of order n is determined, respectively.
基金supported by the National Natural Science Foundation of China grants 61836014 to CL,and the STI2030‐Major Projects(2022ZD0205100)the Strategic Priority Research Program of Chinese Academy of Science,Grant No.XDB32010300+1 种基金Shanghai Municipal Science and Technology Major Project(Grant No.2018SHZDZX05)the Innovation Academy of Artificial Intelligence,Chinese Academy of Sciences to ZW.
文摘Lateral interaction in the biological brain is a key mechanism that underlies higher cognitive functions.Linear self‐organising map(SOM)introduces lateral interaction in a general form in which signals of any modality can be used.Some approaches directly incorporate SOM learning rules into neural networks,but incur complex operations and poor extendibility.The efficient way to implement lateral interaction in deep neural networks is not well established.The use of Laplacian Matrix‐based Smoothing(LS)regularisation is proposed for implementing lateral interaction in a concise form.The authors’derivation and experiments show that lateral interaction implemented by SOM model is a special case of LS‐regulated k‐means,and they both show the topology‐preserving capability.The authors also verify that LS‐regularisation can be used in conjunction with the end‐to‐end training paradigm in deep auto‐encoders.Additionally,the benefits of LS‐regularisation in relaxing the requirement of parameter initialisation in various models and improving the classification performance of prototype classifiers are evaluated.Furthermore,the topologically ordered structure introduced by LS‐regularisation in feature extractor can improve the generalisation performance on classification tasks.Overall,LS‐regularisation is an effective and efficient way to implement lateral interaction and can be easily extended to different models.
基金Supported by the National Natural Science Foundation of China(Grant Nos.6137902111471077)+4 种基金the Natural Science Foundation of Fujian Province(Grant Nos.2015J010182016J01673)the Project of Fujian Education Department(Grant No.JZ160455)Research Fund of Minnan Normal University(Grant No.MX1603)Faculty Research Grant of Hong Kong Baptist University
文摘In this paper, a necessary and sufficient condition for a unicyclic graph with a perfect matching having signless Laplacian eigenvalue 2 is deduced.
基金National Natural Science Foundation of China(No.11371086)the Fund of Science and Technology Commission of Shanghai Municipality,China(No.13ZR1400100)
文摘Let LE(G) denote the Laplacian energy of a graph G. In this paper the xyz-transformations G^(xyz) of an r-regular graph G for x,y,z∈{0,1, +,-} are considered. The explicit formulas of LE(G^(xyz)) are presented in terms of r,the number of vertices of G for any positive integer r and x,y,z∈{ 0,1},and also for r = 2 and all x,y,z∈{0,1,+,-}. Some Laplacian equienergetic pairs of G^(xyz) for r = 2 and x,y,z∈{0,1, +,-} are obtained. This also provides several ways to construct infinitely many pairs of Laplacian equienergetic graphs.
基金Supported by the National Natural Science Foundation of China(11171273) Supported by the Seed Foundation of Innovation and Creation for Graduate Students in Northwestern Polytechnical Uni- versity(Z2016170)
文摘A k-cyclic graph is a connected graph of order n and size n + k-1. In this paper, we determine the maximal signless Laplacian spectral radius and the corresponding extremal graph among all C_4-free k-cyclic graphs of order n. Furthermore, we determine the first three unicycles and bicyclic, C_4-free graphs whose spectral radius of the signless Laplacian is maximal. Similar results are obtained for the(combinatorial)
基金Supported by the National Natural Science Foundation of China(Grant Nos.1087120461170311)the Fundamental Research Funds for the Central Universities(Grant No.09CX04003A)
文摘In this paper, we determine the unique graph with the largest signless Laplacian spectral radius among all the tricyclic graphs with n vertices and k pendant vertices.
文摘This paper mainly researches on the signless laplacian spectral radius of bipartite graphs Dr(m1,m2;n1,n2). We consider how the signless laplacian spectral radius of Dr(m1,m2;n1,n2)?changes under some special cases. As application, we give two upper bounds on the signless laplacian spectral radius of Dr(m1,m2;n1,n2), and determine the graphs that obtain the upper bounds.