With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based...With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.展开更多
Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that lever...Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that leverages user-item interactions to generate recommendations.However,it struggles with challenges like the cold-start problem,scalability issues,and data sparsity.To address these limitations,we develop a Graph Convolutional Networks(GCNs)model that captures the complex network of interactions between users and items,identifying subtle patterns that traditional methods may overlook.We integrate this GCNs model into a federated learning(FL)framework,enabling themodel to learn fromdecentralized datasets.This not only significantly enhances user privacy—a significant improvement over conventionalmodels but also reassures users about the safety of their data.Additionally,by securely incorporating demographic information,our approach further personalizes recommendations and mitigates the coldstart issue without compromising user data.We validate our RSs model using the openMovieLens dataset and evaluate its performance across six key metrics:Precision,Recall,Area Under the Receiver Operating Characteristic Curve(ROC-AUC),F1 Score,Normalized Discounted Cumulative Gain(NDCG),and Mean Reciprocal Rank(MRR).The experimental results demonstrate significant enhancements in recommendation quality,underscoring that combining GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems.展开更多
Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dep...Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter.展开更多
In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study in...In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study introduces an innovative approach that synergizes the strengths of graph convolutional networks with advanced deep residual learning and a unique residual-based attention mechanism,thereby creating a more nuanced and efficient method for anomaly detection in complex networks.The heart of our model lies in the integration of graph convolutional networks that capture complex structural relationships within the network data.This is further bolstered by deep residual learning,which is employed to model intricate nonlinear connections directly from input data.A pivotal innovation in our approach is the incorporation of a residual-based attention mech-anism.This mechanism dynamically adjusts the importance of nodes based on their residual information,thereby significantly enhancing the sensitivity of the model to subtle anomalies.Furthermore,we introduce a novel hypersphere mapping technique in the latent space to distinctly separate normal and anomalous data.This mapping is the key to our model’s ability to pinpoint anomalies with greater precision.An extensive experimental setup was used to validate the efficacy of the proposed model.Using attributed social network datasets,we demonstrate that our model not only competes with but also surpasses existing state-of-the-art methods in anomaly detection.The results show the exceptional capability of our model to handle the multifaceted nature of real-world networks.展开更多
Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilizat...Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.展开更多
In order to minimize wind turbine failures,fault diagnosis of wind turbines is becoming increasinglyimportant,deep learning methods excel at multivariate monitoring and data modeling,but they are often limited toEucli...In order to minimize wind turbine failures,fault diagnosis of wind turbines is becoming increasinglyimportant,deep learning methods excel at multivariate monitoring and data modeling,but they are often limited toEuclidean space and struggle to capture the complex coupling between wind turbine sensors.To addressthis problem,we convert SCADA data into graph data,where sensors act as nodes and their topologicalconnections act as edges,to represent these complex relationships more efficiently.Specifically,a wind turbineanomaly identification method based on deep graph convolutional neural network using similarity graphgeneration strategy(SGG-DGCN)is proposed.Firstly,a plurality of similarity graphs containing similarityinformation between nodes are generated by different distance metrics.Then,the generated similarity graphs arefused using the proposed similarity graph generation strategy.Finally,the fused similarity graphs are fed into theDGCN model for anomaly identification.To verify the effectiveness of the proposed SGG-DGCN model,we conducted a large number of experiments.The experimental results show that the proposed SGG-DGCNmodel has the highest accuracy compared with other models.In addition,the results of ablation experimentalso demonstrate that the proposed SGG strategy can effectively improve the accuracy of WT anomalyidentification.展开更多
The rapid growth of distributed photovoltaic(PV)has remarkable influence for the safe and economic operation of power systems.In view of the wide geographical distribution and a large number of distributed PV power st...The rapid growth of distributed photovoltaic(PV)has remarkable influence for the safe and economic operation of power systems.In view of the wide geographical distribution and a large number of distributed PV power stations,the current situation is that it is dificult to access the current dispatch data network.According to the temporal and spatial characteristics of distributed PV,a graph convolution algorithm based on adaptive learning of adjacency matrix is proposed to estimate the real-time output of distributed PV in regional power grid.The actual case study shows that the adaptive graph convolution model gives different adjacency matrixes for different PV stations,which makes the corresponding output estimation algorithm have higher accuracy.展开更多
Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread a...Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread adoption of convolutional neural networks(CNNs)has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification.However,inmulti-label image classification tasks,it is crucial to consider the correlation between labels.In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features,many existing studies use graph convolutional networks(GCN)for modeling.Object detection and multi-label image classification exhibit a degree of conceptual overlap;however,the integration of these two tasks within a unified framework has been relatively underexplored in the existing literature.In this paper,we come up with Object-GCN framework,a model combining object detection network YOLOv5 and graph convolutional network,and we carry out a thorough experimental analysis using a range of well-established public datasets.The designed framework Object-GCN achieves significantly better performance than existing studies in public datasets COCO2014,VOC2007,VOC2012.The final results achieved are 86.9%,96.7%,and 96.3%mean Average Precision(mAP)across the three datasets.展开更多
Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,...Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.展开更多
Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other meth...Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods.展开更多
Existing solutions do not work well when multi-targets coexist in a sentence.The reason is that the existing solution is usually to separate multiple targets and process them separately.If the original sentence has N ...Existing solutions do not work well when multi-targets coexist in a sentence.The reason is that the existing solution is usually to separate multiple targets and process them separately.If the original sentence has N target,the original sentence will be repeated for N times,and only one target will be processed each time.To some extent,this approach degenerates the fine-grained sentiment classification task into the sentence-level sentiment classification task,and the research method of processing the target separately ignores the internal relation and interaction between the targets.Based on the above considerations,we proposes to use Graph Convolutional Network(GCN)to model and process multi-targets appearing in sentences at the same time based on the positional relationship,and then to construct a graph of the sentiment relationship between targets based on the difference of the sentiment polarity between target words.In addition to the standard target-dependent sentiment classification task,an auxiliary node relation classification task is constructed.Experiments demonstrate that our model achieves new comparable performance on the benchmark datasets:SemEval-2014 Task 4,i.e.,reviews for restaurants and laptops.Furthermore,the method of dividing the target words into isolated individuals has disadvantages,and the multi-task learning model is beneficial to enhance the feature extraction ability and expression ability of the model.展开更多
Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word m...Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word most clearly expressing event occurrence.Thus,current approaches require both annotated triggers as well as event types in training data.Nevertheless,triggers are non-essential in ED,and it is time-wasting for annotators to identify the“most clearly”word from a sentence,particularly in longer sentences.To decrease manual effort,we evaluate event detectionwithout triggers.We propose a novel framework that combines Type-aware Attention and Graph Convolutional Networks(TA-GCN)for event detection.Specifically,the task is identified as a multi-label classification problem.We first encode the input sentence using a novel type-aware neural network with attention mechanisms.Then,a Graph Convolutional Networks(GCN)-based multilabel classification model is exploited for event detection.Experimental results demonstrate the effectiveness.展开更多
The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of netw...The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of network structure,diversity of network nodes,and sparsity of data all pose difficulties in predicting propagation.This paper proposes a malware propagation prediction model based on representation learning and Graph Convolutional Networks(GCN)to address the aforementioned problems.First,to solve the problem of the inaccuracy of infection intensity calculation caused by the sparsity of node interaction behavior data in the malware propagation network,a mechanism based on a tensor to mine the infection intensity among nodes is proposed to retain the network structure information.The influence of the relationship between nodes on the infection intensity is also analyzed.Second,given the diversity and complexity of the content and structure of infected and normal nodes in the network,considering the advantages of representation learning in data feature extraction,the corresponding representation learning method is adopted for the characteristics of infection intensity among nodes.This can efficiently calculate the relationship between entities and relationships in low dimensional space to achieve the goal of low dimensional,dense,and real-valued representation learning for the characteristics of propagation spatial data.We also design a new method,Tensor2vec,to learn the potential structural features of malware propagation.Finally,considering the convolution ability of GCN for non-Euclidean data,we propose a dynamic prediction model of malware propagation based on representation learning and GCN to solve the time effectiveness problem of the malware propagation carrier.The experimental results show that the proposed model can effectively predict the behaviors of the nodes in the network and discover the influence of different characteristics of nodes on the malware propagation situation.展开更多
The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cy...The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text.展开更多
For the existing aspect category sentiment analysis research,most of the aspects are given for sentiment extraction,and this pipeline method is prone to error accumulation,and the use of graph convolutional neural net...For the existing aspect category sentiment analysis research,most of the aspects are given for sentiment extraction,and this pipeline method is prone to error accumulation,and the use of graph convolutional neural network for aspect category sentiment analysis does not fully utilize the dependency type information between words,so it cannot enhance feature extraction.This paper proposes an end-to-end aspect category sentiment analysis(ETESA)model based on type graph convolutional networks.The model uses the bidirectional encoder representation from transformers(BERT)pretraining model to obtain aspect categories and word vectors containing contextual dynamic semantic information,which can solve the problem of polysemy;when using graph convolutional network(GCN)for feature extraction,the fusion operation of word vectors and initialization tensor of dependency types can obtain the importance values of different dependency types and enhance the text feature representation;by transforming aspect category and sentiment pair extraction into multiple single-label classification problems,aspect category and sentiment can be extracted simultaneously in an end-to-end way and solve the problem of error accumulation.Experiments are tested on three public datasets,and the results show that the ETESA model can achieve higher Precision,Recall and F1 value,proving the effectiveness of the model.展开更多
To address the issues of data sparsity and cold-start problems in paper recommendation,as well as the limitations of general document representation methods in representing paper datasets,this study proposes a paper r...To address the issues of data sparsity and cold-start problems in paper recommendation,as well as the limitations of general document representation methods in representing paper datasets,this study proposes a paper recommendation method based on SPECTER and Graph Convolutional Networks(PR-SGCN method).This method leverages pre-trained document-level representation learning and the citation-aware transformer SPECTER to learn paper content representations,thereby overcoming the limitations of existing methods in representational capability.Additionally,it employs network representation learning and Graph Convolutional Networks(GCN)to mine hidden information from both attribute and structural perspectives,effectively mitigating the problems of data sparsity and cold starts.Experiments conducted on the ACL Anthology Network(AAN)and DBLP datasets demonstrate that,compared with the academic paper recommendation method based on heterogeneous graphs—Citation Recommendation based on Weighted Heterogeneous Information Network with Citation Semantic Links(WHIN-CSL)—and the academic literature recommendation method integrating network representation learning and textual information,the PR-SGCN method achieves improvements in Recall@25 by 59 and 72 percentage points,and by 67 and 65 percentage points,respectively.展开更多
Uncertainty quantification of building design loads is essential to efficient and reliable building energy planning in the design stage.Current data-driven methods struggle to generalize across buildings with diverse ...Uncertainty quantification of building design loads is essential to efficient and reliable building energy planning in the design stage.Current data-driven methods struggle to generalize across buildings with diverse shapes due to limitations in representing complex geometric structures.To tackle this issue,a graph convolutional networks(GCN)-based uncertainty quantification method is proposed.This graph-based approach is introduced to represent building shapes by dividing them into blocks and defining their spatial relationships through nodes and edges.The method effectively captures complex building characteristics,enhancing the generalization abilities.An approach leveraging GCN could estimate design loads by understanding the impact of diverse uncertain factors.Additionally,a class activation map is formulated to identify key uncertain factors,guiding the selection of important design parameters during the building design stage.The effectiveness of this method is evaluated through comparison with four widely-used data-driven techniques.Results indicate that the mean absolute percentage errors(MAPE)for statistical indicators of uncertainty quantification are under 6.0%and 4.0%for cooling loads and heating loads,respectively.The proposed method is demonstrated to quantify uncertainty in building design loads with outstanding generalization abilities.With regard to time costs,the computation time of the proposed method is reduced from 331 hours to 30 seconds for a twenty-floor building compared to a conventional physics-based method.展开更多
Modeling and analysis of complex social networks is an important topic in social computing.Graph convolutional networks(GCNs)are widely used for learning social network embeddings and social network analysis.However,r...Modeling and analysis of complex social networks is an important topic in social computing.Graph convolutional networks(GCNs)are widely used for learning social network embeddings and social network analysis.However,real-world complex social networks,such as Facebook and Math,exhibit significant global structural and dynamic characteristics that are not adequately captured by conventional GCN models.To address the above issues,this paper proposes a novel graph convolutional network considering global structural features and global temporal dependencies(GSTGCN).Specifically,we innovatively design a graph coarsening strategy based on the importance of social membership to construct a dynamic diffusion process of graphs.This dynamic diffusion process can be viewed as using higher-order subgraph embeddings to guide the generation of lower-order subgraph embeddings,and we model this process using gate recurrent unit(GRU)to extract comprehensive global structural features of the graph and the evolutionary processes embedded among subgraphs.Furthermore,we design a new evolutionary strategy that incorporates a temporal self-attention mechanism to enhance the extraction of global temporal dependencies of dynamic networks by GRU.GSTGCN outperforms current state-of-the-art network embedding methods in important social networks tasks such as link prediction and financial fraud identification.展开更多
The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extrac...The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively.展开更多
Using knowledge graphs to assist deep learning models in making recommendation decisions has recently been proven to effectively improve the model′s interpretability and accuracy.This paper introduces an end-to-end d...Using knowledge graphs to assist deep learning models in making recommendation decisions has recently been proven to effectively improve the model′s interpretability and accuracy.This paper introduces an end-to-end deep learning model,named representation-enhanced knowledge graph convolutional networks(RKGCN),which dynamically analyses each user′s preferences and makes a recommendation of suitable items.It combines knowledge graphs on both the item side and user side to enrich their representations to maximize the utilization of the abundant information in knowledge graphs.RKGCN is able to offer more personalized and relevant recommendations in three different scenarios.The experimental results show the superior effectiveness of our model over 5 baseline models on three real-world datasets including movies,books,and music.展开更多
基金supported by the National Key Research and Development Program of China No.2023YFA1009500.
文摘With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.
基金funded by Soonchunhyang University,Grant Numbers 20241422BK21 FOUR(Fostering Outstanding Universities for Research,Grant Number 5199990914048).
文摘Recommendation systems(RSs)are crucial in personalizing user experiences in digital environments by suggesting relevant content or items.Collaborative filtering(CF)is a widely used personalization technique that leverages user-item interactions to generate recommendations.However,it struggles with challenges like the cold-start problem,scalability issues,and data sparsity.To address these limitations,we develop a Graph Convolutional Networks(GCNs)model that captures the complex network of interactions between users and items,identifying subtle patterns that traditional methods may overlook.We integrate this GCNs model into a federated learning(FL)framework,enabling themodel to learn fromdecentralized datasets.This not only significantly enhances user privacy—a significant improvement over conventionalmodels but also reassures users about the safety of their data.Additionally,by securely incorporating demographic information,our approach further personalizes recommendations and mitigates the coldstart issue without compromising user data.We validate our RSs model using the openMovieLens dataset and evaluate its performance across six key metrics:Precision,Recall,Area Under the Receiver Operating Characteristic Curve(ROC-AUC),F1 Score,Normalized Discounted Cumulative Gain(NDCG),and Mean Reciprocal Rank(MRR).The experimental results demonstrate significant enhancements in recommendation quality,underscoring that combining GCNs with CF in a federated setting provides a transformative solution for advanced recommendation systems.
文摘Aspect-oriented sentiment analysis is a meticulous sentiment analysis task that aims to analyse the sentiment polarity of specific aspects. Most of the current research builds graph convolutional networks based on dependent syntactic trees, which improves the classification performance of the models to some extent. However, the technical limitations of dependent syntactic trees can introduce considerable noise into the model. Meanwhile, it is difficult for a single graph convolutional network to aggregate both semantic and syntactic structural information of nodes, which affects the final sentence classification. To cope with the above problems, this paper proposes a bi-channel graph convolutional network model. The model introduces a phrase structure tree and transforms it into a hierarchical phrase matrix. The adjacency matrix of the dependent syntactic tree and the hierarchical phrase matrix are combined as the initial matrix of the graph convolutional network to enhance the syntactic information. The semantic information feature representations of the sentences are obtained by the graph convolutional network with a multi-head attention mechanism and fused to achieve complementary learning of dual-channel features. Experimental results show that the model performs well and improves the accuracy of sentiment classification on three public benchmark datasets, namely Rest14, Lap14 and Twitter.
文摘In the burgeoning field of anomaly detection within attributed networks,traditional methodologies often encounter the intricacies of network complexity,particularly in capturing nonlinearity and sparsity.This study introduces an innovative approach that synergizes the strengths of graph convolutional networks with advanced deep residual learning and a unique residual-based attention mechanism,thereby creating a more nuanced and efficient method for anomaly detection in complex networks.The heart of our model lies in the integration of graph convolutional networks that capture complex structural relationships within the network data.This is further bolstered by deep residual learning,which is employed to model intricate nonlinear connections directly from input data.A pivotal innovation in our approach is the incorporation of a residual-based attention mech-anism.This mechanism dynamically adjusts the importance of nodes based on their residual information,thereby significantly enhancing the sensitivity of the model to subtle anomalies.Furthermore,we introduce a novel hypersphere mapping technique in the latent space to distinctly separate normal and anomalous data.This mapping is the key to our model’s ability to pinpoint anomalies with greater precision.An extensive experimental setup was used to validate the efficacy of the proposed model.Using attributed social network datasets,we demonstrate that our model not only competes with but also surpasses existing state-of-the-art methods in anomaly detection.The results show the exceptional capability of our model to handle the multifaceted nature of real-world networks.
文摘Container-based virtualization technology has been more widely used in edge computing environments recently due to its advantages of lighter resource occupation, faster startup capability, and better resource utilization efficiency. To meet the diverse needs of tasks, it usually needs to instantiate multiple network functions in the form of containers interconnect various generated containers to build a Container Cluster(CC). Then CCs will be deployed on edge service nodes with relatively limited resources. However, the increasingly complex and timevarying nature of tasks brings great challenges to optimal placement of CC. This paper regards the charges for various resources occupied by providing services as revenue, the service efficiency and energy consumption as cost, thus formulates a Mixed Integer Programming(MIP) model to describe the optimal placement of CC on edge service nodes. Furthermore, an Actor-Critic based Deep Reinforcement Learning(DRL) incorporating Graph Convolutional Networks(GCN) framework named as RL-GCN is proposed to solve the optimization problem. The framework obtains an optimal placement strategy through self-learning according to the requirements and objectives of the placement of CC. Particularly, through the introduction of GCN, the features of the association relationship between multiple containers in CCs can be effectively extracted to improve the quality of placement.The experiment results show that under different scales of service nodes and task requests, the proposed method can obtain the improved system performance in terms of placement error ratio, time efficiency of solution output and cumulative system revenue compared with other representative baseline methods.
基金supported by National Natural Science Foundation of China(Nos.U52305124,U62201399)the Zhejiang Natural Science Foundation of China(Nos.LQ23E050002)+4 种基金the Basic Scientific Research Project of Wenzhou City(Nos.G2022008,G2023028)the General Scientific Research Project of Educational Department of Zhejiang Province(Nos.Y202249008,Y202249041)China Postdoctoral Science Foundation(Nos.2023M740988)Zhejiang Provincial Postdoctoral Science Foundation(Nos.ZJ2023122)the Master’s Innovation Foundation of Wenzhou University(Nos.3162024004106).
文摘In order to minimize wind turbine failures,fault diagnosis of wind turbines is becoming increasinglyimportant,deep learning methods excel at multivariate monitoring and data modeling,but they are often limited toEuclidean space and struggle to capture the complex coupling between wind turbine sensors.To addressthis problem,we convert SCADA data into graph data,where sensors act as nodes and their topologicalconnections act as edges,to represent these complex relationships more efficiently.Specifically,a wind turbineanomaly identification method based on deep graph convolutional neural network using similarity graphgeneration strategy(SGG-DGCN)is proposed.Firstly,a plurality of similarity graphs containing similarityinformation between nodes are generated by different distance metrics.Then,the generated similarity graphs arefused using the proposed similarity graph generation strategy.Finally,the fused similarity graphs are fed into theDGCN model for anomaly identification.To verify the effectiveness of the proposed SGG-DGCN model,we conducted a large number of experiments.The experimental results show that the proposed SGG-DGCNmodel has the highest accuracy compared with other models.In addition,the results of ablation experimentalso demonstrate that the proposed SGG strategy can effectively improve the accuracy of WT anomalyidentification.
基金the Science and Technology Program of State Grid Corporation of China(No.5211TZ1900S6)。
文摘The rapid growth of distributed photovoltaic(PV)has remarkable influence for the safe and economic operation of power systems.In view of the wide geographical distribution and a large number of distributed PV power stations,the current situation is that it is dificult to access the current dispatch data network.According to the temporal and spatial characteristics of distributed PV,a graph convolution algorithm based on adaptive learning of adjacency matrix is proposed to estimate the real-time output of distributed PV in regional power grid.The actual case study shows that the adaptive graph convolution model gives different adjacency matrixes for different PV stations,which makes the corresponding output estimation algorithm have higher accuracy.
文摘Multi-label image classification is recognized as an important task within the field of computer vision,a discipline that has experienced a significant escalation in research endeavors in recent years.The widespread adoption of convolutional neural networks(CNNs)has catalyzed the remarkable success of architectures such as ResNet-101 within the domain of image classification.However,inmulti-label image classification tasks,it is crucial to consider the correlation between labels.In order to improve the accuracy and performance of multi-label classification and fully combine visual and semantic features,many existing studies use graph convolutional networks(GCN)for modeling.Object detection and multi-label image classification exhibit a degree of conceptual overlap;however,the integration of these two tasks within a unified framework has been relatively underexplored in the existing literature.In this paper,we come up with Object-GCN framework,a model combining object detection network YOLOv5 and graph convolutional network,and we carry out a thorough experimental analysis using a range of well-established public datasets.The designed framework Object-GCN achieves significantly better performance than existing studies in public datasets COCO2014,VOC2007,VOC2012.The final results achieved are 86.9%,96.7%,and 96.3%mean Average Precision(mAP)across the three datasets.
文摘Deep neural network-based relational extraction research has made significant progress in recent years,andit provides data support for many natural language processing downstream tasks such as building knowledgegraph,sentiment analysis and question-answering systems.However,previous studies ignored much unusedstructural information in sentences that could enhance the performance of the relation extraction task.Moreover,most existing dependency-based models utilize self-attention to distinguish the importance of context,whichhardly deals withmultiple-structure information.To efficiently leverage multiple structure information,this paperproposes a dynamic structure attention mechanism model based on textual structure information,which deeplyintegrates word embedding,named entity recognition labels,part of speech,dependency tree and dependency typeinto a graph convolutional network.Specifically,our model extracts text features of different structures from theinput sentence.Textual Structure information Graph Convolutional Networks employs the dynamic structureattention mechanism to learn multi-structure attention,effectively distinguishing important contextual features invarious structural information.In addition,multi-structure weights are carefully designed as amergingmechanismin the different structure attention to dynamically adjust the final attention.This paper combines these featuresand trains a graph convolutional network for relation extraction.We experiment on supervised relation extractiondatasets including SemEval 2010 Task 8,TACRED,TACREV,and Re-TACED,the result significantly outperformsthe previous.
基金supported by the National Natural Science Foundation of China(61732018,61872335,61802367,61876215)the Strategic Priority Research Program of Chinese Academy of Sciences(XDC05000000)+1 种基金Beijing Academy of Artificial Intelligence(BAAI),the Open Project Program of the State Key Laboratory of Mathematical Engineering and Advanced Computing(2019A07)the Open Project of Zhejiang Laboratory,and a grant from the Institute for Guo Qiang,Tsinghua University.Recommended by Associate Editor Long Chen.
文摘Graph convolutional networks(GCNs)have received significant attention from various research fields due to the excellent performance in learning graph representations.Although GCN performs well compared with other methods,it still faces challenges.Training a GCN model for large-scale graphs in a conventional way requires high computation and storage costs.Therefore,motivated by an urgent need in terms of efficiency and scalability in training GCN,sampling methods have been proposed and achieved a significant effect.In this paper,we categorize sampling methods based on the sampling mechanisms and provide a comprehensive survey of sampling methods for efficient training of GCN.To highlight the characteristics and differences of sampling methods,we present a detailed comparison within each category and further give an overall comparative analysis for the sampling methods in all categories.Finally,we discuss some challenges and future research directions of the sampling methods.
基金This study was supported in part by the Research Innovation Team Fund(Award No.18TD0026)from the Department of Educationin part by the Sichuan Key Research&Development Project(Project No.2020YFG0168)from the Science Technology Department,Sichuan Province.
文摘Existing solutions do not work well when multi-targets coexist in a sentence.The reason is that the existing solution is usually to separate multiple targets and process them separately.If the original sentence has N target,the original sentence will be repeated for N times,and only one target will be processed each time.To some extent,this approach degenerates the fine-grained sentiment classification task into the sentence-level sentiment classification task,and the research method of processing the target separately ignores the internal relation and interaction between the targets.Based on the above considerations,we proposes to use Graph Convolutional Network(GCN)to model and process multi-targets appearing in sentences at the same time based on the positional relationship,and then to construct a graph of the sentiment relationship between targets based on the difference of the sentiment polarity between target words.In addition to the standard target-dependent sentiment classification task,an auxiliary node relation classification task is constructed.Experiments demonstrate that our model achieves new comparable performance on the benchmark datasets:SemEval-2014 Task 4,i.e.,reviews for restaurants and laptops.Furthermore,the method of dividing the target words into isolated individuals has disadvantages,and the multi-task learning model is beneficial to enhance the feature extraction ability and expression ability of the model.
基金supported by the Hunan Provincial Natural Science Foundation of China(Grant No.2020JJ4624)the National Social Science Fund of China(Grant No.20&ZD047)+1 种基金the Scientific Research Fund of Hunan Provincial Education Department(Grant No.19A020)the National University of Defense Technology Research Project ZK20-46 and the Young Elite Scientists Sponsorship Program 2021-JCJQ-QT-050.
文摘Event detection(ED)is aimed at detecting event occurrences and categorizing them.This task has been previously solved via recognition and classification of event triggers(ETs),which are defined as the phrase or word most clearly expressing event occurrence.Thus,current approaches require both annotated triggers as well as event types in training data.Nevertheless,triggers are non-essential in ED,and it is time-wasting for annotators to identify the“most clearly”word from a sentence,particularly in longer sentences.To decrease manual effort,we evaluate event detectionwithout triggers.We propose a novel framework that combines Type-aware Attention and Graph Convolutional Networks(TA-GCN)for event detection.Specifically,the task is identified as a multi-label classification problem.We first encode the input sentence using a novel type-aware neural network with attention mechanisms.Then,a Graph Convolutional Networks(GCN)-based multilabel classification model is exploited for event detection.Experimental results demonstrate the effectiveness.
基金This research is partially supported by the National Natural Science Foundation of China(Grant No.61772098)Chongqing Technology Innovation and Application Development Project(Grant No.cstc2020jscxmsxmX0150)+2 种基金Chongqing Science and Technology Innovation Leading Talent Support Program(CSTCCXLJRC201908)Basic and Advanced Research Projects of CSTC(No.cstc2019jcyj-zdxmX0008)Science and Technology Research Program of Chongqing Municipal Education Commission(Grant No.KJZD-K201900605).
文摘The traditional malware research is mainly based on its recognition and detection as a breakthrough point,without focusing on its propagation trends or predicting the subsequently infected nodes.The complexity of network structure,diversity of network nodes,and sparsity of data all pose difficulties in predicting propagation.This paper proposes a malware propagation prediction model based on representation learning and Graph Convolutional Networks(GCN)to address the aforementioned problems.First,to solve the problem of the inaccuracy of infection intensity calculation caused by the sparsity of node interaction behavior data in the malware propagation network,a mechanism based on a tensor to mine the infection intensity among nodes is proposed to retain the network structure information.The influence of the relationship between nodes on the infection intensity is also analyzed.Second,given the diversity and complexity of the content and structure of infected and normal nodes in the network,considering the advantages of representation learning in data feature extraction,the corresponding representation learning method is adopted for the characteristics of infection intensity among nodes.This can efficiently calculate the relationship between entities and relationships in low dimensional space to achieve the goal of low dimensional,dense,and real-valued representation learning for the characteristics of propagation spatial data.We also design a new method,Tensor2vec,to learn the potential structural features of malware propagation.Finally,considering the convolution ability of GCN for non-Euclidean data,we propose a dynamic prediction model of malware propagation based on representation learning and GCN to solve the time effectiveness problem of the malware propagation carrier.The experimental results show that the proposed model can effectively predict the behaviors of the nodes in the network and discover the influence of different characteristics of nodes on the malware propagation situation.
基金supported by China’s National Key R&D Program,No.2019QY1404the National Natural Science Foundation of China,Grant No.U20A20161,U1836103the Basic Strengthening Program Project,No.2019-JCJQ-ZD-113.
文摘The continuous improvement of the cyber threat intelligence sharing mechanism provides new ideas to deal with Advanced Persistent Threats(APT).Extracting attack behaviors,i.e.,Tactics,Techniques,Procedures(TTP)from Cyber Threat Intelligence(CTI)can facilitate APT actors’profiling for an immediate response.However,it is difficult for traditional manual methods to analyze attack behaviors from cyber threat intelligence due to its heterogeneous nature.Based on the Adversarial Tactics,Techniques and Common Knowledge(ATT&CK)of threat behavior description,this paper proposes a threat behavioral knowledge extraction framework that integrates Heterogeneous Text Network(HTN)and Graph Convolutional Network(GCN)to solve this issue.It leverages the hierarchical correlation relationships of attack techniques and tactics in the ATT&CK to construct a text network of heterogeneous cyber threat intelligence.With the help of the Bidirectional EncoderRepresentation fromTransformers(BERT)pretraining model to analyze the contextual semantics of cyber threat intelligence,the task of threat behavior identification is transformed into a text classification task,which automatically extracts attack behavior in CTI,then identifies the malware and advanced threat actors.The experimental results show that F1 achieve 94.86%and 92.15%for the multi-label classification tasks of tactics and techniques.Extend the experiment to verify the method’s effectiveness in identifying the malware and threat actors in APT attacks.The F1 for malware and advanced threat actors identification task reached 98.45%and 99.48%,which are better than the benchmark model in the experiment and achieve state of the art.The model can effectivelymodel threat intelligence text data and acquire knowledge and experience migration by correlating implied features with a priori knowledge to compensate for insufficient sample data and improve the classification performance and recognition ability of threat behavior in text.
基金Supported by the National Key Research and Development Program of China(No.2018YFB1702601).
文摘For the existing aspect category sentiment analysis research,most of the aspects are given for sentiment extraction,and this pipeline method is prone to error accumulation,and the use of graph convolutional neural network for aspect category sentiment analysis does not fully utilize the dependency type information between words,so it cannot enhance feature extraction.This paper proposes an end-to-end aspect category sentiment analysis(ETESA)model based on type graph convolutional networks.The model uses the bidirectional encoder representation from transformers(BERT)pretraining model to obtain aspect categories and word vectors containing contextual dynamic semantic information,which can solve the problem of polysemy;when using graph convolutional network(GCN)for feature extraction,the fusion operation of word vectors and initialization tensor of dependency types can obtain the importance values of different dependency types and enhance the text feature representation;by transforming aspect category and sentiment pair extraction into multiple single-label classification problems,aspect category and sentiment can be extracted simultaneously in an end-to-end way and solve the problem of error accumulation.Experiments are tested on three public datasets,and the results show that the ETESA model can achieve higher Precision,Recall and F1 value,proving the effectiveness of the model.
文摘To address the issues of data sparsity and cold-start problems in paper recommendation,as well as the limitations of general document representation methods in representing paper datasets,this study proposes a paper recommendation method based on SPECTER and Graph Convolutional Networks(PR-SGCN method).This method leverages pre-trained document-level representation learning and the citation-aware transformer SPECTER to learn paper content representations,thereby overcoming the limitations of existing methods in representational capability.Additionally,it employs network representation learning and Graph Convolutional Networks(GCN)to mine hidden information from both attribute and structural perspectives,effectively mitigating the problems of data sparsity and cold starts.Experiments conducted on the ACL Anthology Network(AAN)and DBLP datasets demonstrate that,compared with the academic paper recommendation method based on heterogeneous graphs—Citation Recommendation based on Weighted Heterogeneous Information Network with Citation Semantic Links(WHIN-CSL)—and the academic literature recommendation method integrating network representation learning and textual information,the PR-SGCN method achieves improvements in Recall@25 by 59 and 72 percentage points,and by 67 and 65 percentage points,respectively.
基金supported by the National Natural Science Foundation of China(No.52161135202)Hangzhou Key Scientific Research Plan Project(No.2023SZD0028)+1 种基金the Basic Research Funds for the Central Government‘Innovative Team of Zhejiang University’(No.2022FZZX01-09)China Scholarship Fund.
文摘Uncertainty quantification of building design loads is essential to efficient and reliable building energy planning in the design stage.Current data-driven methods struggle to generalize across buildings with diverse shapes due to limitations in representing complex geometric structures.To tackle this issue,a graph convolutional networks(GCN)-based uncertainty quantification method is proposed.This graph-based approach is introduced to represent building shapes by dividing them into blocks and defining their spatial relationships through nodes and edges.The method effectively captures complex building characteristics,enhancing the generalization abilities.An approach leveraging GCN could estimate design loads by understanding the impact of diverse uncertain factors.Additionally,a class activation map is formulated to identify key uncertain factors,guiding the selection of important design parameters during the building design stage.The effectiveness of this method is evaluated through comparison with four widely-used data-driven techniques.Results indicate that the mean absolute percentage errors(MAPE)for statistical indicators of uncertainty quantification are under 6.0%and 4.0%for cooling loads and heating loads,respectively.The proposed method is demonstrated to quantify uncertainty in building design loads with outstanding generalization abilities.With regard to time costs,the computation time of the proposed method is reduced from 331 hours to 30 seconds for a twenty-floor building compared to a conventional physics-based method.
基金supported by the National Natural Science Foundation of China(Nos.62002063 and U21A20472)Natural Science Foundation of Fujian Province(Nos.2020J05112 and 2022J01118)+1 种基金National Key Research and Development Plan of China(No.2021YFB3600503)Major Science and Technology Project of Fujian Province(No.2021HZ022007).
文摘Modeling and analysis of complex social networks is an important topic in social computing.Graph convolutional networks(GCNs)are widely used for learning social network embeddings and social network analysis.However,real-world complex social networks,such as Facebook and Math,exhibit significant global structural and dynamic characteristics that are not adequately captured by conventional GCN models.To address the above issues,this paper proposes a novel graph convolutional network considering global structural features and global temporal dependencies(GSTGCN).Specifically,we innovatively design a graph coarsening strategy based on the importance of social membership to construct a dynamic diffusion process of graphs.This dynamic diffusion process can be viewed as using higher-order subgraph embeddings to guide the generation of lower-order subgraph embeddings,and we model this process using gate recurrent unit(GRU)to extract comprehensive global structural features of the graph and the evolutionary processes embedded among subgraphs.Furthermore,we design a new evolutionary strategy that incorporates a temporal self-attention mechanism to enhance the extraction of global temporal dependencies of dynamic networks by GRU.GSTGCN outperforms current state-of-the-art network embedding methods in important social networks tasks such as link prediction and financial fraud identification.
文摘The ever-growing available visual data(i.e.,uploaded videos and pictures by internet users)has attracted the research community’s attention in the computer vision field.Therefore,finding efficient solutions to extract knowledge from these sources is imperative.Recently,the BlazePose system has been released for skeleton extraction from images oriented to mobile devices.With this skeleton graph representation in place,a Spatial-Temporal Graph Convolutional Network can be implemented to predict the action.We hypothesize that just by changing the skeleton input data for a different set of joints that offers more information about the action of interest,it is possible to increase the performance of the Spatial-Temporal Graph Convolutional Network for HAR tasks.Hence,in this study,we present the first implementation of the BlazePose skeleton topology upon this architecture for action recognition.Moreover,we propose the Enhanced-BlazePose topology that can achieve better results than its predecessor.Additionally,we propose different skeleton detection thresholds that can improve the accuracy performance even further.We reached a top-1 accuracy performance of 40.1%on the Kinetics dataset.For the NTU-RGB+D dataset,we achieved 87.59%and 92.1%accuracy for Cross-Subject and Cross-View evaluation criteria,respectively.
文摘Using knowledge graphs to assist deep learning models in making recommendation decisions has recently been proven to effectively improve the model′s interpretability and accuracy.This paper introduces an end-to-end deep learning model,named representation-enhanced knowledge graph convolutional networks(RKGCN),which dynamically analyses each user′s preferences and makes a recommendation of suitable items.It combines knowledge graphs on both the item side and user side to enrich their representations to maximize the utilization of the abundant information in knowledge graphs.RKGCN is able to offer more personalized and relevant recommendations in three different scenarios.The experimental results show the superior effectiveness of our model over 5 baseline models on three real-world datasets including movies,books,and music.