With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or p...With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media.展开更多
Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and ...Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.展开更多
Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating In...Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.展开更多
Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.Howev...Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations.展开更多
Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to ...Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to changing attack patterns and complex network environments.In addition,it is difficult to explain the detection results logically using artificial intelligence.We propose a method for classifying network attacks using graph models to explain the detection results.First,we reconstruct the network packet data into a graphical structure.We then use a graph model to predict network attacks using edge classification.To explain the prediction results,we observed numerical changes by randomly masking and calculating the importance of neighbors,allowing us to extract significant subgraphs.Our experiments on six public datasets demonstrate superior performance with an average F1-score of 0.960 and accuracy of 0.964,outperforming traditional machine learning and other graph models.The visual representation of the extracted subgraphs highlights the neighboring nodes that have the greatest impact on the results,thus explaining detection.In conclusion,this study demonstrates that graph-based models are suitable for network attack detection in complex environments,and the importance of graph neighbors can be calculated to efficiently analyze the results.This approach can contribute to real-world network security analyses and provide a new direction in the field.展开更多
Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,exi...Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.展开更多
Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address thes...Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios.展开更多
In this paper,we first give a sufficient condition for a graph being fractional ID-[a,b]-factor-critical covered in terms of its independence number and minimum degree,which partially answers the problem posed by Sizh...In this paper,we first give a sufficient condition for a graph being fractional ID-[a,b]-factor-critical covered in terms of its independence number and minimum degree,which partially answers the problem posed by Sizhong Zhou,Hongxia Liu and Yang Xu(2022).Then,an A_(α)-spectral condition is given to ensure that G is a fractional ID-[a,b]-factor-critical covered graph and an(a,b,k)-factor-critical graph,respectively.In fact,(a,b,k)-factor-critical graph is a graph which has an[a,b]-factor for k=0.Thus,these above results extend the results of Jia Wei and Shenggui Zhang(2023)and Ao Fan,Ruifang Liu and Guoyan Ao(2023)in some sense.展开更多
In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of comb...In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of combinations of t bridges taken 2 at a time.展开更多
The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are cr...The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.展开更多
基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其...基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其次,对GraphSAGE算法进行了改进,包括在消息传递阶段融合节点和边的特征,同时在消息聚合过程中考虑不同源节点对目标节点的影响程度,并在边嵌入生成时引入残差学习机制。在两个公开网络攻击数据集上的实验结果表明,在二分类情况下,所提算法的总体性能优于E-GraphSAGE、LSTM、RNN、CNN算法;在多分类情况下,所提算法在大多数攻击类型上的F1值高于对比算法。展开更多
The products of graphs discussed in this paper are the following four kinds: the Cartesian product of graphs, the tensor product of graphs, the lexicographic product of graphs and the strong direct product of graphs. ...The products of graphs discussed in this paper are the following four kinds: the Cartesian product of graphs, the tensor product of graphs, the lexicographic product of graphs and the strong direct product of graphs. It is proved that:① If the graphs G 1 and G 2 are the connected graphs, then the Cartesian product, the lexicographic product and the strong direct product in the products of graphs, are the path positive graphs. ② If the tensor product is a path positive graph if and only if the graph G 1 and G 2 are the connected graphs, and the graph G 1 or G 2 has an odd cycle and max{ λ 1μ 1,λ nμ m}≥2 in which λ 1 and λ n [ or μ 1 and μ m] are maximum and minimum characteristic values of graph G 1 [ or G 2 ], respectively.展开更多
Graph-based image classification has emerged as a powerful alternative to traditional convolutional approaches,leveraging the relational structure between image regions to improve accuracy.This paper presents an enhan...Graph-based image classification has emerged as a powerful alternative to traditional convolutional approaches,leveraging the relational structure between image regions to improve accuracy.This paper presents an enhanced graph-based image classification framework that integrates convolutional neural network(CNN)features with graph convolutional network(GCN)learning,leveraging superpixel-based image representations.The proposed framework initiates the process by segmenting input images into significant superpixels,reducing computational complexity while preserving essential spatial structures.A pre-trained CNN backbone extracts both global and local features from these superpixels,capturing critical texture and shape information.These features are structured into a graph,and the framework presents a graph classification model that learns and propagates relationships between nodes,improving global contextual understanding.By combining the strengths of CNN-based feature extraction and graph-based relational learning,the method achieves higher accuracy,faster training speeds,and greater robustness in image classification tasks.Experimental evaluations on four agricultural datasets demonstrate the proposed model’s superior performance,achieving accuracy rates of 96.57%,99.63%,95.19%,and 90.00%on Tomato Leaf Disease,Dragon Fruit,Tomato Ripeness,and Dragon Fruit and Leaf datasets,respectively.The model consistently outperforms conventional CNN(89.27%–94.23%accuracy),VIT(89.45%–99.77%accuracy),VGG16(93.97%–99.52%accuracy),and ResNet50(86.67%–99.26%accuracy)methods across all datasets,with particularly significant improvements on challenging datasets such as Tomato Ripeness(95.19%vs.86.67%–94.44%)and Dragon Fruit and Leaf(90.00%vs.82.22%–83.97%).The compact superpixel representation and efficient feature propagation mechanism further accelerate learning compared to traditional CNN and graph-based approaches.展开更多
Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challen...Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challenging tasks.The goal of subgraph matching is to find all subgraphs in the data graph that are isomorphic to the query graph.Traditional methods mostly rely on search strategies with high computational complexity and are hard to apply to large-scale real datasets.With the advent of graph neural networks(GNNs),researchers have turned to GNNs to address subgraph matching problems.However,the multi-attributed features on nodes and edges are overlooked during the learning of graphs,which causes inaccurate results in real-world scenarios.To tackle this problem,we propose a novel model called subgraph matching on multi-attributed graph network(SGMAN).SGMAN first utilizes improved line graphs to capture node and edge features.Then,SGMAN integrates GNN and contrastive learning(CL)to derive graph representation embeddings and calculate the matching matrix to represent the matching results.We conduct experiments on public datasets,and the results affirm the superior performance of our model.展开更多
Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,ter...Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,termed graph-based transform(GBT)and dual graph Laplacian regularization(DGLR)(DGLR-GBT).This model specifically aims to remove Gaussian white noise by capitalizing on the nonlocal self-similarity(NSS)and the piecewise smoothness properties intrinsic to depth maps.Within the group sparse coding(GSC)framework,a combination of GBT and DGLR is implemented.Firstly,within each group,the graph is constructed by using estimates of the true values of the averaged blocks instead of the observations.Secondly,the graph Laplacian regular terms are constructed based on rows and columns of similar block groups,respectively.Lastly,the solution is obtained effectively by combining the alternating direction multiplication method(ADMM)with the weighted thresholding method within the domain of GBT.展开更多
A digraph D is supereulerian if D has a spanning eulerian subdigraph. Bang- Jensen and Thomasse conjectured that if the arc-strong connectivity ),(D) of α digraph D is not less than the independence number α(D)...A digraph D is supereulerian if D has a spanning eulerian subdigraph. Bang- Jensen and Thomasse conjectured that if the arc-strong connectivity ),(D) of α digraph D is not less than the independence number α(D), then D is supereulerian. In this paper, we prove that if D is an extended cycle, an extended hamiltonian digraph, an arc-locally semicomplete digraph, an extended arc-locally semicomplete digraph, an extension of two kinds of eulerian digraph, a hypo-semicomplete digraph or an extended hypo-semicomplete digraph satisfying λ(D) ≥α(D), then D is supereulerian.展开更多
In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shippi...In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.展开更多
Traditional Chinese medicine(TCM)features complex compatibility mechanisms involving multicomponent,multi-target,and multi-pathway interactions.This study presents an interpretable graph artificial intelligence(GraphA...Traditional Chinese medicine(TCM)features complex compatibility mechanisms involving multicomponent,multi-target,and multi-pathway interactions.This study presents an interpretable graph artificial intelligence(GraphAI)framework to quantify such mechanisms in Chinese herbal formulas(CHFs).A multidimensional TCM knowledge graph(TCM-MKG;https://zenodo.org/records/13763953)was constructed,integrating seven standardized modules:TCM terminology,Chinese patent medicines(CPMs),Chinese herbal pieces(CHPs),pharmacognostic origins(POs),chemical compounds,biological targets,and diseases.A neighbor-diffusion strategy was used to address the sparsity of compound-target associations,increasing target coverage from 12.0%to 98.7%.Graph neural networks(GNNs)with attention mechanisms were applied to 6,080 CHFs,modeled as graphs with CHPs as nodes.To embed domain-specific semantics,virtual nodes medicinal properties,i.e.,therapeutic nature,flavor,and meridian tropism,were introduced,enabling interpretable modeling of inter-CHP relationships.The model quantitatively captured classical compatibility roles such as“monarch-minister-assistant-guide”,and uncovered TCM etiological types derived from diagnostic and efficacy patterns.Model validation using 215 CHFs used for coronavirus disease 2019(COVID-19)management highlighted Radix Astragali-Rhizoma Phragmitis as a high-attention herb pair.Mass spectrometry(MS)and target prediction identified three active compounds,i.e.,methylinissolin-3-O-glucoside,corydalin,and pingbeinine,which converge on pathways such as neuroactive ligand-receptor interaction,xenobiotic response,and neuronal function,supporting their neuroimmune and detoxification potential.Given their high safety and dietary compatibility,this herb pair may offer therapeutic value for managing long COVID-19.All data and code are openly available(https://github.com/ZENGJingqi/GraphAI-for-TCM),providing a scalable and interpretable platform for TCM mechanism research and discovery of bioactive herbal constituents.展开更多
With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based...With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.展开更多
The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to u...The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.展开更多
基金funded by the Hunan Provincial Natural Science Foundation of China(Grant No.2025JJ70105)the Hunan Provincial College Students’Innovation and Entrepreneurship Training Program(Project No.S202411342056)The article processing charge(APC)was funded by the Project No.2025JJ70105.
文摘With the widespread use of social media,the propagation of health-related rumors has become a significant public health threat.Existing methods for detecting health rumors predominantly rely on external knowledge or propagation structures,with only a few recent approaches attempting causal inference;however,these have not yet effectively integrated causal discovery with domain-specific knowledge graphs for detecting health rumors.In this study,we found that the combined use of causal discovery and domain-specific knowledge graphs can effectively identify implicit pseudo-causal logic embedded within texts,holding significant potential for health rumor detection.To this end,we propose CKDG—a dual-graph fusion framework based on causal logic and medical knowledge graphs.CKDG constructs a weighted causal graph to capture the implicit causal relationships in the text and introduces a medical knowledge graph to verify semantic consistency,thereby enhancing the ability to identify the misuse of professional terminology and pseudoscientific claims.In experiments conducted on a dataset comprising 8430 health rumors,CKDG achieved an accuracy of 91.28%and an F1 score of 90.38%,representing improvements of 5.11%and 3.29%over the best baseline,respectively.Our results indicate that the integrated use of causal discovery and domainspecific knowledge graphs offers significant advantages for health rumor detection systems.This method not only improves detection performance but also enhances the transparency and credibility of model decisions by tracing causal chains and sources of knowledge conflicts.We anticipate that this work will provide key technological support for the development of trustworthy health-information filtering systems,thereby improving the reliability of public health information on social media.
基金funded by the Deanship of Graduate Studies and Scientific Research at Jouf University under grant No.(DGSSR-2025-02-01296).
文摘Skin diseases affect millions worldwide.Early detection is key to preventing disfigurement,lifelong disability,or death.Dermoscopic images acquired in primary-care settings show high intra-class visual similarity and severe class imbalance,and occasional imaging artifacts can create ambiguity for state-of-the-art convolutional neural networks(CNNs).We frame skin lesion recognition as graph-based reasoning and,to ensure fair evaluation and avoid data leakage,adopt a strict lesion-level partitioning strategy.Each image is first over-segmented using SLIC(Simple Linear Iterative Clustering)to produce perceptually homogeneous superpixels.These superpixels form the nodes of a region-adjacency graph whose edges encode spatial continuity.Node attributes are 1280-dimensional embeddings extracted with a lightweight yet expressive EfficientNet-B0 backbone,providing strong representational power at modest computational cost.The resulting graphs are processed by a five-layer Graph Attention Network(GAT)that learns to weight inter-node relationships dynamically and aggregates multi-hop context before classifying lesions into seven classes with a log-softmax output.Extensive experiments on the DermaMNIST benchmark show the proposed pipeline achieves 88.35%accuracy and 98.04%AUC,outperforming contemporary CNNs,AutoML approaches,and alternative graph neural networks.An ablation study indicates EfficientNet-B0 produces superior node descriptors compared with ResNet-18 and DenseNet,and that roughly five GAT layers strike a good balance between being too shallow and over-deep while avoiding oversmoothing.The method requires no data augmentation or external metadata,making it a drop-in upgrade for clinical computer-aided diagnosis systems.
文摘Reliable traffic flow prediction is crucial for mitigating urban congestion.This paper proposes Attentionbased spatiotemporal Interactive Dynamic Graph Convolutional Network(AIDGCN),a novel architecture integrating Interactive Dynamic Graph Convolution Network(IDGCN)with Temporal Multi-Head Trend-Aware Attention.Its core innovation lies in IDGCN,which uniquely splits sequences into symmetric intervals for interactive feature sharing via dynamic graphs,and a novel attention mechanism incorporating convolutional operations to capture essential local traffic trends—addressing a critical gap in standard attention for continuous data.For 15-and 60-min forecasting on METR-LA,AIDGCN achieves MAEs of 0.75%and 0.39%,and RMSEs of 1.32%and 0.14%,respectively.In the 60-min long-term forecasting of the PEMS-BAY dataset,the AIDGCN out-performs the MRA-BGCN method by 6.28%,4.93%,and 7.17%in terms of MAE,RMSE,and MAPE,respectively.Experimental results demonstrate the superiority of our pro-posed model over state-of-the-art methods.
基金funded by the National Key Research and Development Program of China(Grant No.2024YFE0209000)the NSFC(Grant No.U23B2019).
文摘Graph Neural Networks(GNNs)have proven highly effective for graph classification across diverse fields such as social networks,bioinformatics,and finance,due to their capability to learn complex graph structures.However,despite their success,GNNs remain vulnerable to adversarial attacks that can significantly degrade their classification accuracy.Existing adversarial attack strategies primarily rely on label information to guide the attacks,which limits their applicability in scenarios where such information is scarce or unavailable.This paper introduces an innovative unsupervised attack method for graph classification,which operates without relying on label information,thereby enhancing its applicability in a broad range of scenarios.Specifically,our method first leverages a graph contrastive learning loss to learn high-quality graph embeddings by comparing different stochastic augmented views of the graphs.To effectively perturb the graphs,we then introduce an implicit estimator that measures the impact of various modifications on graph structures.The proposed strategy identifies and flips edges with the top-K highest scores,determined by the estimator,to maximize the degradation of the model’s performance.In addition,to defend against such attack,we propose a lightweight regularization-based defense mechanism that is specifically tailored to mitigate the structural perturbations introduced by our attack strategy.It enhances model robustness by enforcing embedding consistency and edge-level smoothness during training.We conduct experiments on six public TU graph classification datasets:NCI1,NCI109,Mutagenicity,ENZYMES,COLLAB,and DBLP_v1,to evaluate the effectiveness of our attack and defense strategies.Under an attack budget of 3,the maximum reduction in model accuracy reaches 6.67%on the Graph Convolutional Network(GCN)and 11.67%on the Graph Attention Network(GAT)across different datasets,indicating that our unsupervised method induces degradation comparable to state-of-the-art supervised attacks.Meanwhile,our defense achieves the highest accuracy recovery of 3.89%(GCN)and 5.00%(GAT),demonstrating improved robustness against structural perturbations.
基金supported by the MSIT(Ministry of Science and ICT),Republic of Korea,under the ICAN(ICT Challenge and Advanced Network of HRD)support program(IITP-2025-RS-2023-00259497)supervised by the IITP(Institute for Information&Communications Technology Planning&Evaluation)and was supported by Institute of Information&Communications Technology Planning&Evaluation(IITP)grant funded by the Republic of Korea government(MSIT)(No.IITP-2025-RS-2023-00254129+1 种基金Graduate School of Metaverse Convergence(Sungkyunkwan University))was supported by the Basic Science Research Program of the National Research Foundation(NRF)funded by the Republic of Korean government(MSIT)(No.RS-2024-00346737).
文摘Network attacks have become a critical issue in the internet security domain.Artificial intelligence technology-based detection methodologies have attracted attention;however,recent studies have struggled to adapt to changing attack patterns and complex network environments.In addition,it is difficult to explain the detection results logically using artificial intelligence.We propose a method for classifying network attacks using graph models to explain the detection results.First,we reconstruct the network packet data into a graphical structure.We then use a graph model to predict network attacks using edge classification.To explain the prediction results,we observed numerical changes by randomly masking and calculating the importance of neighbors,allowing us to extract significant subgraphs.Our experiments on six public datasets demonstrate superior performance with an average F1-score of 0.960 and accuracy of 0.964,outperforming traditional machine learning and other graph models.The visual representation of the extracted subgraphs highlights the neighboring nodes that have the greatest impact on the results,thus explaining detection.In conclusion,this study demonstrates that graph-based models are suitable for network attack detection in complex environments,and the importance of graph neighbors can be calculated to efficiently analyze the results.This approach can contribute to real-world network security analyses and provide a new direction in the field.
基金supported by National Natural Science Foundation of China(62466045)Inner Mongolia Natural Science Foundation Project(2021LHMS06003)Inner Mongolia University Basic Research Business Fee Project(114).
文摘Graph Federated Learning(GFL)has shown great potential in privacy protection and distributed intelligence through distributed collaborative training of graph-structured data without sharing raw information.However,existing GFL approaches often lack the capability for comprehensive feature extraction and adaptive optimization,particularly in non-independent and identically distributed(NON-IID)scenarios where balancing global structural understanding and local node-level detail remains a challenge.To this end,this paper proposes a novel framework called GFL-SAR(Graph Federated Collaborative Learning Framework Based on Structural Amplification and Attention Refinement),which enhances the representation learning capability of graph data through a dual-branch collaborative design.Specifically,we propose the Structural Insight Amplifier(SIA),which utilizes an improved Graph Convolutional Network(GCN)to strengthen structural awareness and improve modeling of topological patterns.In parallel,we propose the Attentive Relational Refiner(ARR),which employs an enhanced Graph Attention Network(GAT)to perform fine-grained modeling of node relationships and neighborhood features,thereby improving the expressiveness of local interactions and preserving critical contextual information.GFL-SAR effectively integrates multi-scale features from every branch via feature fusion and federated optimization,thereby addressing existing GFL limitations in structural modeling and feature representation.Experiments on standard benchmark datasets including Cora,Citeseer,Polblogs,and Cora_ML demonstrate that GFL-SAR achieves superior performance in classification accuracy,convergence speed,and robustness compared to existing methods,confirming its effectiveness and generalizability in GFL tasks.
基金supported by the Zhongyuan University of Technology Discipline Backbone Teacher Support Program Project(No.GG202417)the Key Research and Development Program of Henan under Grant 251111212000.
文摘Lateral movement represents the most covert and critical phase of Advanced Persistent Threats(APTs),and its detection still faces two primary challenges:sample scarcity and“cold start”of new entities.To address these challenges,we propose an Uncertainty-Driven Graph Embedding-Enhanced Lateral Movement Detection framework(UGEA-LMD).First,the framework employs event-level incremental encoding on a continuous-time graph to capture fine-grained behavioral evolution,enabling newly appearing nodes to retain temporal contextual awareness even in the absence of historical interactions and thereby fundamentally mitigating the cold-start problem.Second,in the embedding space,we model the dependency structure among feature dimensions using a Gaussian copula to quantify the uncertainty distribution,and generate augmented samples with consistent structural and semantic properties through adaptive sampling,thus expanding the representation space of sparse samples and enhancing the model’s generalization under sparse sample conditions.Unlike static graph methods that cannot model temporal dependencies or data augmentation techniques that depend on predefined structures,UGEA-LMD offers both superior temporaldynamic modeling and structural generalization.Experimental results on the large-scale LANL log dataset demonstrate that,under the transductive setting,UGEA-LMD achieves an AUC of 0.9254;even when 10%of nodes or edges are withheld during training,UGEA-LMD significantly outperforms baseline methods on metrics such as recall and AUC,confirming its robustness and generalization capability in sparse-sample and cold-start scenarios.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11961041,12261055)the Key Project of Natural Science Foundation of Gansu Province(Grant No.24JRRA222)the Foundation for Innovative Fundamental Research Group Project of Gansu Province(Grant No.25JRRA805).
文摘In this paper,we first give a sufficient condition for a graph being fractional ID-[a,b]-factor-critical covered in terms of its independence number and minimum degree,which partially answers the problem posed by Sizhong Zhou,Hongxia Liu and Yang Xu(2022).Then,an A_(α)-spectral condition is given to ensure that G is a fractional ID-[a,b]-factor-critical covered graph and an(a,b,k)-factor-critical graph,respectively.In fact,(a,b,k)-factor-critical graph is a graph which has an[a,b]-factor for k=0.Thus,these above results extend the results of Jia Wei and Shenggui Zhang(2023)and Ao Fan,Ruifang Liu and Guoyan Ao(2023)in some sense.
文摘In this paper,we prove that there does not exist an r-UPC[2]-graph for each r≥5 and there does not exist an r-UPC[C_t^2]-graph for each r≥3,where t is the number of bridges in a graph and C_t^2 is the number of combinations of t bridges taken 2 at a time.
文摘The increasing popularity of the Internet and the widespread use of information technology have led to a rise in the number and sophistication of network attacks and security threats.Intrusion detection systems are crucial to network security,playing a pivotal role in safeguarding networks from potential threats.However,in the context of an evolving landscape of sophisticated and elusive attacks,existing intrusion detection methodologies often overlook critical aspects such as changes in network topology over time and interactions between hosts.To address these issues,this paper proposes a real-time network intrusion detection method based on graph neural networks.The proposedmethod leverages the advantages of graph neural networks and employs a straightforward graph construction method to represent network traffic as dynamic graph-structured data.Additionally,a graph convolution operation with a multi-head attention mechanism is utilized to enhance the model’s ability to capture the intricate relationships within the graph structure comprehensively.Furthermore,it uses an integrated graph neural network to address dynamic graphs’structural and topological changes at different time points and the challenges of edge embedding in intrusion detection data.The edge classification problem is effectively transformed into node classification by employing a line graph data representation,which facilitates fine-grained intrusion detection tasks on dynamic graph node feature representations.The efficacy of the proposed method is evaluated using two commonly used intrusion detection datasets,UNSW-NB15 and NF-ToN-IoT-v2,and results are compared with previous studies in this field.The experimental results demonstrate that our proposed method achieves 99.3%and 99.96%accuracy on the two datasets,respectively,and outperforms the benchmark model in several evaluation metrics.
文摘基于深度学习的网络攻击检测是对欧几里得数据进行建模,无法学习攻击数据中的结构特征。为此,提出一种基于改进图采样与聚合(graph sample and aggregate,GraphSAGE)的网络攻击检测算法。首先,将攻击数据从平面结构转换为图结构数据。其次,对GraphSAGE算法进行了改进,包括在消息传递阶段融合节点和边的特征,同时在消息聚合过程中考虑不同源节点对目标节点的影响程度,并在边嵌入生成时引入残差学习机制。在两个公开网络攻击数据集上的实验结果表明,在二分类情况下,所提算法的总体性能优于E-GraphSAGE、LSTM、RNN、CNN算法;在多分类情况下,所提算法在大多数攻击类型上的F1值高于对比算法。
文摘The products of graphs discussed in this paper are the following four kinds: the Cartesian product of graphs, the tensor product of graphs, the lexicographic product of graphs and the strong direct product of graphs. It is proved that:① If the graphs G 1 and G 2 are the connected graphs, then the Cartesian product, the lexicographic product and the strong direct product in the products of graphs, are the path positive graphs. ② If the tensor product is a path positive graph if and only if the graph G 1 and G 2 are the connected graphs, and the graph G 1 or G 2 has an odd cycle and max{ λ 1μ 1,λ nμ m}≥2 in which λ 1 and λ n [ or μ 1 and μ m] are maximum and minimum characteristic values of graph G 1 [ or G 2 ], respectively.
文摘Graph-based image classification has emerged as a powerful alternative to traditional convolutional approaches,leveraging the relational structure between image regions to improve accuracy.This paper presents an enhanced graph-based image classification framework that integrates convolutional neural network(CNN)features with graph convolutional network(GCN)learning,leveraging superpixel-based image representations.The proposed framework initiates the process by segmenting input images into significant superpixels,reducing computational complexity while preserving essential spatial structures.A pre-trained CNN backbone extracts both global and local features from these superpixels,capturing critical texture and shape information.These features are structured into a graph,and the framework presents a graph classification model that learns and propagates relationships between nodes,improving global contextual understanding.By combining the strengths of CNN-based feature extraction and graph-based relational learning,the method achieves higher accuracy,faster training speeds,and greater robustness in image classification tasks.Experimental evaluations on four agricultural datasets demonstrate the proposed model’s superior performance,achieving accuracy rates of 96.57%,99.63%,95.19%,and 90.00%on Tomato Leaf Disease,Dragon Fruit,Tomato Ripeness,and Dragon Fruit and Leaf datasets,respectively.The model consistently outperforms conventional CNN(89.27%–94.23%accuracy),VIT(89.45%–99.77%accuracy),VGG16(93.97%–99.52%accuracy),and ResNet50(86.67%–99.26%accuracy)methods across all datasets,with particularly significant improvements on challenging datasets such as Tomato Ripeness(95.19%vs.86.67%–94.44%)and Dragon Fruit and Leaf(90.00%vs.82.22%–83.97%).The compact superpixel representation and efficient feature propagation mechanism further accelerate learning compared to traditional CNN and graph-based approaches.
文摘Graphs have been widely used in fields ranging from chemical informatics to social network analysis.Graph-related problems become increasingly significant,with subgraph matching standing out as one of the most challenging tasks.The goal of subgraph matching is to find all subgraphs in the data graph that are isomorphic to the query graph.Traditional methods mostly rely on search strategies with high computational complexity and are hard to apply to large-scale real datasets.With the advent of graph neural networks(GNNs),researchers have turned to GNNs to address subgraph matching problems.However,the multi-attributed features on nodes and edges are overlooked during the learning of graphs,which causes inaccurate results in real-world scenarios.To tackle this problem,we propose a novel model called subgraph matching on multi-attributed graph network(SGMAN).SGMAN first utilizes improved line graphs to capture node and edge features.Then,SGMAN integrates GNN and contrastive learning(CL)to derive graph representation embeddings and calculate the matching matrix to represent the matching results.We conduct experiments on public datasets,and the results affirm the superior performance of our model.
基金National Natural Science Foundation of China(No.62372100)。
文摘Owing to the constraints of depth sensing technology,images acquired by depth cameras are inevitably mixed with various noises.For depth maps presented in gray values,this research proposes a novel denoising model,termed graph-based transform(GBT)and dual graph Laplacian regularization(DGLR)(DGLR-GBT).This model specifically aims to remove Gaussian white noise by capitalizing on the nonlocal self-similarity(NSS)and the piecewise smoothness properties intrinsic to depth maps.Within the group sparse coding(GSC)framework,a combination of GBT and DGLR is implemented.Firstly,within each group,the graph is constructed by using estimates of the true values of the averaged blocks instead of the observations.Secondly,the graph Laplacian regular terms are constructed based on rows and columns of similar block groups,respectively.Lastly,the solution is obtained effectively by combining the alternating direction multiplication method(ADMM)with the weighted thresholding method within the domain of GBT.
基金Supported by the National Natural Science Foundation of China(Grant Nos.1176107161363020)+1 种基金Science and Technology Innovation Project of Xinjiang Normal University(Grant No.XSY201602013)the"13th Five-Year"Plan for Key Discipline Mathematics of Xinjiang Normal University(Grant No.17SDKD1107)
文摘A digraph D is supereulerian if D has a spanning eulerian subdigraph. Bang- Jensen and Thomasse conjectured that if the arc-strong connectivity ),(D) of α digraph D is not less than the independence number α(D), then D is supereulerian. In this paper, we prove that if D is an extended cycle, an extended hamiltonian digraph, an arc-locally semicomplete digraph, an extended arc-locally semicomplete digraph, an extension of two kinds of eulerian digraph, a hypo-semicomplete digraph or an extended hypo-semicomplete digraph satisfying λ(D) ≥α(D), then D is supereulerian.
文摘In the international shipping industry, digital intelligence transformation has become essential, with both governments and enterprises actively working to integrate diverse datasets. The domain of maritime and shipping is characterized by a vast array of document types, filled with complex, large-scale, and often chaotic knowledge and relationships. Effectively managing these documents is crucial for developing a Large Language Model (LLM) in the maritime domain, enabling practitioners to access and leverage valuable information. A Knowledge Graph (KG) offers a state-of-the-art solution for enhancing knowledge retrieval, providing more accurate responses and enabling context-aware reasoning. This paper presents a framework for utilizing maritime and shipping documents to construct a knowledge graph using GraphRAG, a hybrid tool combining graph-based retrieval and generation capabilities. The extraction of entities and relationships from these documents and the KG construction process are detailed. Furthermore, the KG is integrated with an LLM to develop a Q&A system, demonstrating that the system significantly improves answer accuracy compared to traditional LLMs. Additionally, the KG construction process is up to 50% faster than conventional LLM-based approaches, underscoring the efficiency of our method. This study provides a promising approach to digital intelligence in shipping, advancing knowledge accessibility and decision-making.
基金supported by the National Natural Science Foundation of China(Grant No.:82230117).
文摘Traditional Chinese medicine(TCM)features complex compatibility mechanisms involving multicomponent,multi-target,and multi-pathway interactions.This study presents an interpretable graph artificial intelligence(GraphAI)framework to quantify such mechanisms in Chinese herbal formulas(CHFs).A multidimensional TCM knowledge graph(TCM-MKG;https://zenodo.org/records/13763953)was constructed,integrating seven standardized modules:TCM terminology,Chinese patent medicines(CPMs),Chinese herbal pieces(CHPs),pharmacognostic origins(POs),chemical compounds,biological targets,and diseases.A neighbor-diffusion strategy was used to address the sparsity of compound-target associations,increasing target coverage from 12.0%to 98.7%.Graph neural networks(GNNs)with attention mechanisms were applied to 6,080 CHFs,modeled as graphs with CHPs as nodes.To embed domain-specific semantics,virtual nodes medicinal properties,i.e.,therapeutic nature,flavor,and meridian tropism,were introduced,enabling interpretable modeling of inter-CHP relationships.The model quantitatively captured classical compatibility roles such as“monarch-minister-assistant-guide”,and uncovered TCM etiological types derived from diagnostic and efficacy patterns.Model validation using 215 CHFs used for coronavirus disease 2019(COVID-19)management highlighted Radix Astragali-Rhizoma Phragmitis as a high-attention herb pair.Mass spectrometry(MS)and target prediction identified three active compounds,i.e.,methylinissolin-3-O-glucoside,corydalin,and pingbeinine,which converge on pathways such as neuroactive ligand-receptor interaction,xenobiotic response,and neuronal function,supporting their neuroimmune and detoxification potential.Given their high safety and dietary compatibility,this herb pair may offer therapeutic value for managing long COVID-19.All data and code are openly available(https://github.com/ZENGJingqi/GraphAI-for-TCM),providing a scalable and interpretable platform for TCM mechanism research and discovery of bioactive herbal constituents.
基金supported by the National Key Research and Development Program of China No.2023YFA1009500.
文摘With the emphasis on user privacy and communication security, encrypted traffic has increased dramatically, which brings great challenges to traffic classification. The classification method of encrypted traffic based on GNN can deal with encrypted traffic well. However, existing GNN-based approaches ignore the relationship between client or server packets. In this paper, we design a network traffic topology based on GCN, called Flow Mapping Graph (FMG). FMG establishes sequential edges between vertexes by the arrival order of packets and establishes jump-order edges between vertexes by connecting packets in different bursts with the same direction. It not only reflects the time characteristics of the packet but also strengthens the relationship between the client or server packets. According to FMG, a Traffic Mapping Classification model (TMC-GCN) is designed, which can automatically capture and learn the characteristics and structure information of the top vertex in FMG. The TMC-GCN model is used to classify the encrypted traffic. The encryption stream classification problem is transformed into a graph classification problem, which can effectively deal with data from different data sources and application scenarios. By comparing the performance of TMC-GCN with other classical models in four public datasets, including CICIOT2023, ISCXVPN2016, CICAAGM2017, and GraphDapp, the effectiveness of the FMG algorithm is verified. The experimental results show that the accuracy rate of the TMC-GCN model is 96.13%, the recall rate is 95.04%, and the F1 rate is 94.54%.
文摘The ability to accurately predict urban traffic flows is crucial for optimising city operations.Consequently,various methods for forecasting urban traffic have been developed,focusing on analysing historical data to understand complex mobility patterns.Deep learning techniques,such as graph neural networks(GNNs),are popular for their ability to capture spatio-temporal dependencies.However,these models often become overly complex due to the large number of hyper-parameters involved.In this study,we introduce Dynamic Multi-Graph Spatial-Temporal Graph Neural Ordinary Differential Equation Networks(DMST-GNODE),a framework based on ordinary differential equations(ODEs)that autonomously discovers effective spatial-temporal graph neural network(STGNN)architectures for traffic prediction tasks.The comparative analysis of DMST-GNODE and baseline models indicates that DMST-GNODE model demonstrates superior performance across multiple datasets,consistently achieving the lowest Root Mean Square Error(RMSE)and Mean Absolute Error(MAE)values,alongside the highest accuracy.On the BKK(Bangkok)dataset,it outperformed other models with an RMSE of 3.3165 and an accuracy of 0.9367 for a 20-min interval,maintaining this trend across 40 and 60 min.Similarly,on the PeMS08 dataset,DMST-GNODE achieved the best performance with an RMSE of 19.4863 and an accuracy of 0.9377 at 20 min,demonstrating its effectiveness over longer periods.The Los_Loop dataset results further emphasise this model’s advantage,with an RMSE of 3.3422 and an accuracy of 0.7643 at 20 min,consistently maintaining superiority across all time intervals.These numerical highlights indicate that DMST-GNODE not only outperforms baseline models but also achieves higher accuracy and lower errors across different time intervals and datasets.